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We theoretically investigate static and dynamic properties of quasiperiodic magnetic multilayers.

We considered identical ferromagnetic layers separated by non-magnetic spacers with two

different thicknesses chosen based on the Fibonacci sequence. Using parameters for Fe/Cr, the

minimum energy was determined and the equilibrium magnetization directions found were used to

calculate magnetoresistance curves. Regarding dynamic behavior, ferromagnetic resonance (FMR)

curves were calculated using an approximation known from the literature. Our numerical

results illustrate the effects of quasiperiodicity on the static and dynamic properties of

these structures. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4794190]

The discoveries of the antiferromagnetic bilinear

coupling1 and the so-called giant magnetoresistance effect

(GMR)2 in magnetic metallic multilayers have aroused a

great interest from both the theoretical and experimental per-

spectives. One of the most important reasons is because the

control of the electrical resistance, by the external magnetic

field, in these systems, led to a large range of applications in

information storage and magnetic sensors technology. For

example, currently GMR effect has been applied in storage

devices,3 spin torque transfer (STT) based devices,4 and bio-

sensors.5 It has been shown that magnetoresistance (MR)

varies linearly with the angular difference between adjacent

magnetizations when electrons form a free-electron gas, i.e.,

there are no barriers between adjacent ferromagnetic films.

In metallic systems, such as Fe/Cr, this angular dependence

is valid and once the set fhig of equilibrium angles is deter-

mined, we obtain normalized values for magnetoresistance,6

i.e.,

MRðHÞ ¼
RðHÞ
Rð0Þ ¼

XN�1

i¼1

½1� cosðhi � hiþ1Þ�

2ðN � 1Þ ; (1)

where R(0) is the electric resistance at zero field and N is the

number of ferromagnetic layers.

The effects of the quasiperiodic order in many different

physical systems have been extensively studied. It has been

shown that quasiperiodic stacking patterns have strong influ-

ence on the physical properties of layered systems (including

the non-critical properties).7 Furthermore, the recent devel-

opments in the experimental growth techniques allow the

building of layered systems whose properties are subject to

control and design. Considering this aspect, the physical

properties of a new class of magnetic system, namely, quasi-

periodic magnetic multilayers, became an attractive field of

research.8–12 For instance, a quasiperiodic stacking pattern in

Fe/Cr magnetic multilayers induces new magnetic phases

which would not be observed in a periodic arrangement. The

consequences of these new phases are observed in the static9

and dynamic properties13 of these magnetic structures.

It is known from the literature that MR usually monot-

onically decreases with the magnetic field. However, in a

recent work on the magnetoresistance properties of Fe/Cr

magnetic multilayers,15 in which the Cr layers follow a

Fibonacci sequence, it was observed a region where one can

see a positive change of the magnetoresistance, i.e., a region

where an increase in the magnetic field leads to a rise in

magnetoresistance, that is, DMR=DH > 0. The aim of this

work is to push a little more the understanding of the effects

of a quasiperiodic stacking pattern, of the non-magnetic

spacers, on the dynamic properties by calculating ferromag-

netic resonance (FMR) curves.

A quasiperiodic multilayer can be built by juxtaposing

two building blocks (A, B) following a quasiperiodic

sequence. The Fibonacci sequence is widely used, with

building blocks transforming according to the following

rule: A! AB, B! A. Therefore, the first Fibonacci

sequence is S1 ¼ A, the second is S2 ¼ AB, the third is

S3 ¼ ABA, and so on. In the present study, non-magnetic Cr

layers, between ferromagnetic Fe layers, were chosen with

thicknesses following the Fibonacci sequence. A is a Cr layer

with thickness t1 and B is a Cr layer with thickness t2. For

instance, the multilayer Fe=Crðt1Þ=Fe=Crðt2Þ=Fe=Crðt1Þ=Fe
corresponds to Fe/A/Fe/B/Fe/A/Fe.

We considered four energy terms in the magnetic

energy: Zeeman energy (owing to interaction between the

magnetization of the ferromagnetic films and the applied

external magnetic field), [100] cubic anisotropy energy (due

to interaction between the crystalline structure and electronic
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spins), and two terms which couple the magnetization of Fe

layers separated by Cr layers, namely, bilinear and biqua-

dratic energies.15 For the description of the dynamic proper-

ties, we must include two additional energy terms: dipolar

and surface anisotropy energies. Considering all these energy

terms, the total magnetic energy can be written as13

ET ¼ EZ þ Eca þ Ebl þ Ebq þ Esa þ Edip: (2)

Here, the subscripts denote Zeeman, cubic anisotropy, bilin-

ear and biquadratic exchanges, surface anisotropy, and dipo-

lar terms, respectively.

From now on, we follow the lines of Refs. 13 and 14.

Our initial goal is to find the set fhig of equilibrium angles,

which is determined by the minima of the total magnetic

energy. In the cases studied in this paper, these minima were

found numerically using the gradient method, which takes

into account the gradient of ET in relation to the set fhig.
This approach has proven successful in interpreting

magnetoresistance and magnetization data in magnetic

multilayers,9–11,15 and provides a self-consistent correlation

between the static configuration and the dynamic response of

the system, characterized by FMR dispersion relations, con-

sidered below.

