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We consider a system governed by the fractional Schödinger operator with a
delta potential supported by a circle in R2. We find out the function counting
the number of bound states, in particular, we give the necessary and sufficient
conditions for the absence of bound state in our system. Furthermore, we repro-
duce the form of eigenfunctions and analyze the asymptotic behavior of eigenval-
ues for the strong coupling constant case. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.3691199]

I. INTRODUCTION

The models belonging to the line of research usually called Schrödinger operator with delta
potential have been recently intensively studied. The Hamiltonian which governs such a system can
be symbolically written as

−� + γ δ(� − x) , γ ∈ R ,

where � is the Laplace operator acting in L2(Rn), � is a submanifold of a lower dimension,
δ(� − · ) stands for the Dirac delta supported by � and γ defines a coupling constant. Such
models are considered as a mathematical idealization of nanostructures as, for example, “leaky
quantum wires.” The main question is addressed to the problem: relation between the geometry of
� and spectral properties of the system with delta potential.1, 7–9 On the other hand, more than a
decade ago Laskin introduced so-called fractional Schrödinger equation (FSE). The idea is based
on Feynman path integral approach in quantum mechanics. Namely, instead of the Brownian-like
trajectories Laskin considered more general framework: Lévy-like trajectories. Consequently, this
generalization leads to the fractional dynamics governed by the Hamiltonian

Hα = Dα(−�)α/2 + V (x) , 1 < α ≤ 2 , (1.1)

where Dα is a scaling constant. Some particular examples of (1.1) were analyzed in Refs. 11,16–18,
and 20. On the other hand, Jeng et al. studied the problem of nonlocality of fractional derivative and
their consequences, cf. Ref. 13. The authors showed that some claims employed to find solutions of
FSE have not taken into account nonlocality of fractional derivative and the only correct model they
pointed out is that involving delta potential. The mentioned model was studied in Ref. 14. Further
results concerning spectral and scattering properties of such a system were derived in Refs. 5 and 6.
Putting in mind the latter purposes, let us recall that the one-dimensional system governed by the
fractional Schrödinger operator corresponding to the expression

Dα(−�)α/2 − βδ(x) , β > 0 (1.2)
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has exactly one bound state. The corresponding ground state energy takes the form

E0
α,β := −

(
β

αD1/α
α sin(π/α)

)α/(α−1)

. (1.3)

This paper is a certain continuation and extension of this line of research. We are interested in
two-dimensional quantum system with Hamiltonian corresponding to the formal expression,

Dα(−�)α/2 − βδ(· − CR) , β > 0 , (1.4)

where CR is a circle of radius R living in R2.
The main results of the paper can be formulated as follows.
• Giving a meaning of the self-adjoint operator Hα, β to the formal expression Eq. (1.4); formula

(2.1).
• Construction of the resolvent of Hα, β and formulating the eigenvalues problem in the terms

of resolvent poles; Theorem 2.3.
• Finding out the function counting the number of bound states of Hα, β , in particular, formulating

the necessary and sufficient condition for the existence of at least one bound state in the terms of
parameters α, β, and R; Theorem 3.3.

• Reproducing the form of eigenfunctions of Hα, β ; Proposition 3.1.
• Analysis of eigenvalues asymptotics for the strong interaction case; Theorem 3.6.
In this paper we study the stationary solutions of Schrödinger equation. The time fractional

Schrödinger equation was considered, for example, in Ref. 20; the general results were employed to
solve the free particle and the well potential models. Moreover, in Ref. 2 and 3 the authors derived
the numerical method for differential evolution equations with fractional time derivative which can
be applied to Schrödinger operator as well.

Notations
• We use abbreviations L2 ≡ L2(R2) and analogously for the Sobolev spaces W 2,α ≡ W 2,α(R2).

Let ( · , · ) stand for the scalar product in L2.
• Symbol � denotes two-dimensional Laplace operator acting in L2.
• We denote x = (x1, x2) ∈ R2, |x | = (x2

1 + x2
1 )1/2 and analogously for p ∈ R2 and |p| ∈ R+.

