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This paper presents a computational procedure for the analysis of steady one-dimensional
centrifugal compressor. The numerical model is based on the conservation principles of
mass, momentum and energy, and has been utilized to predict the operational and
aerodynamic characteristics of a small centrifugal compressor as well as determining the
performance and geometry of compressor blades, both straight and curved.
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INTRODUCTION

The advantages of small centrifugal compressor in
comparison to the axial flow type were demon-
strated at the end of the 1950s. Nevertheless few
models were developed intentionally for aeronau-
tical applications. Independent research programs
appeared in the 1960s and 1970s as Pratt &
Whitney, Canada (Kenny, 1984) and National
Gas Turbine Establishment (Came, 1978). The real
flow field in the compressor is far too complex to be
treated analytically. For this reason many simpli-
fications, empirical formulations and other simpli-
fying assumptions are usually adopted to design or

predict their performance.
Clements and Artt (1987) analysed the influence

of the diffuser geometry on the efficiency and
operational range of the compressor, while

Bammert et al. (1979) illustrated the importance
of coupling the rotor and diffuser in the calculation
of the rotor losses. Senoo (1987) analysed the effect
of tip clearance on the compressor flow field and its
performance. Stow (1989) revised models and
advanced computational methods of potential use
in blade design while Kenny (1984) reported
progress in the numerical techniques, viscous
solutions, flow measuring techniques adaptable to
centrifugal compressor testing and new develop-
ments in materials. Takeda (1987) realized a

comparative study of three computer codes for
the design and performance prediction of a

centrifugal compressor for small gas turbine unit.
Given the shortage of technical information,

experience and know how in this area in Brazil, a
small research program devoted to this area was
started with the objective of designing a small
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modular gas turbine unit for emergency and similar
applications. The first part of the project handles
the centrifugal compressor (Rosolen, 1994) and the
associated centrifugal gas turbine (Benevenuto,
1996). The analysis is based upon using refined
one-dimensional formulation eliminating the use of
empirical factors and equations unless absolutely
necessary. As a result the flow, t6mperature and
pressure curves can be evaluated along the stream
lines in the rotor, diffuser and spiral duct which
help in identifying and pointing corrections to the
calculated geometry. Also the proposed model
allows the analytical design of straight and curved
blades, systematic adjustments when necessary and
final evaluation of the performance of the unit
as well as the determination of the local flows
properties.

FORMULATION

Applying the first law of thermodynamics to the
one-dimensional steady fluid flow in the com-

pressor one can compute the power used in the

compression process Pc of the total mass flow Fht:

Pc thtCp T03 TOl )" (1)

A sketch of the centrifugal compressor with
straight profile and diffuser is presented in Fig. 1.
The compression ratio Rc can be calculated in
terms of the isentropic efficiency r/c, the stagnation
temperatures at the inlet T01 and the outlet T03 of
compressor and the ratio "7 Cp/Cv:

Rc ---Po3/Po1 --[1 + /c(T03- Zol)/Zol]7/(7-1). (2)

Due to the inertia and viscous effects the fluid does
not follow the rotor outlet tangential speed U2 and
a slip factor 0-2 is defined as

0-2 1-- Vescor/U2. (3)
The slip factor is empirical and depends upon the
number nr and geometry/32 of the blades and is
usually given by Wiesner’s formula (Came, 1978),
as

1/2 07
0-2- 1- (cos/32)/t/r’ (4)

1/20
D iffuser

r3

r2
Rotor

Radial Plane
FIGURE Sketch of the centrifugal compressor.
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By using the velocity triangle shown in Fig. 2, for
the rotor with curved profile,

Cw2 02 02 Cr2 tan/oo2

it is possible to define a hypothetical slip factor in
the form

2 Cw2/U2. (6)

Applying the momentum conservation equation
between the entry and exit sections of the rotor
with rotational velocity co (rad/s) ou N (rpm) one
can write

Pc thtco(r2Cw2 rl Cwl). (7)

Combining Eqs. (1) and (7) and considering that
the flow is adiabatic one obtains

