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We study a time-space fractional wave-diffusion equation with periodic conditions
using Laplace transforms and Fourier series and presenting its solution in terms of
three-parameter Mittag-Leffler functions. As a particular case we recover a recent
result. We also present some graphics associated with particular values of the param-
eters. C© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4769270]

I. INTRODUCTION

There exist in nature phenomena that cannot be discussed by means of ordinary calculus, that
is, using normal partial differential equations, because they depend on the so-called memory effect.
In order to account for such dependence one must use a fractional differential equation which is to
be studied within the context of the calculus of arbitrary order, more popularly known as fractional
calculus. The theory of fractional calculus is an old one but has only recently been used to discuss
phenomena involving memory effects, particularly in rheology,1, 2 diffusive systems,3–5 quantum
mechanics6, 7 and other fields.8 An important feature of fractional calculus is that in a convenient
limit—a particular value of the parameter involved—the results obtained by means of ordinary
calculus must be recovered, a characteristic that reveals its nonlocal character.

It is well known that the solutions of a normal (integer order) partial differential equation with
constant coefficients can be expressed in terms of exponential functions. In fractional calculus this
role is played by the Mittag-Leffler functions, i.e., they can be used to express the solutions of
fractional differential equations with constant coefficients.

The classical way to study fractional differential equations is by means of integral transforms,
namely, by applying the Laplace transform to the time variable and the Fourier transform to the space
variables. Besides, as we have more than one definition for the fractional derivative,9, 10 we must
also choose a convenient one. We believe that the so-called Caputo derivative is the most convenient
one in discussing problems in which the initial conditions are given, because it can be interpreted
in the usual way. On the other hand, the so-called Riesz-Fourier derivative is also appropriate to
discuss equations associated with certain particular boundary conditions. We also recall that, unlike
the Fourier transform, the methods of Fourier series expansion and Laplace transform, which can be
easily computed, are convenient when dealing with periodic function.

The paper is organized as follows: in Sec. II we define the derivative in the sense of Caputo
and Riesz, present some properties associated with its Laplace transform and introduce the so-called
three-parameter Mittag-Leffler function. In Sec. III we obtain the solution of a general fractional
equation associated with a wave-diffusion equation by means of Fourier series expansion and
Laplace transform; it is then expressed in terms of a three-parameter Mittag-Leffler function, a result
that generalizes a recent result by Zhang and Liu.11 We close the paper showing the graphics of
this solution for a few particular values of the parameters and pointing out directions for future
studies.

a)Electronic mail: felixsilvacosta@gmail.com.
b)Electronic mail: capelas@ime.unicamp.br.
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II. PRELIMINARIES

In order to introduce fractional derivatives some definition is needed. The most popular one is
the Riemann-Liouville derivative, which is introduced by means of the so-called Riemann-Liouville
fractional integral operator.10

Caputo used a modified form of that definition in which the integral and the derivative in the
Riemann-Liouville fractional operator are exchanged. This is the so-called fractional derivative in
the Caputo sense.

An important difference between the Riemann-Liouville and the Caputo formulations is that
the Caputo derivative of a constant is equal to zero while the corresponding Riemann-Liouville
derivative is different from zero. This is the reason why we discuss our problem using the Caputo
derivative. We use the so-called Weyl fractional derivative to introduce the Riesz fractional derivative.
We close the section with the definition of the three-parameter Mittag-Leffler function as introduced
by Prabhakar,12 presenting also some of its properties.

A. Caputo and Riesz derivatives

In order to discuss a fractional differential equation in two independent variables, we introduce
the fractional derivative in the Caputo sense in the time variable and the Riesz fractional derivative
in the space variable.

We define the fractional derivative of order μ in the Caputo sense by

∗ Dμ
t f (t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

�(n−μ)

∫ t

0

f (n)(τ )

(t − τ )μ+1−n
dτ, n − 1 < μ < n,

dn

dtn
f (t), μ = n,

(1)

where n is a positive integer such that n − 1 < μ < n and
dn

dxn
is the nth order derivative operator.