Moreover, xCR (φ) ≡ (R cos φ, R sin φ), ς (φ, φ′) ≡ xCR (φ) − xCR (φ′), where φ, φ′ ∈ [0, 2π ].
• Standardly, we denote the Fourier transform as F : L2 �→ L2, i.e., F f (p)

= 1
2π

∫
R2 f (x)ei px dx .

• E0
α,β := −( β

αD1/α
α sin(π/α)

)α/(α−1).

• Symbols Jk, for k ∈ Z stands for the Bessel functions of kth order.

II. PRELIMINARIES

By means of the Fourier transform we define operator ( − �)α/2 : D(( − �)α/2) �→L2 acting as

F(−�)α/2 f (p) = |p|αF f (p) , α ∈ (1, 2〉,
where the domain D(( − �)α/2) coincides with the Sobolev space W 2,α := { f ∈ L2 : (|p|2
+ 1)α/2F f (p) ∈ L2 }. To find a self-adjoint realization of (1.4) we employ the form sum method.
(This technics is a standard tool in analysis of usual Laplacian with delta interaction.) For f, g
∈ D(( − �)α/4) = W2, α/2 consider the sequilinear form

Eα,β ( f, g) := Dα

∫
R2

(−�)α/4 f (−�)α/4gdx − β

∫
R2

f gdμCR (x) , (2.1)

where μCR is the Dirac measure in R2 with support on CR, i.e., dμCR (x) := δ(· − CR)dx
= δ(r − R)rdrdφ, where (r, φ) are radial coordinates.

By means of μCR we define the space L2
μ := L2(R2, μCR ). Then the “delta perturbation term”

in (2.1) is determined by the scalar ( · , · )μ in L2
μ, i.e., ( f, g)μ := ∫

R2 f gdμCR (x).
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Remark 2.1: Note that the form Eα,β is well defined on W2, α/2. This comes directly from the
trace theorem which says that the trace map Iμ : W 2,s �→ L2

μ, s > 1/2 is bounded.

Hamiltonian. Let Hα, β stand for the operator associated to Eα,β , i.e., (Hα,β f, g) = Eα,β( f, g).
Using again the trace map theorem we conclude that there exist a constant C > 0 such that

‖ f ‖2
μ =

∫
R2

| f |2dμCR (x) ≤ C‖(1 + |p|2)α/4F f ‖2 .

Moreover, for any a > 0 there exists b > 0 so that

‖ f ‖2
μ ≤ a

∫
R2

|(−�)α/4 f |2dx + b‖ f ‖2 . (2.2)

The above inequality follows from Theorem 2.1 of Refs. 24 and the following convergence:

lim
λ→∞

sup
x∈R2

∫
R2

Gα(−λα; x − x ′)dμCR (x ′) = 0 , (2.3)

where Gα(z; x − x′) is the kernel of (( − �)α/2 − z)− 1, z ∈ C \ [0,∞). For α = 2 Eq. (2.3) is a
consequence of the fact that μCR belongs to the Kato class. On the other hand, for α ∈ (1, 2) and |x
− x′| → 0 we have

Gα(−λα; x − x ′) = O(|x − x ′|α−2) , (2.4)

moreover, for any δ > 0

sup
|x−x ′ |>δ

|x − x ′|2+αGα(−λα; x − x ′) → 0 if λ → ∞ . (2.5)

Equations (2.4) and (2.5) imply (2.3). (Formulae (2.4) and (2.5) can be obtained using, for example,
properties of the Fox functions derived in the further discussion.)

Inequality (2.2) implies that the operator Hα, β associated to Eα,β is self-adjoint bounded from
below with the form domain W2, α/2.22 In fact, Hα, β gives a mathematical meaning to (1.4). The
technics employed above is, in fact, the extension of the form-sum method used for usual Schrödinger
operator with delta type perturbations. For the problem of point interaction in one-dimensional system
we recommend Chap. X, Example 3 of Ref. 22.

Remark 2.2: Note that the number E is an eigenvalue of Hα, β if and only if E
Dα

is an eigenvalue

of the Hamiltonian corresponding to (2.1) with Dα = 1 and βα := β

Dα
taking instead of β.