To2 T01 co(r2Cw2 rlCwl)/Cp. (8)

Hence the rotor outlet tangential speed, can be
calculated as

02- [p(T02- T01)/2] 1/2. (9)

The continuity equation is used to calculate the
areas and the local flow properties both in the rotor
and the diffuser. At the diffuser entrance the tan-
gential velocity component is obtained by consid-
ering that the flow in the vaneless space is free
vortex type while the other two components are
obtained from the mass conservation principle.
The flow velocity is assumed constant from entry to
the diffuser throat and its direction is assumed
constant until the diffuser exit. The fluid is
conducted from the throat through diffusing
channels to the through spiral duct which is
calculated assuming free vortex flow.

In order to determine the total power necessary
for running the compressor additional equations
are used to estimate the losses. The total power P is
the sum of the useful power, Putil, the volumetric
losses, Pvol, the aerodynamic losses, Pa, and the
mechanical losses (Pr + Pm):

P- (Putil + Pvo + Pa) q-(Pr + Pm) (0)

or

P- [(Putil/r/vol)-+- Pa nt- Pr]lrlm (11)

Cwl

r2 12

r

FIGURE 2 Velocity diagrams.
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The useful power is the power used in the real
compression process of the net mass flow rate, rh,
and is written as

Putil thCp (To3 r01 ). (12)

The volumetric efficiency T]vol is given by

vol (tht- /kth)/tht-- th/tht, (13)

where Arh is the fluid loss in the compressor. The
bearing efficiency r/m has been estimated while the
disc friction power losses, Pr, as well as the aero-

dynamic losses are calculated in a conventional
manner.
The global efficiency r/has been estimated using

as a definition the ratio of isentropic compression
power, Pis, to the total shaft power,

l Pis /P flcPutil /P. (14)

The above system of equations is used to calculate
and refine the compressor geometry, calculate the
local flow properties and finally evaluate the losses
and determine the operation parameters of the
compressor shown below.

THE CALCULATION PROCEDURE

The overall operational conditions of the com-

pressor as well as the global geometrical character-
istics of the rotor with straight radial blades can be
defined using the equations presented. In order to
determine the local flow properties and refine the
aerodynamic aspect of the blades the rotor is
subdivided into three regions in the meridional
plane and along the flow direction (see Fig. 3). In
the first region, the leading edge of the rotor
cascade is tangent to the direction of the flow
velocity relative to the rotor. At the end of this
region, the rotor cascade is tangent to the axial
direction as it is admitted that the flow tangential
velocity is compatible with that of the rotor.
Between these two sections a cylindrical surface

of consistent radius "T,g is adopted for the cascade
profile, assuming that the axial velocity is constant
while the other properties are calculated. In the
second, or intermediate, region the flow direction
changes to radial with no slip. In the third region,
or exit region, the axial component is considered
zero, slip occurs and an expression similar to Eq. (4)
is used to calculate the local slip factor.

Expressions similar to Eqs. (6) and (8) are used
to calculate the rise in stagnation temperature and
pressure between the sections y and x defined by
the radius of their mean points, in terms of the
politropic efficiency of impeller r/r, as below:

Tox-roy--Co2(Oxr2-Oyr2y)/Cp
POx/POy) (Tox/ Toy) rrT/(7-1).

In this manner the stagnation properties at a
transversal the mean point of each section are

obtained while the other properties are calculated
from the thermodynamic relations and the conser-

vation equations.

Exit
Region

Intermediate
Region

Axial
Region

FIGURE 3 Regions of the rotor.
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To improve the accuracy of the calculation
procedure the flow passage is subdivided into a
number of stream tubes (varying from to 10). The
accuracy and the computing time are observed.
The procedure for the calculations for each stream
tube is practically the same.

Using the one-dimensional basic model it is
possible to establish curved blades with a specific
exit angle and hence analytically, avoid empirically
based curved blades. To achieve this objective the
meridional geometry determined for straight radial
blades was adopted, together with the rotational
velocity and discharge rate. The new operational
conditions of the compressor and the flow proper-
ties at the rotor exit can be determined. For the
intermediate sections of the exit region the radial
velocity profile Cr is evaluated from the rotor
calculations admitting a hypothetical constant slip
factor equal to that of the exit section.