Recall that the Caputo derivative has been used by many authors in several physical
applications.9, 10 As we have already said, the Caputo derivative of a constant is equal to zero.
Here we mention another important reason for its choice, namely, the initial conditions for the
fractional equation are usually expressed in terms of integer order derivatives whose interpretations
are the same as in the study of the corresponding integer order differential equation with integer
order derivatives.

We now present two properties which will appear in our applications.

P1. When 0 < μ < 1 in Eq. (1), the Caputo derivative reduces to

∗ Dμ
t f (t) = 1

�(1 − μ)

∫ t

0

f ′(τ )dτ

(t − τ )μ
. (2)

P2. The Laplace transform of the Caputo fractional derivative is given by

(L[∗ Dμ
t f (t)])(s) = sμ(L[ f (t)])(s) −

n−1∑
k=0

sμ−k−1(Dk f )(0). (3)

In the particular case 0 < μ < 1,

(L[∗ Dμ
t f (t)])(s) = sμ(L[ f (t)])(s) − sμ−1 f (0), (4)

where Dk is the integer order ordinary differential operator associated with the integer order
derivative.

We now introduce the fractional derivative in the Riesz sense, denoted by Dα
x f (x), by means

of the Weyl fractional integrals. The Riesz fractional derivative is defined as13

Dα
x f (x) = − Dα

+ f (x) + Dα
− f (x)

2 cos(απ/2)
, (5)
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with 0 < α < 2 and α �= 1. In this expression, D± f(x) are the so-called Weyl fractional derivatives,
defined in terms of the Weyl fractional integrals of order μ, denoted Iμ±, by

Dμ
± f (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
± d

dx
I1−μ
± f (x) , 0 < μ < 1,

d2

dx2
I2−μ
± f (x) , 1 < μ < 2,

where

Iμ+ f (x) = 1

�(μ)

∫ x

−∞
(x − ξ )μ−1 f (ξ )dξ

and

Iμ− f (x) = 1

�(μ)

∫ ∞

x
(ξ − x)μ−1 f (ξ )dξ.

As for the Caputo fractional derivative, we mention here only two properties (particular cases) of
the Riesz fractional derivative.

P1. Identity operator
For μ = 0 we have D0

± f (x) = f (x), the identity operator; then

R0
x f (x) = − f (x) + f (x)

2
= − f (x).

P2. Continuity
For μ = 1 we have

D1
± f (x) = ± d

dx
f (x) and D2

± f (x) = d2

dx2
f (x).

Thus, D1
x f (x) can be written as a Hilbert transform14 and

D2
x f (x) = d2

dx2
f (x)

that is, we recover the ordinary second order derivative.

B. Three-parameter Mittag-Leffler function

We introduce the three-parameter Mittag-Leffler function as proposed by Prabhakar12 by means
of the series

Eρ
α,β(z) =

∞∑
k=0

(ρ)k

�(kα + β)

zk

k!
, (6)

where (ρ)k is the Pochhammer symbol, z ∈ C, Re(ρ) > 0, Re(α) > 0, and Re(β) > 0. This function
generalizes the classical Mittag-Leffler Eα(z) and the two-parameter Mittag-Leffler function Eα, β(z).
Indeed, for ρ = β = 1, we have

E1
α,1(z) = Eα(z) =

∞∑
k=0

zk

�(kα + 1)

and taking ρ = 1 we obtain,

E1
α,β(z) = Eα,β (z) =

∞∑
k=0

zk

�(kα + β)
.

We also mention that for the particular case α = ρ = β = 1 we have E1
1,1(z) = ez , which allows us

to say that the classical Mittag-Leffler function is a generalization of the exponential function.
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III. A FRACTIONAL EQUATION WITH PERIODIC CONDITIONS

In this section we present the solution of a general fractional differential equation associated
with a wave-diffusion equation by means of a Fourier series expansion in the space variable (in
which we have periodic conditions) and a Laplace transform in the time variable. The solution is
expressed in terms of a three-parameter Mittag-Leffler function. Our result generalizes a recent result
by Zhang and Liu.11