A. Resolvent of Hα, β

Relying on the Remark 2.2 we assume that Dα = 1.
We start with the resolvent of “free” fractional Hamiltonian, Rα(z) = (( − �)α/2 − z)− 1,

z ∈ C \ [0,∞) which, in the Fourier representation, takes the form

Rα(z) f = F−1 1

|p|α/2 − z
(F f )(p) . (2.6)

In fact, operator Rα(z) is an integral with the kernel Gα(z) which takes the following form for
z = − λα:

Gα(−λα; x − x ′) = λ2−α

2π

∫ ∞

0

J0(yλ|x − x ′|)
yα + 1

ydy . (2.7)

Indeed, using properties of the Bessel functions we have

Rα(−λα) f = 1

(2π )2

∫
R2

ei p(·)

|p|α + λα
(F f )(p)dp

= R

(2π )2

∫ ∞

0

∫ 2π

0

∫
R2

eiρ|·−x ′ | cos ϑ

ρα + λα
f (x ′)ρdρdϑdx ′ = Gα(−λα) ∗ f .
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In particular,

G2(−λ2; x − x ′) = 1

2π
K0(λ|x − x ′|) , (2.8)

where K0 is the Macdonald function.12

Furthermore, we define the embeddings of “free resolvent” by

R̆α(z)μ : L2
μ �→ L2 , R̆α(z)μ f = Gα(z) ∗ f μCR ,

where Gα(z) ∗ f μCR stands for the convolution. The adjoint operator R̂α(z)μ is also determined by
Gα(z) but it acts from L2 to L2

μ. Finally, let Rα(z)μμ stand for the integral operator with the kernel
Gα(z) acting from L2

μ to L2
μ. Now we are ready to construct resolvent and to formulate the spectral

condition.

Theorem 2.3: Assume that for z ∈ C \ [0,∞) operator �(z) := I − βRα(z)μμ is invertible.
Then the resolvent Rα, β(z):=(Hα, β − z)− 1 is given by

Rα,β (z) = Rα(z) + β R̆α(z)μ�(z)−1 R̂α(z)μ . (2.9)

Moreover, for λ > 0 the number − λα states an eigenvalue of Hα, β if and only of

ker �(−λα) �= ∅ . (2.10)

The corresponding eigenfunction takes the form R̆α(−λα) f where f ∈ ker �(−λα) .

Proof: The first step of proof is to check that Rα, β(z) satisfies

Eα,β ( f, Rα,β (z)g) − z( f, Rα,β (z)g) = ( f, g) . (2.11)

This, in view of definition of Hα, β , means that Rα, β(z) is the inverse of Hα, β − z. Combining (2.1)
and (2.9) we have

Eα,β ( f, Rα,β (z)g) − z( f, Rα,β (z)g)

= ( f, (−�)α/2 Rα,β (z)g) − z( f, Rα,β (z), g) − β( f, Rα,β (z)g)μ

= ( f, g) + β( f, �(z)−1 R̂α(z)μg)μ − β( f, R̂α(z)μg)

−β2( f, Rα(z)μμ�(z)−1 R̂α(z)μg)μ = ( f, g) .

This completes the proof of (2.11). To show the remaining statements assume that g ∈ D(( − �)α/2)
and t := (( − �)α/2 + λα)g. Then for any f ∈ W2, α/2 the equation is valid

Eα,β ( f, g) + λα( f, g) = ( f, t) − β( f, Rα(−λα)μμ Iμt)μ = 0 ,

if and only if (2.10) is satisfied. �

Remark 2.4: The self-adjointness of Hα, β can be equivalently obtained following the treatment
derived by Posilicano.23 For this aim it suffices to check that �( · ) satisfies the pseudo-resolvent
equivalence. Moreover, we have

Ran χ ∩ L2 = {0} ,

where χ : L2
μ �→ W 2,−α/2 acts as χ f = f μCR . Since the proofs of this facts can be obtained by

repeating the arguments from Refs. 8 and 23 we omit here details.