TABLE Common parameters
adopted

P01 98.1 kPa
T01 288K
r/e 0.8
e 0.003 m
nr 19
"]?t.g 0.010m, 1.4
Cp 1005 J/(kg K)
R 287 J/(kg K)

TABLE II Values of (T02-T01) and U2 specified in terms of

Rc for rotors of straight profiles (#2 0.873)

Re 2 3 4 5

To2-Tol [K] 79 133 175 210
U, [m/s] 301 391 449 492

TABLE III Values of r2 specified in terms of Rc and N

Rc 3 4

RESULTS AND DISCUSSION
N [rpm] 25000 30000 35000 35000
r [m] 0.149 0.124 0.107 0.122

Based upon this one-dimensional formulation and
the proposed calculation scheme a computational
code was elaborated to help in the design of
centrifugal compressors. This code was then used
to determine the effects of the design parameters on
the performance of the compressor rotor.

TABLE IV Values of rht specified in terms of Rc and Pc

Rc 3 4

Pc [kW] 50 100 113.812 150 150
th [kg/s] 0.375 0.750 0.853 1.124 0.853

Influence of the Principal Parameters of the
Project Re, N and Pc
The effect of the parameters Rc, N and Pc while
keeping the rest of the variables as constants is
shown in Table I.

Table II shows the values of (T02-T01) and U2
defined by Rc for rotors of straight profiles. The
use of conventional materials limits the value of Rc
to about 4, since U2 must not be higher than 460 m/s
due to the stresses in the material (Cohen et al.,
1987).
Tables III and IV present respectively the cor-

responding values of r2, N, rht and Pc for the
pressure ratios Rc used here.

TABLE V Overall parameters of straight blades rotors

Compressor A B C D E F G

Rc 3 3 3 3 3 3 4
N [103 rpm] 25 30 30 30 35 35 35

Pc [kW] 100 50 100 150 100 113.8 150
[10-3 m] 65 50 60 65 60 60 60
[10.3 m] 35 28 30 22 35 30 30

Cal [m/s] 84 78 97 107 110 112 112
b2 [10-3 m] 5.5 3.6 5.8 8.0 6.1 6.9 5

The overall values calculated for the compres-
sors denominated A to G with rotors of straight
geometry are presented in Table V.
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Rotor C /--

re 0.060 0.070 0.080 m

ri 0.030 0.050 0.066 m

b2 0.0058 0.0055 0.0048 m

FIGURE 5 Effect of re on the rotor geometry.

(a) without correction (b) corrected

FIGURE 4 Meridional geometry of rotor C.

Figures 4-9 present the internal geometry of the
rotor calculated based upon subdividing the flow
passage into ten stream tubes while the flow
properties are presented only for the extreme
stream tubes, that is, and 10.
One can observe from Fig. 4 that the meridional

geometry results in discontinuities in the transition
sections between the rotor regions because of the
different formulations adopted in each region. The
correction of the geometry is done by tracing two

tangents to the blade root profile; one passing by
the inner point of the entry section and the other
passing by the point of greatest axial coordinate
while maintaining the same radial direction until
the rotor exit. The local depth of the sections in-
creases and the local flow properties are recalcu-

lated. The maximum variation obtained in the
velocity is 1.5%.
The recommendation of positioning the entry

section at small radii to obtain deeper rotor

passages is illustrated in Fig. 5 which illustrates
the variations of rotor C of Table V.

Figure 6 shows the influence of the rotor

velocity. One can observe that the effect of the
increase of N is to decrease r2 in order to maintain
the peripheral velocity U2 defined by Rc as in
Tables II and III.

Keeping the pressure ratio and the rotor rota-
tional speed as constants, the increase of the value
of Pc leads to corresponding increase in the depth
of the flow passages of the rotor as in Fig. 7.

