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Linear and nonlinear dispersive Alfve ´n waves in two-ion plasmas
R. T. Faria, Jr.,a) Arshad M. Mirza,b) P. K. Shukla, and O. A. Pokhotelovc)

Institut für Theoretische Physik IV, Fakulta¨t für Physik und Astronomie, Ruhr–Universität Bochum,
D–44780 Bochum, Germany

~Received 5 March 1998; accepted 12 May 1998!

A set of coupled nonlinear equations for dispersive Alfve´n waves ~DAWs! in nonuniform
magnetoplasmas with two-ion species is derived by employing a multifluid model. The DAW
frequency is assumed to lie between the gyrofrequencies of the light and heavy ion impurities. In the
linear limit, a local dispersion relation~LDR! is derived and analyzed. The LDR admits a new type
of DAW in two-ion plasmas. Furthermore, it is found that stationary solutions of the nonlinear mode
coupling equations in two-ion plasmas can be represented in the form of different types of coherent
vortex structures. The relevance of our investigation to space and laboratory plasmas is pointed out.
© 1998 American Institute of Physics.@S1070-664X~98!02408-2#

I. INTRODUCTION

The Alfvén wave is one of the important normal modes
of a two-component electron ion plasma that is embedded in
a uniform magnetic field. The dynamics of nondispersive
Alfvén waves is normally governed by ideal magnetohydro-
dynamic~MHD! equations. In the Alfve´n wave, the restoring
force comes from the equilibrium magnetic pressure, and the
ion mass provides the inertia. The inclusion of nonideal
effects,1–3 such as the perpendicular~parallel! inertial force
of the ions~electrons! and the Hall force, is responsible for
dispersion of the Alfve´n wave. The dispersive Alfve´n wave
~DAW!, which is also referred to as the kinetic~or shear! and
inertial Alfvén waves,1,3 accompanies a finite parallel~along
the ambient magnetic field lines of force! electric field, and
the DAW dynamics is either governed by gyrokinetic equa-
tions or by two fluid equations that include the ion polariza-
tion drift and the parallel electron inertial force. The linear
and nonlinear properties of the kinetic Alfve´n and inertial
Alfvén waves in a two-component electron-ion plasma have
been discussed in depth by several authors.2,4–7 It is widely
thought that the DAW can energize both the electrons and
ions, and that it can also be associated with numerous scale
low-frequency~in comparison with the ion gyrofrequency!
electromagnetic waves in both the laboratory and in space/
cosmic plasmas.

However, most of the laboratory~such as the tokamak!
as well as space and astrophysical~such as those in Earth’s
ionosphere and magnetosphere, the solar wind, cometary
tails, etc.! plasmas contain multiple ion species8–10 and inho-
mogeneities. Accordingly, it is of practical interest to exam-
ine the properties of linear and nonlinear DAWs in nonuni-
form multicomponent magnetized plasmas with equilibrium
density gradients and sheared plasma flows.

In this article, we shall employ a multifluid model to
derive a set of nonlinear equations for the DAW in a non-
uniform magnetoplasma, by assuming that the frequency of
the DAW is much smaller~either smaller, comparable, or
larger! than the gyrofrequency of the heavier or inertial
~lighter or inertialess! ions. The mode coupling equations
consist of the electron continuity equation, the parallel com-
ponent of the electron momentum equation, the conservation
of the charge current density, as well as an equation which
governs the dynamics of perpendicular velocity of the
heavier ion component. In the linear limit, the four field
equations are Fourier transformed and a general local disper-
sion relation is derived and analyzed in several limiting
cases. It is found that sheared plasma flows can excite the
DA-like waves in plasmas without the density gradient. On
the other hand, the nonlinear coupling between finite ampli-
tude DA-like waves can produce coherent vortex structures.
Conditions under which the latter appear are given. The rel-
evance of our investigation to space and laboratory plasmas
is pointed out.