III. EIGENVALUES OF Hα, β

To recover eigenvalues of Hα, β we will relay on (2.10). Therefore, we start with analysis of
Rα( − λα)μμ. Using (2.7) we conclude that the kernel of Rα( − λα)μμ is

G(λ, α; ς (φ, φ′)) = λ2−α

2π

∫ ∞

0

y J0(yλ|ς (φ, φ′)|)
yα + 1

dy , (3.1)

where xCR (φ) = (R cos φ, R sin φ) and ς (φ, φ′) := xCR (φ) − xCR (φ′).
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Due to the symmetry of system operator Rα( − λα)μμ is diagonal in the orthonormal basis
{ξk}k∈Z ∈ L2

μ, where ξk = 1√
2π R

eik(·). Thus,

G(λ, α; ς (φ, φ′)) = 1

2π

∑
k∈Z

Sk(λ, α)eik(φ−φ′) ,

where

Sk(λ, α) = (ξk, G(λ, α)ξk)μ = R

2π

∫ 2π

0

∫ 2π

0
G(λ, α; ς (φ, φ′))e−ik(φ−φ′)dφdφ′ .

With this notation the spectral condition formulated in Theorem 2.3 after scaling (see Remark
2.2) reads as follows.

Proposition 3.1: Given k ∈ Z the number −λα
k = −(λk)α , λk > 0 is an eigenvalue of Hα, β if

and only if λk is a solution of

1 = βα Sk(λ, α) . (3.2)

The corresponding eigenfunction takes the form

R̆α(−λα
k )ξk =

∫ 2π

0

∫ ∞

0

J0(yλk |(· − xCR (φ)|)
yα + 1

eikφdφydy .

In fact, the eigenfunction can be expressed by means of the Fox functions which we study in further
discussion. Moreover, note that Sk(λ, α) = S− k(λ, α). This implies that all eigenvalues apart from
the ground state have double degeneracy.

To study the condition (3.2) we need the following technical lemma with the proof postponed
to part A of this section.

Lemma 3.2: We have

Sk(λ, α) = Rα−1
∫ ∞

0

|Jk(y)|2
(λR)α + yα

ydy . (3.3)

Moreover, for α ∈ (1, 2)

lim
λ→0

Sk(λ, α) = Rα−1ωk(α) , (3.4)

where

ωk(α) := 1

2α−1

�(α − 1)

[�(α/2)]2

�(1 − α/2 + k)

�(α/2 + k)
, for k = 0 , 1 2... (3.5)

and ω− k(α) = ωk(α)

Combining the above results we get.

Theorem 3.3: Hamiltonian Hα, β has at least one eigenvalue if and only if

βα Rα−1ω0(α) > 1 . (3.6)

Moreover, the next eigenvalues appear if and only if

βα Rα−1ωk(α) > 1 , for k ∈ Z \ {0} . (3.7)

Consequently, the number of eigenvalues (including degeneracy) is given by

�σd(Hα,β) = �{k ∈ Z : (22) is satis f ied} .

Proof: To show the statement we employ the Birman–Schwinger technics. Note that given k ∈ Z
and α ∈ (1, 2) function Sk( · , α) is continuous and monotonically decreasing. Moreover, using (3.3)
we get the limit limλ→∞ Sk(λ, α) = 0. Relying on (3.4) we conclude that there exists a solution of
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(3.2) if and only if (3.7) is satisfied. Furthermore, the sequence ωk(α) is decreasing with respect to k
= 0 , 1 , 2.... Indeed, denote

ak := �(1 − α
2 + k)

�( α
2 + k)

.

Using the equivalence �(z + 1) = z�(z) we get

ak+1 = 1 − α
2 + k

α
2 + k

ak < ak

and a1 < a0. This, in view of (3.2) implies the claim of theorem. �

A. Proof of Lemma 3.2

Proof. Using the Mellin-Barnes integral representation of J0( · ), that is,

J0(x) = 1

2π i

∫ γ+i∞

γ−i∞

( x

2

)−2s �(s)