Figure 8 shows the effect of the pressure ratio on
the compressor geometry. This was achieved by
keeping the mass flow rate and the rotor rotational
velocity as constants while increasing the value of

Rc. Then rotor flow passages are found to increase

radially.
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0.16

0.00

Rotor A

R

0.13-

N 25000 30000 35000 rprn
0.00

R=3" Pc=100kW

FIGURE 6 Effect of the rotor rotational velocity.
Re= 3 4

195

0.13

0.00

Rotor C

Pc 50 100 150 kW

R 3" N 30000rpm

FIGURE 7 Effect of the rotor geometry on the compression
power.

lilt= 0.853 kg/s; N 35000 rpm

FIGURE 8 Effect of the pressure ratio on the compressor
geometry.

Rotor with Straight Blades

Although the calculations were realized for pres-
sure ratio up to 4, we chose a minor value of 3 to

keep the peripheral velocity well below its limiting
value. For the intermediate velocity of 30 000 rpm,
one can observe from Fig. 7 that the depth of the
flow passages is very small for Pc 50 kW, case B,
while for Pc= 150kW, as can be verified from
Table VII, the compressor D is also adequate.
Hence the option D, whose blade profile is shown
in Fig. 9, is chosen to present the results illustrating
the proposed calculation methodology.
The geometry of the rotor D with straight blades

is presented in Fig. 10 while the pressure and
temperature distributions along the flow passages
are shown in Figs. 11 and 12.
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FIGURE 9 Meridional geometry of rotor D.
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FIGURE Variation of the local static and stagnation
pressures (rotor D with straight radial blades).
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FIGURE 12 Variation of the local static and stagnation
temperatures (rotor D with straight radial blades).
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FIGURE 10 Radial geometry of the rotor D with straight
radial blades.

Rotor with Curved Blades

For the calculation of the compressor with curved
blades, we used the same meridional geometry
obtained for the case of straight blade of Fig. 9. By
keeping the same rotor rotational velocity N, one

recalculates the operational conditions for the
angle /o02 30, as suggested by Takeda (1987).
Table VI shows the data values obtained for both
compressors, rotors with straight and curved
blades. One can also observe that for the com-

pressor with curved blades the pressure ratio is

smaller, also the compression power is equally
smaller while the angles of the blade exit/oo2 and
the flow exit angle/2 are very close.

In case of the rotor D with curved blades the
pressure and temperature distributions along the
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TABLE VI Compressor D with rotors of
straight and curved blades

Rotor D Straight blades Curved blades

flo2 0 30

Re 3 2.5

T02-T01 [K] 133 109

U2 [m/s] 391 391
N [rpm] 30000 30000

r2 [m] 0.124 0.124

Pc [kW] 150 123.3
th [kg/s] 1.124 1.124

re [m] 0.065 0.065

ri [m] 0.022 0.022
Cal [m/s] 107 107

Cr2 [m/s] 107 111

f12 24.9 44.9
O" 0.873 0.882

2 0.873 0.718

stream tubes and l0 without any corrections are

presented in Figs. 13(a) and (b) indicating discontin-
uities due to the adopted assumptions for the slip
factor in the intermediate and exit regions of the
rotor. This factor changes abruptly from a unit
constant value in the intermediate region to an
assumed low value at exit. The correction is based
upon using smooth and continuous variation of the
slip factor. Hence in evaluating Cr the slip factor
instead of being adopted as constant and equal to

#2, is compared to the minimum value necessary
to keep the stagnation temperature higher or equal
to that of the previous section. Also in the cal-
culation of the blade inclination/3 in the radial
plane of the exit region, the slip factor is assumed in
the start such that the variation of the stagnation
temperature is the same for the three initial sections
and starting from the last of these sections, Eq. (4)
is used for the slip factor calculations.
The properties distribution after the corrections

of the slip factor are shown in Fig. 14. As can be
noticed the discontinuities near the rotor exit
remained and the blade profile in the radial plane
does not tend the value /c2- 30- In the calcula-
tion of the Cr profile, the variation of the tan-

gentially projected thickness is not included
together with the variation of the slip factor. Hence
the correction of Cr is based basically upon