II. DERIVATION OF THE NONLINEAR EQUATIONS

We consider a nonuniform multicomponent plasma im-
mersed in a homogeneous magnetic fieldB0ẑ, whereB0 is
the strength of the external magnetic field, andẑ is the unit
vector along thez axis. The equilibrium density (nj 0) and
velocity (v j 0) have gradients along thex axis. Here, the
subscript j is e for the electrons andi for the ions. The
equilibrium gradients are maintained by body forces and by
noncontinuous injection of charged particles into plasmas.
We assume that the strength of sheared magnetic fields,
which are produced by the equilibrium parallel current, is
negligibly small in comparison with the strength of the am-
bient magnetic field.

At equilibrium, the divergence of the equilibrium plasma
current density is zero, and the charge neutrality condition
reads

ne05Zi
lni0

l 1Zi
hni0

h , ~1!
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where the superscriptl (h) stands for the lighter~heavier!
ion component, andZi is the ion charge. The negative ion is
characterized byZi,0.

We assume that the frequency of the DAW is much
smaller than the gyrofrequency (Vcl5Zi

leB0 /mi
lc) of the

lighter ions, wheree is the magnitude of the electron charge,
mi

l is the mass of the lighter ions, andc is the speed of light.
Thus, the perpendicular~to ẑ) components of the electron
and lighter ion fluid velocity perturbations in the electromag-
netic fields of the DAW are, respectively,

ve''vEB1vDe1~ve01vez!
B'

B0
, ~2!

and

vi
l'vEB1

c

B0Vcl
~] t1v i0]z1vi

l
•¹!E'1

v i0B'

B0
, ~3!

where vEB5cẑ3“f/B0, and vDe52(cTe /eB0ne) ẑ3“ne

are theE3B0, and the diamagnetic drift velocities, respec-
tively, E52“f2(1/c)] tAzẑ is the electric field vector,
f (Az) is the electrostatic~z component of the vector! po-
tential, andB'5“Az3ẑ is the perpendicular component of
the wave magnetic field. Furthermore,ne is the electron
number density andTe is the constant electron temperature.
The compressional magnetic field perturbation along theẑ
direction has been neglected in view of the low-b(!1) ap-
proximation. For simplicity, the motion of cold ions along
the ẑ direction has been neglected.

The parallel~to ẑ) component of the electron fluid ve-
locity perturbation (vez) can be obtained from thez compo-
nent of Ampère’s law,

vez'~c/4pne0e!“'
2 Az , ~4!

where“'
2 5]x

21]y
2 .

The relevant equations for nonlinear dispersive Alfve´n
waves in plasmas with two-ion components can easily be
derived by substituting Eqs.~1!–~4! into the continuity equa-
tions for the electrons and ions, and into the parallel compo-
nent of the electron momentum equations. Thus, by substi-
tuting Eq. ~2! into the electron continuity equation and by
eliminatingvez by means of Eq.~4!, we obtain

Dt
ene12

c

B0
ẑ3“ne0•“f1

1

eB0
ẑ3“Az•“Je0

1
c

4pe
Dz“'

2 Az50, ~5!

where Dt
e5] t1ve0]z1vEB•“1(c/4pne0e)“'

2 Az]z , Dz

5]z1B0
21

“Az3ẑ–“, Je052ene0ve0 is the equilibrium
electron current density, andne1(5ne2ne0!ne0) is the per-
turbed electron number density.

Inserting Eqs.~2! and~4! into the parallel component of
the electron momentum equation, and noting thatEz

52]zf2c21] tAz , we readily obtain

~Dt2le
2
“'

2 Dt
e!Az1vD0•“Az1c~]z1Sv0•“ !f

2
cTe

ene0
Dzne150, ~6!

whereDt5] t1vEB–“, vD052(cTe /eB0ne0) ẑ3¹ne0 is the
equilibrium electron diamagnetic drift,le5c/vpe is the col-
lisionless electron skin depth,vpe5(4pn0e2/me)

1/2 is the
electron plasma frequency, andSv05( ẑ3“ve0)/vce is the
electron shear parameter.

From the conservation of the charge current density,
viz., “–J5“'–J'1ẑ–“Jez50, we obtain

cZi
he

B0
ẑ3“ni0

h
•“f1

cZi
leni0

l

B0Vcl
Dtl“'

2 f2Zi
he“•~ni0

h vi'
h !