�(1 − s)
ds , with 0 < γ < 3/4 ,

and ∫ ∞

0

xμ−1

xν + 1
dx = 1

ν
�(μ/ν)�(1 − μ/ν) , for Re ν > Re μ ,

we obtain from (3.1) that

G(λ, α, ς (φ, φ′)) = λ2−α

2πα
H 2,1

1,3

[(
λ|ς (φ, φ′)|

2

)2 ∣∣∣∣ (1 − 2
α
, 2

α
)

(0, 1), (1 − 2
α
, 2

α
), (0, 1)

]
, (3.8)

where we have used the definition of the Fox’s H-function given by Eq. (A3).
Using the equivalence |ς (φ, φ′)|2 = 4R2sin 2θ /2, where θ = φ − φ′ and the Mellin–Barnes

representation of the Fox’s H-function, we have

Sk(λ, α) = Rλ2−α

α

1

2π i

∫ γ+i∞

γ−i∞

(
1

2π

∫ 2π

0
(λR sin θ/2)−2s e−ikθdθ

)

· �(s)�(2(1 − s)/α)�(1 − 2(1 − s)/α)

�(1 − s)
ds,

where γ = Re s > 1 − 2/α. On the other hand, using formula 3.892.1 of Ref. 12, that is,∫ π

0
eiβx sinν−1 xdx = πeiβπ/2�(ν)

2ν−1�((ν + β + 1)/2)�((ν − β + 1)/2)
, (Re ν > −1),

we obtain

Sk(λ, α) = (−1)k Rλ2−α

α

1

2π i

∫ γ+i∞

γ−i∞

(
λR

2

)−2s

�(s)

· �(s)�(2(1 − s)/α)�(1 − 2(1 − s)/α)�(1 − 2s)

�(1 − s)�(1 − k − s)�(1 + k − s)
ds,

with 1 − α/2 < γ = Re s < 1. Thus, the last equation can be written in terms of Fox’s H-function
as

Sk(λ, α) = (−1)k Rλ2−α

α
H 2,2

2,5

[(
λR

2

)2 ∣∣∣∣ (1 − 2
α
, 2

α
), (0, 2)

(0, 1), (1 − 2
α
, 2

α
), (0, 1), (k, 1), (−k, 1)

]
(3.9)
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But we know, from tables of Mellin transforms (see, for example, formulas 4.1 (page 182) and
5.40 (page 196) of Ref. 21), that

M−1 [�(1 − 2s/α)�(2s/α)] = α

2
(1 + xα/2)−1, (0 < Re s < 1),

M−1

[
�(s)�(1 − 2s)

�(1 − s)�(1 − k − s)�(1 + k − s)

]
= (−1)k |Jk(2

√
x)|2, (0 < Re s < 1/2),

where M−1 denotes the inverse Mellin transform. Then, restricting s to 1 − α/2 < Re s < 1/2
(which holds for 1 < α ≤ 2), and using the convolution theorem for Mellin transforms, we obtain
that

Sk(λ, α) = Rλ2−α

2

∫ ∞

0

|Jk(λR
√

t)|2
1 + tα/2

dt,

and then Eq. (3.3).
The limit limλ → 0Sk(λ, α) can be conveniently studied in terms of the Fox’s H-function repre-

sentation of Sk(λ, α). Employing the series expansion Eq. (A10) we get the following asymptotics
for λ → 0

Sk(λ, α) = (−1)k R

α

(
R

2

)α−2

h′
20 + O(λ2−α) ,

where 1 < α < 2 and

h′
20 = α

2

�(1 − α/2)�(α − 1)

�(α/2)�(−k + α/2)�(k + α/2)
,

Consequently, we have

Sk(0, α) = (−1)k

α

Rα−1

2α−2
h′

20 .

Using �(z)�(1 − z) = π /(sin πz) we obtain Eq. (3.4) after straightforward manipulations. �

Remark 3.4 Let us note that Eq. (3.8) generalizes Eq. (2.8); indeed, for α = 2 we have

H 2,1
1,3

[
z2

∣∣∣∣ (0, 1)
(0, 1), (0, 1), (0, 1)

]
= H 0,2

2,0

[
z2

∣∣∣∣−(0, 1), (0, 1),−
]

= 2K0(2z),

where the last equality follows from formula (1.128) of Ref. 19. This gives Eq. (2.8).