300

0,. 250
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100

5O

(a)

Stream tube 10

’l’’"’’l’*=’
0.00 0.04 0.08 0.12
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360 -320-

280

(b)

( Stream tube 10

r--V=-vrTr I’ 1
0.00 0.04 0.08 O. 12
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FIGURE 13 (a) Variation of the local stagnation pressure
in the rotor with curved blades and without corrections in 92
and Cr. (b) Variation of the local stagnation temperature in
the rotor with curved blades and without corrections in 2
and C.
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FIGURE 14 (a) Variation of the local stagnation pressure
in the rotor with curved blades without correction in Cr.
(b) Variation of the local stagnation temperature in the rotor
with curved blades without correction in Cr.
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redistribution of the slip factor and considering the
projected thickness effect.

Figures 15 and 16 present the distributions of the
static and stagnation properties (pressure and
temperature) while Fig. 17 presents the rotor
geometry with curved blades. Figure 18 shows a

comparison with the rotor with circular arc blade
profile.

Following the same method used for the
compressor option D, the details of the options A
to G are calculated, and presented in Table VII.
One must notice that the compressor option D
presents higher overall efficiency than that of
compressor option C.

0.15

0.10

0.05

0.00

-0.05

-0.10

-0.15 lml
i,,, i,

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

30O

FIGURE 15 Variation of the local static and stagnation
pressures (rotor D with curved blades).

400

, 360

E 320 /I--
/jv @ Stream tube

Seam tub 10
280

0.00 0. 0. 0.12
s* [ml

FIGURE 16 Variation of the local static and stagnation
temperatures (rotor D with curved blades).

FIGURE 17 Radial geometry of the rotor D with curved
blades (9002-- 30).

FIGURE 18 Comparison of analytically curved blade design
with circular arc blade profile.

CONCLUSION

The most important conclusion of the present
study is that the proposed model is able to predict
the overall working parameters, the local flow prop-
erties, the compressor performance characteristics
and finally enables refining the rotor geometry and
predict its new performance.
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TABLE VII Compressors with curved blades rotors (floe2 30)

Rc /T0 [K] Pc [W] fh [kg/s] Pa [W] Pr [W] P [W] T] [/o]

199

A 2.63 115 86347 0.723 13606 2514 103499 64.41
B 2.66 ll6 43693 0.355 7384 1886 53493 61.89
C 2.57 111 84028 0.724 14398 1857 101296 64.08
D 2.53 109 123342 1.098 21439 1840 148101 65.04
E 2.51 108 81578 0.721 16592 1432 100605 62.38
F 2.50 108 92469 0.825 17658 1429 112679 63.51
G 3.31 147 125719 0.823 23215 2958 153426 63.21

AT0 T02- T0; r/m 0.99.

NOMENCLATURE

/t

Po
P
P
P

Pis

tangential velocity [m/s]
radial velocity [m/s]
peripheral velocity of the rotor [m/s]
net mass flow rate [kg/s]
total mass flow rate [kg/s]
fluid loss [kg/s]
number of rotor blades
rotor rotational velocity [rpm]
static pressure [N/m2]
stagnation pressure [N/m2]
total shaft power [W]
aerodynamic losses [W]
power consumed in the compression
process [W]

isentropic compression power [W]
Pr-+-Pm mechanical losses [W]
Pr
Putil
Pvol

Rc
"]’g

To
/2
/3002

disc friction power losses [W]
useful power [W]
volumetric losses [W]
radius [m]
pressure ratio
curvature radius at axial region of the
rotor [m]

position along the stream tube [m]
static temperature [K]
stagnation temperature [K]
flow exit angle [degree]
geometric angle of the blade at exit
[degree]

global efficiency
isentropic efficiency

r/vol

O"2

politropic efficiency of impeller
volumetric efficiency
bearing efficiency
slip factor
hypothetical slip factor
rotational velocity [rad/s]
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