Let us consider the following general fractional differential equation in two variables, time t
and space x, with t, x ∈ R and with parameters μ, ν ∈ R,

ν∗ Dβ
t u(x, t) + μ∗ Dγ

t u(x, t) = Dα
x u(x, t), (7)

with 1 < β ≤ 2, 0 < γ ≤ 1 and 1 < α ≤ 2. In this equation ∗ Dβ
t and Dα

x are respectively the
fractional derivative in the Caputo sense and the fractional Riesz derivative.10 Also, suppose that the
initial conditions are given by u(x, 0) = f1(x) and ut(x, 0) = f2(x), where f1 and f2 are two periodic
real functions which can be expressed in terms of a Fourier series.

We apply the Laplace transform to Eq. (7) in the time variable and we obtain the following
differential equation:

ν{sβ û(x, s) − sβ−1u(x, 0) − sβ−2ut (x, 0)} + μ{sγ û − sγ−1u(x, 0)} = Dα
x û(x, s) .

It can be written as

(νsβ + μsγ )̂u(x, s) − (νsβ−1 + μsγ−1) f1(x) − νsβ−2 f2(x) = Dα
x û(x, s), (8)

where f1(x) and f2(x) are the initial conditions.
As we have already said, f1 and f2 can be represented by Fourier series:

f j =
+∞∑

n=−∞
f j,n(0)einx

for j = 1, 2; the corresponding coefficients are then given by

f j,n(0) = 1

2π

∫ π

−π

f j (x)e−inx dx .

On the other hand, we must calculate the Riesz fractional derivative of û(x, s). We use Eq. (5)
to do this. First, we suppose that

u(x, t) =
+∞∑

n=−∞
dn(t)einx .

Then, for m − 1 < α < m we can write11

I−α
+ u(x, t) = dm

dxm

(
1

�(m − α)

∫ x

−∞

u(ξ, t)

(x − ξ )1+α−m
dξ

)

= dm

dxm

(
1

�(m − α)

+∞∑
n=−∞

dn(t)
∫ x

−∞

einξ

(x − ξ )1+α−m
dξ

)

=
+∞∑

n=−∞

dn(t)

�(m − α)

dm

dxm

(
einx

∫ +∞

0

e−inr

r1+α−m
dr

)

=
+∞∑

n=−∞
dn(t)(in)αeinx
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and

I−α
− u(x, t) = (−1)m dm

dxm

(
1

�(m − α)

∫ +∞

x

u(ξ, t)

(ξ − x)1+α−m
dξ

)

= (−1)m dm

dxm

(
1

�(m − α)

+∞∑
n=−∞

dn(t)
∫ +∞

x

einξ

(ξ − x)1+α−m
dξ

)

= (−1)m
+∞∑

n=−∞

dn(t)

�(m − α)

dm

dxm

(
einx

∫ +∞

0

e−inr

r1+α−m
dr

)

=
+∞∑

n=−∞
dn(t)(−in)αeinx .

Therefore, using Eq. (5), we obtain

Dα
x u(x, t) = − 1

2 cos
(

απ
2

) {
I−α
+ u(x, t) + I−α

− u(x, t)
} =

+∞∑
n=−∞

d ′
n(t)einx , (9)

where the coefficients are given by

d ′
n(t) = − 1

2 cos
(

απ
2

) [
(in)α + (−in)α

]
dn(t)

= − |n|α
2 cos

(
απ
2

) [
iα + (−i)α

]
dn(t)

= − |n|α
2 cos

(
απ
2

) [
eiαπ/2 + e−iαπ/2

]
dn(t).

This result entails the following relation:

d ′
n(t) = −|n|αdn(t). (10)

Now, taking the Laplace transform of Eq. (9) we get

L[Dα
x u(x, t)] =

+∞∑
n=−∞

(−|n|α)d̂n(s)einx , (11)

where d̂n(s) = L[dn(t)].
Then, substituting these results in Eq. (8) we obtain

(νsβ + μsγ )
+∞∑

n=−∞
d̂n(s)einx − (νsβ−1 + μsγ−1)

+∞∑
n=−∞

f1,n(0)einx

− νsβ−2
+∞∑

n=−∞
f2,n(0)einx =

+∞∑
n=−∞

(−|n|α)d̂n(s)einx .