B. Asymptotics of eigenvalues

In this section we analyze the behavior of eigenvalues for the strong interaction case, i.e.,
βαRα − 1 large. Since we may expect that in such a system eigenvalues go to − ∞ our first step is
to study asymptotics of Sk(λ, α) for the large spectral parameter λ.

Lemma 3.5: For λ → ∞ we have

Sk(λ, α) = 1

λα−1

1

α sin π/α

(
1 − k2 − 1/4

2(Rλ)2
+ ...

)
. (3.10)

Proof: Since ϒ = 2 and ϒ* = 4/α (see definition in Eq. (A7)) we can use the asymptotic
expansion given by Eq. (A8) in Eq. (3.9). Since

h10 = 0, h21 = 0,

the asymptotic expansion gives for 1 < α ≤ 2 the following result

H 2,2
2,5

[
z2

∣∣∣∣ (1 − 2
α
, 2

α
), (0, 2)

(0, 1), (1 − 2
α
, 2

α
), (0, 1), (k, 1), (−k, 1)

]
= h20z−1 + h22z−3 + . . .
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where

h20 = (−1)k

2 sin π/α
, h22 = (−1)k(1/4 − k2)

24 sin π/α
,

this implies Eq. (3.10). �

Finally, we get the following behavior of eigenvalues of Hα, β .

Theorem 3.6: For βαRα − 1 → ∞ the eigenvalues of Hα, β behave as

Eα,β,k = E0
α,β + α

α − 1

(
k2 − 1/4

2R2
(−E0

α,β )(α−2)/α

) 1
α−1

+ ... . (3.11)

Proof: Combining Eqs. (3.2) and (3.10) with (1 + x)γ = 1 + γ x + O(x2) we get the claim. �

Formula (3.11) shows that the dominated term for the strong interaction is determined by ground
state energy E0

α,β of the one dimensional system with point interaction, see Eq. (1.3).

IV. DISCUSSION

Recall that the number of eigenvalues is determined by the spectral condition

βα Rα−1ωk(α) > 1 . (4.1)

Therefore to get the number of bound states we have to study functions (1, 2) � α �→ ωk(α), with
k ∈ Z defined by Eq. (3.5). Note that ωk( · ) are continuous with boundary limits

lim
α→1

ωk(α) = ∞ , for all k ∈ Z, (4.2)

and

lim
α→2

ω0(α) = ∞ , lim
α→2

ωk(α) = 1

2|k| , for k ∈ Z \ {0} . (4.3)

Moreover, as was already mentioned, given α the numbers {ωk(α)}∞k=0 makes a decreasing sequence.
• The above statements implies that given α ∈ (1, 2) and βαRα − 1 small enough Hamiltonian

Hα, β has no bound state. Precisely, this situation realizes if βαRα − 1ω0(α) ≤ 1. This stays in contrast
to the case α = 2. Namely, H2, β has always at least one bound state, cf. Ref. 10; this remains in
consistency to the first limit of (4.3).

• It follows from (4.2) that given R and β the number of bound states of Hα, β goes to infinity
for α → 1.

• The second limit of (4.3) implies that the necessary and sufficient condition for kth eigenvalue
of H2, β reads

Rβ > 2|k| ,
which again coincides with the results obtained in Ref. 10.

• Note that for the limiting case α = 2 Eq. (3.11) gives the following asymptotics of eigenvalues:

−α2

4
+ k2 − 1/4

R2
+ O(α−2 R−4) ,

which was obtained in Ref. 10.
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APPENDIX: A FOX’S H − FUNCTION

The Fox’s H − function, also known as H − function or Fox’s function, was introduced in the
literature as an integral of Mellin-Barnes type.19

Let m, n, p, and q be integer numbers. Consider the function

�(s) =

m∏
i=1

�(bi + Bi s)
n∏

i=1

�(1 − ai − Ai s)

q∏
i=m+1

�(1 − bi − Bi s)
p∏

i=n+1

�(ai + Ai s)

(A1)

with 1 ≤ m ≤ q and 0 ≤ n ≤ p. The coefficients Ai and Bi are positive real numbers; ai and bi are
complex parameters.