The equation of motion for the magnetization of film i is

written as

d ~Mi

dt
¼ c~Mi � ~H

ðiÞ
ef f ; (3)

where c ¼ gilB=�h is the gyromagnetic ratio (2.8 GHz/kOe

for g¼ 2) and ~Hef f is the effective field acting on ~Mi. The

relation between the effective field and the total energy is

well known, being defined by

~H
ðiÞ
ef f ¼ � ~r ~Mi

ET : (4)

All fields and magnetizations are decomposed into a static

part and a small-signal dynamic component. Since the spin-

wave frequencies are determined by the linearized equations,

we introduce convenient coordinate axes for each film in

which the z-axis is along the magnetization equilibrium

direction. The x and y components are then small-signal vari-

ables. Assuming the expðixtÞ time variation and retaining

only terms to first order in small quantities, we obtain a set

of 2N coupled equations, the solutions of which are found by

requiring that the secular determinant vanishes. This leads to

magnetic excitation frequencies which are given by the

zeroes of the equation

x
c

� �2N

þ
XN�1

k¼0

ak
x
c

� �2ðN�1�kÞ
" #

¼ 0: (5)

The coefficients ak are given by lengthy expressions involv-

ing the magnetic multilayer parameters, the equilibrium

angles, and the external field.13 For any given applied field,

Eq. (5) presents N real solutions, corresponding to the spin-

wave modes.

In the following numerical applications, we performed

calculations for two different values of spacer thickness cor-

responding to two sets of exchange fields, namely,

1. t¼ 1.5 nm for which Hbq ¼ 0:3jHblj with Hbl ¼ �0:15 kOe;

2. t¼ 3.0 nm for which Hbq ¼ jHblj with Hbl ¼ �0:035 kOe.

We selected the first set of parameters for Cr films associated

with A letters of the quasiperiodic sequence and the second

set of parameters for Cr films associated with B letters of the

quasiperiodic sequence. For both sets, we considered the

[100] cubic anisotropy field Hca ¼ 0:5 kOe, the surface ani-

sotropy field Hsa ¼ 2:0 kOe, 4pM ¼ 20:0 kG and the thick-

nesses of Fe layers are fixed and equal to 4.5 nm. Additional

information about the structural parameters of Fe/Cr multi-

layers can be found elsewhere.14 In Fig. 1, we show the mag-

netoresistance for magnetic multilayers whose Cr layers

follow the third (S3 ¼ ABA) and fourth (S4 ¼ ABAAB)

Fibonacci generations, which means 4 (Fe/A/Fe/B/Fe/A/Fe)

and 6 (Fe/A/Fe/B/Fe/A/Fe/A/Fe/B/Fe) Fe films, respectively.

Because of the strong biquadratic field (compared to the

bilinear one) and cubic anisotropy, all transitions are of first

order type, characterized by discontinuous jumps in the mag-

netoresistance. We can also note a clear self-similar pattern

of the magnetoresistance, by comparing Figs. 1(a) and 1(b),

FIG. 1. Normalized magnetoresistance curves for the (a) third (Fe/A/Fe/B/Fe/
A/Fe) and (b) fourth (Fe/A/Fe/B/Fe/A/Fe/A/Fe/B/Fe) Fibonacci generations.
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which is the basic signature of a quasiperiodic system.

However, in the low-magnetic-field region, one can see a

much more interesting feature of these multilayers: Fig. 1

shows, for both third and fourth Fibonacci generations,

regions in which is observed a positive change of the magne-

toresistance. In those regions, an increase in the magnetic

field leads to a rise in magnetoresistance, that is,

DMR=DH > 0. As discussed in a previous work,15 this un-

usual behavior is a direct consequence of the quasiperiodic

distribution of the Cr layers in the magnetic multilayer

structure.

Let us now present numerical results for the FMR dis-

persion relation. Fig. 2 shows the spin wave spectra for the

third and fourth Fibonacci generations. We plotted the fre-

quency shift (in GHz) against the external magnetic field (in

kOe). The number of spin wave modes is associated with the

number of ferromagnetic layers. Therefore, we have four

modes for the third Fibonacci generation. Once the

dynamic response is correlated to the static response, the

dispersions shown in Fig. 2 reflect the magnetic phases

presented by the magnetic multilayer. For example, the

bottom curve in Fig. 2(a) represents the acoustic mode and

it clearly shows five distinct regions of dispersion,

corresponding to the five magnetic phases observed in Fig.

1(a), with the same transition fields. The saturation is

reached at H � 300 Oe. Fig. 2(b) presents the FMR disper-

sion relation for the fourth Fibonacci generation. One can

see 6 spin waves modes and, as for the third Fibonacci

generation, various phase transitions are observed.

Although the numerical results for the fourth generation

are similar to the previous numerical results for the third

generation, the number of spin wave modes for this case

makes difficult a direct physical interpretation. The satura-

tion is reached at H � 450 Oe.

In conclusion, we have presented in this work a theory

to deal with static and dynamic properties of quasiperiodic

magnetic multilayers composed by identical ferromagnetic

layers separated by non-magnetic layers with two different

thicknesses chosen based on the Fibonacci sequence.

Using parameters for Fe/Cr multilayers, our theory takes full

account of Zeeman, cubic anisotropy, bilinear and biqua-

dratic couplings, dipolar and surface anisotropy. We present

analytical expressions for magnetoresistance and FMR dis-

persion relation generalizing any Fibonacci generation num-

ber. Finally, we believe that the new features related here

may open new possibilities of future applications in MR sen-

sors and devices, since the positive jumps, in sharp magnetic

field values, can be used in logic devices with more than two

logic states.
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