This implies that

(νsβ + μsγ )d̂n(s) − (νsβ−1 + μsγ−1) f1,n(0) − νsβ−2 f2,n(0) = −|n|α d̂n(s).

This equality is an algebraic equation whose solution is given by

d̂n(s) = νsβ−1 + μsγ−1

νsβ + μsγ + |n|α f1,n(0) + νsβ−2

νsβ + μsγ + |n|α f2,n(0)

= d̂n1(s) f1,n(0) + d̂n2(s) f1,n(0) + d̂n3(s) f2,n(0). (12)
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We then proceed to calculate the corresponding inverse Laplace transform. To this end we
employ the relation15

L−1

{
sρ−1

sα1 + Asα2 + B

}
=

+∞∑
j=0

(−A) j t (α1−α2) j+α1−ρ E j+1
α1,(α1−α2) j+α1+1−ρ(−Btα1 ), (13)

in which A and B are real numbers and Re(α1) > Re(α2) > 0.
We have for d̂n1(s):

d̂n1(s) = νsβ−1

νsβ + μsγ + |n|α = sβ−1

sβ + μ

ν
sγ + |n|α

ν

, (14)

Taking ρ = β, α1 = β, A = μ/ν, α2 = γ , and B = |n|α
ν

in Eq. (13) we get, for β > γ > 0,

L−1
[
d̂n1(s)

] =
+∞∑
j=0

(−μ

ν

) j

t (β−γ ) j+β−β E j+1
β,(β−γ ) j+β+1−β

(
−|n|α

ν
tβ

)

=
+∞∑
j=0

(
−μ

ν

) j
t (β−γ ) j E j+1

β,(β−γ ) j+1

(
−|n|α

ν
tβ

)
. (15)

Proceeding as in Eq. (14), putting ρ = γ , α1 = β, A = μ/ν, α2 = γ , and B = |n|α
ν

in Eq. (13),
we can show that, for

d̂n2(s) = μsγ−1

νsβ + μsγ + |n|α = μ

ν

sγ−1

sβ + μ

ν
sγ + |n|α

ν

, (16)

one has

L−1
[
d̂n2(s)

] = μ

ν

+∞∑
j=0

(
−μ

ν

) j
t (β−γ ) j+β−γ E j+1

β,(β−γ ) j+β+1−γ

(
−|n|α

ν
tβ

)
, (17)

with β > γ > 0.
Finally, we must calculate

d̂n3(s) = νsβ−2

νsβ + μsγ + |n|α = sβ−2

sβ + μ

ν
sγ + |n|α

ν

. (18)

In the same way, we substitute ρ = β − 1, α1 = β, A = μ/ν, α2 = γ , and B = |n|α
ν

in Eq. (13) to
obtain

L−1
[
d̂n3(s)

] =
+∞∑
j=0

(
−μ

ν

) j
t (β−γ ) j+1 E j+1

β,(β−γ ) j+2

(
−|n|α

ν
tβ

)
(19)

with β > γ > 0.
Using Eqs. (15), (17), and (19), we can write

dn(t) = L
[
d̂n(s)

] = L
[(

d̂n1(s) + d̂n2(s)
)

f1,n(0) + d̂n3(s) f2,n(0)
]

=
+∞∑
j=0

(
−μ

ν

) j
t (β−γ ) j E j+1

β,(β−γ ) j+1

(−K tβ
)

f1,n(0)+

+ μ

ν

+∞∑
j=0

(
−μ

ν

) j
t (β−γ ) j+β−γ E j+1

β,(β−γ ) j+β+1−γ

(−K tβ
)

f1,n(0)+

+
+∞∑
j=0

(
−μ

ν

) j
t (β−γ ) j+1 E j+1

β,(β−γ ) j+2

(−K tβ
)

f2,n(0),
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where Eγ
μ,ν(z) is a three-parameter Mittag-Leffler function and where we have introduced the notation