The Fox’s H − function, denoted by

H m,n
p,q (x) = H m,n

p,q

(
x

∣∣∣∣∣ (ap, Ap)

(bq , Bq )

)
= H m,n

p,q

[
x

∣∣∣∣∣ (a1, A1), · · · , (ap, Ap)

(b1, B1), · · · , (bq , Bq )

]
(A2)

is defined as the inverse Mellin transform, i.e.,

H m,n
p,q (x) = 1

2π i

∫
L
�(s) x−s ds (A3)

where �(s) is given by Eq. (A1), and the contour L runs from L − i∞ to L + i∞ separating the
poles of �(1 − ai − Ai s), (i = 1, . . . , n) from those of �(bi + Bi s), (i = 1, . . . , m). The complex
parameters ai and bi are taken with the imposition that no poles in the integrand coincide.

There are some interesting properties associated with the Fox’s H − function. We consider here
the following ones:

a. Change the independent variable

Let c be a positive constant. We have

H m,n
p,q

[
x

∣∣∣∣∣ (ap, Ap)

(bq , Bq )

]
= c H m,n

p,q

[
xc

∣∣∣∣∣ (ap, c Ap)

(bq , c Bq )

]
. (A4)

To show this expression one introduce a change of variable s → c s in the integral of inverse Mellin
transform.

b. Change the first argument

Set α ∈ R. Then we can write

xα H m,n
p,q

[
x

∣∣∣∣∣ (ap, Ap)

(bq , Bq )

]
= H m,n

p,q

[
x

∣∣∣∣∣ (ap + αAp, Ap)

(bq + αBq , Bq )

]
. (A5)

To show this expression first we introduce the change ap → ap + αAp and take s → s − α in the
integral of inverse Mellin transform.

c. Lowering of order

If the first factor (a1, A1) is equal to the last one, (bq, Bq), we have

H m,n
p,q

[
x

∣∣∣∣∣ (a1, A1), · · · , (ap, Ap)

(b1, B1), · · · , (bq−1, Bq−1)(a1, A1)

]
= H m,n−1

p−1,q−1

[
x

∣∣∣∣∣ (a2, A2), · · · , (ap, Ap)

(b1, B1), · · · , (bq−1, Bq−1)

]
.

(A6)

To show this identity is sufficient to simplify the common arguments in the Mellin-Barnes integral.
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d. Asymptotic expansions

The asymptotic expansions for Fox’s H-functions have been studied in Ref. 4. Let ϒ and ϒ*
be defined as

ϒ =
q∑

i=1

Bi −
p∑

i=1

Ai , ϒ∗ =
n∑

i=1

Ai −
p∑

i=n+1

Ai +
m∑

i=1

Bi −
q∑

i=m+1

Bi . (A7)

If ϒ > 0 and ϒ* > 0 we have15

H m,n
p,q (x) =

n∑
r=1

∞∑
k=0

hrk x (ar −1−k)/Ar , |x | → ∞, (A8)

where

hrk = (−1)k

k!Ar

∏m
j=1 �(b j + (1 − ar + k)B j/Ar )

∏n
j=1, j �=r �(1 − a j − (1 − ar + k)A j/Ar )∏p

j=n+1 �(a j − (1 − ar + k)A j/Ar )
∏q

j=m+1 �(1 − b j − (1 − ar + k)B j/Ar )
.

(A9)

e. Series expansion

In Ref. 19 we can see that in some cases there is a series expansion for Fox’s H-function. For
example, when the poles of

∏m
j=1 �(b j + B j s) are simple, we can write

H m,n
p,q (x) =

m∑
j=1

∞∑
ν=0

h′
jνx (b j +ν)/B j , (A10)

where

h′
jν = (−1)ν

ν!B j

∏m
i=1,i �= j �(bi − Bi (b j + ν)/B j )

∏n
i=1 �(1 − ai + Ai (b j + ν)/B j )∏q

i=m+1 �(1 − bi + Bi (b j + ν)/B j )
∏p

i=n+1 �(ai − Ai (b j + ν)/B j )
. (A11)
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