2
1

B0
ẑ3“J0•“Az1

c

4p
dz“'

2 Az50, ~7!

where Dtl5] t1v i0
l ]z1vEB•“, J05e(ni0v i02ne0ve0) is

the unperturbed total plasma current density, andvi'
h is the

perpendicular component of the heavier~or inertial! ion fluid
velocity perturbation. The latter is determined from

~Dth
2 1Vch

2 !vi'
h 1

Zi
he

mi
h

] t“'f2
cVch

2

B0
ẑ3“f50, ~8!

whereDth5] t1v i0
h ]z1vi'

h
•“ andVch5Zi

heB0 /mi
hc is the

gyrofrequency of the heavier ion component.
Equations~5!–~8! are the desired nonlinear equations for

the study of dispersive Alfve´n waves in nonuniform plasmas
with two distinct groups of ions.

III. THE LOCAL DISPERSION RELATION

In Sec. III, we shall present the local linear dispersion
relation for the DAW in a nonuniform plasma by assuming
that the wavelength of the disturbance is much smaller than
the scale lengths of the equilibrium inhomogeneities. Ac-
cordingly, we Fourier transform Eqs.~5!–~8! by assuming
that the perturbed quantitiesne1 ,vi'

h ,f, andAz are propor-
tional to exp(ik–r2 ivt), where k(5 ŷky1 ẑkz) and v are
the wave vector and the frequency, respectively. The unit
vector along they direction is denoted byŷ.

We first present a general dispersion relation for the
DAW in the presence of an equilibrium density gradient and
equilibrium sheared plasma flows. Accordingly, we Fourier
transform Eqs.~5!–~8! by neglecting the nonlinear terms.
From Eq.~5! we have

ne152
1

vFkycne08

B0
f1S kyJe08

eB0
1

ky
2kzc

4pe DAzG , ~9!

where we have assumed thatv@kzv j 0 and have denoted
ne08 5]ne0 /]x andJe08 5]Je0 /]x.

On the other hand, we Fourier transform Eq.~6! and
eliminate ne1 by means of Eq.~9!. The resultant equation
reads

DmAz5kzcFvS 11
kyS

kz
D1vcekykere

2Gf, ~10!

where Dm5(11ky
2le

2)v22vk–vD02kz
2c2ky

2lDe
2

2kykzre
2VceJe08 /ene0, lDe5(Te/4pne0e2)1/2 is the electron

Debye length,re5v te /Vce is the electron Larmor radius,
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v te(Vce) is the electron thermal velocity~the electron gyro-
frequency!, ke5ne08 /ne0, and S5(]ve0 /]x)/Vce

[Ve08 /Vce .
Finally, we combine Eqs.~7! and ~8! and Fourier trans-

form the resulting equation. The result is

e lf5S 4p

B0
J081kykzcD kyAz , ~11!

where

e l5S vph
2

Vch
1

vph
2 Vch

Vch
2 2v2D kyk i1S vpl

2 v

Vcl
2

1
vph

2 v

Vch
2 2v2D ky

2,

with vph andvpl being the plasma frequency of the heavier
and lighter ion components, respectively. Furthermore, we
have denotedJ085]J0 /]x andk i5(]ni0

h /]x)/ni0
h .

From Eqs.~10! and~11! we can eliminateAz or f, and
obtain the general dispersion relation

Dme l5vkykzcS 11
kyS

kz
D S 4p

B0
J081kykzcD . ~12!

In the absence of the density gradients and equilibrium
sheared plasma flows Eq.~12! reduces to

@~11ky
2le

2!v22kz
2c2ky

2lDe
2 #S v22Vch

2 2
vph

2 Vcl
2

vpl
2 D

2kz
2VAl

2 ~v22Vch
2 !50, ~13!

where VAl
2 5B0

2/(4pr l) is the Alfvén velocity and
r l(5ni0

l mi
l) represents the mass density of the light ions.

Equation ~13! shows that the dispersive Alfve´n waves are
linearly coupled with the ion-cyclotron waves involving the
heavy ion component. Forv!Vch , Eq. ~13! yields

v25
kz

2VA
21kz

2c2ky
2lDe

2

11ky
2le

2
, ~14!

whereVA5c/Aa is the Alfvén velocity in two-ion plasma,
and a5( i 5 l ,hvpi

2 /Vci
2 . Equation~14! shows that the phase

velocity of the usual kinetic/inertial Alfve´n wave is de-
creased when an additional ion component is present in plas-
mas.