K = |n|α/ν.
In order to simplify this expression we first introduce a positive parameter defined by η = β − γ ;

rearranging terms we then get

dn(t) =
+∞∑
j=0

(
−μ

ν
tη

) j
{

E j+1
β,η j+1

(−K tβ
) + μ

ν
tη E j+1

β,η j+β+1−γ

(−K tβ
)}

f1,n(0)+

+
+∞∑
j=0

(
−μ

ν
tη

) j
t E j+1

β,η j+2

(−K tβ
)

f2,n(0), (20)

which is our main result.
Using Eq. (20) we can present two particular cases. First, we recover the recent result obtained

by Zhang and Liu;11 second, we present the calculation associated with the classical integer case.

Case 1. To recover the result obtained by Zhang and Liu11 we put ν = 1 and μ = 0 in Eq. (20).
In this case the only term that contributes is j = 0, i.e., the sum is cancelled. Thus,

dn(t) = E1
β,1(−K tβ) f1,n(0) + t E1

β,2(−K tβ) f2,n(0) , (21)

where K = |n|α and E1
α,β (z) = Eα,β (z) is the two-parameter Mittag-Leffler function, a particular

case of the three-parameter Mittag-Leffler function introduced in Sec. II B. We thus have

dn(t) = Eβ,1(−K tβ) f1,n(0) + t Eβ,2(−K tβ) f2,n(0) , (22)

which is the result obtained in Zhang and Liu’s paper.11

Case 2. The classical integer case is obtained taking α = β = 2 and γ = 1, which gives η = 1.
So, using Eq. (20) we have

dn(t) =
+∞∑
j=0

(
−μ

ν
t
) j

{
E j+1

2, j+1

(−K t2
) + μ

ν
t E j+1

2, j+2

(−K t2
)}

f1,n(0)+

+
+∞∑
j=0

(
−μ

ν
t
) j

t E j+1
2, j+2

(−K t2) f2,n(0), (23)

where K = |n|2/ν.

IV. DIFFUSION EQUATION

In this section we discuss the fractional diffusion equation for a particular value of parameter
ν. It is an interesting result that for ν = 0 we have only one term contributing to the solution. In this
remarkable case we have a fractional diffusion equation, different from the two cases shown before,
in which we have dealt with a fractional wave equation.

Using Eq. (12), we have

ĥn(s) = μ
sγ−1

μsγ + |n|α = sγ−1

sγ + |n|α
μ

, (24)

whose inverse is obtained by putting A = 0 in Eq. (13). In this case we have only one term, i.e., j = 0.
Then we can write

L−1

{
sρ−1

sα1 + B

}
= tα1−ρ Eα1,α1+1−ρ (−Btα1 ) (25)
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FIG. 1. t × u for β = 1.6, β = 1.8, β = 1.9 and β = 2.

and for α1 = γ , ρ = γ and B = |n|α
μ

we get

dn(t) =tγ−γ Eγ,γ+1−γ

(
−|n|α

μ
tγ

)
f1,n(0)

which can be written as

dn = f1,n(0)Eγ

(
−|n|α

μ
tγ

)
(26)

with 0 < γ ≤ 1 and 1 < α ≤ 2.
As an example we consider Eq. (22) in order to present graphically a few particular cases of

the results shown here. Taking u(x, 0) = sin x and ut(x, 0) = cos x as initial conditions, we have for
some values of β (for fixed x = 0) the graphics shown in Fig. 1.

V. CONCLUDING REMARKS

We close this paper pointing out that our result generalizes a recent one in which the authors11

discussed only a particular case associated with the wave equation separately from the case associated
with the diffusion equation. That’s why we called our result the fractional wave-diffusion equation
with periodic conditions. We note that in the limiting case, i.e., taking γ = 1 and β → 1, we recover
the diffusion equation in which parameter μ → μ + ν. So, the solution of the diffusion equation is
the same as the one obtained in Eq. (26) with μ → μ + ν. Finally, we remark that this result can
be extended to higher dimensions in the sense that we can consider a parameter α such that m − 1
< α < m and m ∈ Z+.
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