It can be readily shown from Eq.~12! that the DAW in
two-ion plasmas can be driven by sheared plasma flows even
in the absence of the density gradients. Forkzv te!v
!Vch , the instability occurs provided that (kz1kyS)
3(kykzc14pJ08/B0),0. The latter is satisfied for
]ve0 /]x[Ve08 ,0 and uVe08 u/vce.kz /ky provided that
kykzc.4pJ08/B0. The growth rate of that current convective
instability is kzVAukyV08/kzvceu1/2. Finally, we would like to
mention that when the density gradients and sheared plasma
flows are present simultaneously, then one has to resort to a
numerical analysis of Eq.~12! in order to deduce complete
information regarding the growth of dispersive Alfve´n-like
waves in two-ion plasmas that are inhomogeneous.

IV. NONLINEAR SOLUTIONS

The nonlinear interaction between finite amplitude dis-
persive Alfvén waves in two-ion plasmas can be responsible
for the formation of ordered structures. Although the general
stationary and nonstationary solutions of Eqs.~5!–~8! cannot
be found analytically, we discuss here stationary solutions in
some limiting cases. Specifically, in the following, we shall
present vortex solutions2,4–7,11–15of Eqs. ~5!–~8! by assum-
ing that ]xnj 050, u] tu!Vch , cvceu“'

2 Az]zu
!vpe

2 uẑ3“f•“u and]z
2!“'

2 . Accordingly, we introduce a
new reference framej5y1az2ut, wherea andu are con-
stants, and assume thatf and Az are functions ofx and j
only. The introduction of the new reference framej with
constanta and u for an inhomogeneous medium is a well
established fact for cases involving Rossby and gravity dipo-
lar vortices in fluids,2,13–15 as well as for drift-acoustic11,12

and drift-Alfvén2,4,5,7 vortices in nonuniform magnetized
plasmas.

In the stationary framej5y1az2ut, we can replace] t

by 2u]j , ]y by ]j , and]z by a]j . In the absence of the
density gradients, Eq.~5! becomes

Djfne15DjAFne0Ve08

uB0
Az1

ca

4peu
¹'

2 AzG , ~15!

where Djf5]j2(c/uB0)(]xf]j2]jf]x) and DjA5]j

1(1/aB0)(]jAz]x2]xAz]j), andu@v j 0 has been assumed.
From Eq.~6!, we have

DjfF ~12le
2¹'

2 !Az2
ca0

u
f G1

cTea

ene0u
DjAne150, ~16!

wherea05a1S.
On the other hand, Eq.~7! gives

Djf¹'
2 f5DjAS ene0V08

auB0
Az1

ca

au
¹'

2 AzD , ~17!

whereV08'](ve02v i0)/]x.
We now discuss analytical solutions of Eqs.~15!–~17! in

some limiting cases. Let us focus on kinetic Alfve´n waves
which assume that the scale sizes of the vortices are much
smaller than the collisionless electron skin depth. Here, we
obtain from Eq.~16!

DjfS Az2
ca0

u
f D52

cTea

ene0u
DjAne1 . ~18!

In the ideal MHD limit, the Alfvén waves have insignifi-
cant density perturbations, so we can approximateAz by
(ca0 /u)f. Substituting the latter into Eq.~17! we obtain

S 12
c2aa0

au2 D ]j¹'
2 f2

ene0ca0V08

au2B0

]jf

2
c

uB0
S 12

c2a0
2

au2 D J~f,¹'
2 f!50, ~19!

whereJ( f ,g)5]xf ]jg2]xg]j f .
In the absence of sheared plasma flows, Eq.~19! as-

sumes the form of a stationary Navier-Stokes equation
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]j¹'
2 f2

cms

uB0
J~f,¹'

2 f!50, ~20!

wherems5(12c2a0
2/au2)/(12c2aa0 /au2).

Equation~20! is satisfied by

¹'
2 f5

4fsKs
2

as
2

expF2
2

fs
S f2

uB0

msc
xD G , ~21!

wherefs , Ks andas are arbitrary constants. The solution of
Eq. ~21! is given by7,11

f5
uB0

msc
x1fs lnF2 cosh~Ksx!12S 12

1

as
2D cos~Ksj!G .

~22!

For as
2.1 the vortex profile given by Eq.~22! resembles the

Kelvin-Stuart ‘‘cat’s eyes’’ that are chains of vortices.
In the presence of sheared plasma flows, Eq.~19! admits

a double vortex solution, the profiles of which are similar to
those given in Refs. 2 and 12.

Next, we consider the case whenu@av te . Here, the last
term on the left-hand side of Eq.~16! can be neglected and
Eq. ~15! becomes redundant. Thus, a typical solution of Eq.
~16! is

~12le
2¹'

2 !Az2
ca0

u
f50. ~23!

Combining Eqs.~17! and ~23! we obtain an equation
whose solution is

¹'
2 f1b1f2b2Az5F3S f2

uB0

c
xD , ~24!

whereb15aa0c2/au2le
2 ,b25a0c/aule

2 , andF3 is a con-
stant. In deriving Eq.~24! we have assumed thata5a0

1le
2ene0V08/B0.
By substituting Eq.~23! into Eq. ~24!, we finally obtain

¹'
4 f1C1¹'

2 f1C2f2
F3uB0

cle
2

x50, ~25!

where C15b12F321/le
2 and C25@(F32b1)/le

2#
1cb2a0 /ule

2 . Equation~25! is a fourth order differential
equation, which admits spatially bounded dipolar vortex so-
lutions. Specific forms of the latter are given in Refs. 4 and
7.

V. SUMMARY

In this article, we have investigated the linear as well as
the nonlinear properties of dispersive Alfve´n waves in a non-
uniform multicomponent magnetized plasma. For this pur-
pose, we have employed the multifluid plasma model and
have derived a set of coupled nonlinear equations for low-
frequency long wavelength~in comparison with the ion gy-
roradius! electromagnetic waves in plasmas that have equi-
librium density and magnetic-field aligned velocity
gradients. In the linear limit, we have derived a local disper-
sion relation. The latter is analytically analyzed in order to
demonstrate the current convective instability of the DAW in
plasmas without the density inhomogeneity. Physically, the

current convective instability arises because a phase lag be-
tween the parallel electron velocity perturbation and the
wave potential appears due to the equilibrium velocity gra-
dients.

Furthermore, it has been shown that finite amplitude DA
disturbances in two-ion plasmas interact nonlinearly, giving
rise to the vortex street and the dipolar vortex as possible
stationary states. This has been shown analytically by seek-
ing stationary solutions of the governing nonlinear equations,
Eqs.~5!–~8!, in two limiting cases.

We have thus reported a possible mechanism for the
generation of dispersive Alfve´n-like fluctuations in the pres-
ence of sheared plasma flows in a magnetized plasma con-
taining two-ion species. The nonlinear mode couplings be-
tween finite amplitude DAWs provide the possibility of the
formation of solitary vortices. We note that a vortex chain
arises in the absence of the equilibrium sheared plasma
flows, whereas the latter are required for the formation of a
dipolar vortex. Thus, a possible saturated state of a current
convective instability could appear as a dipolar vortex. How-
ever, the existence of the vortex chain and the double vortex
is only guaranteed if these nonlinear coherent structures are
stable against two- or three-dimensional perturbations. In or-
der to investigate the stability of our nonlinear vortex solu-
tions, we have to perturb the dynamical equations, Eqs.~5!–
~8!, around the zero order~vortex! solutions, and
subsequently study the vortex stability by employing the
method of Refs. 16 and 17. Although a complete stability
analysis of our nonlinear equations is truly tedious, we an-
ticipate that the coherent nonlinear structures should remain
stable, because the form of the Jacobean nonlinearity in our
problem is similar to that in the hydrodynamic problem.16,17

In conclusion, we stress that the results of the present
investigation should be useful in identifying the frequency
and wave number spectra of low-frequency electromagnetic
fluctuations and the salient features of associated coherent
nonlinear structures which are produced by sheared plasma
flows in a nonuniform, low-temperature, magnetized plasma
containing two-ion components. The latter are frequently
found in tokamak edges as well as in space and cosmic en-
vironments.
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