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a b s t r a c t

A new transformation, a generalization of the Givens rotation, is introduced here. Its prop-
erties are studied. This transformation has some free parameters, which can be chosen to
attain pre-established conditions. Some special choices of those parameters are discussed,
mainly to improve numerical properties of the transformation.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The Givens rotation, like the Householder transformation, plays an important role in scientific computing, especially
for least squares problems [1] and QR decomposition [2–4], as well as in computational eigenvalue problems [5–8]. A
rotation can be used to eliminate one entry of a given vector with two elements. This is employed successively to map
n-dimensional vectors to multiples of the first canonical vector. The orthogonality of the Givens rotation ensures good
theoretical properties and numerical performance. For instance, the standard approach to compute eigenvalues is to obtain
a tridiagonal matrix, similar to the target one, for which the computational cost of iterative processes is smaller [9–14].
Usually, this is accomplished in two phases: the first is to convert the matrix, by similarity transformations (like Gaussian
elimination), to an upper Hessenberg matrix [5–7]; the second is to convert the obtained Hessenberg matrix similarly to
a tridiagonal matrix. This last step is usually done by orthogonal transformations such as Householder transformations
or Givens rotations [9–14]. It is well known that the Givens rotation is the preferable option for large sparse scientific
computing, since it affects only two rows and two columns.

In [15], the authors discussed implementation issues of LaBudde’s transformation, which is a generalization of the
Householder transformation [16]. They proposed one algorithm (called the GYBR algorithm) to obtain tridiagonalization
directly without going via a Hessenberg matrix [15]. In their numerical tests, the GYBR algorithm works well if there is no
breakdown for all steps. The GYBR algorithm converts one column and one row simultaneously become similar to multiples
of the first canonical vector. Just like the Householder transformation, the GYBR algorithm affects all entries of the matrix
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at each step, which destroys the sparsity of the original given matrix. Since Givens rotations are appropriate for sparse
problems, due to their surgical changes in thematrix entries, we aremotivated to generalize the Givens rotation to eliminate
two entries of two given vectors simultaneously. Hence, we propose a new transformation, whichwe refer to as a generalized
Givens rotation (see Definition 1 in Section 2). This transformation is not orthogonal in general. We present necessary and
sufficient conditions for orthogonality of a generalized Givens transformation.

Since the tridiagonalization is not via a Hessenberg matrix, the new transformation is much cheaper in terms of com-
putational cost (cheaper by almost half of multiplications) than the current tridiagonalization process. For the sparse case,
using a generalized Givens transformation is even cheaper than using the GYBR algorithm for tridiagonalization in terms of
computational cost [15].

The non-orthogonality constraint results in more flexibility in the choices of the coefficients of the transformation. An
important aspect to be highlighted is that such flexibility can be exploited to attain better numerical performance, concern-
ing many different criteria. Based on that, and guided by desired theoretical properties for the transformation, we discuss
some particular choices for the free parameters. Our main contribution here is to introduce the new transformation and
study its properties.

The organization of this paper is as follows. The generalized Givens rotation is introduced in Section 2. An algorithm
and some properties of the new transformation are given in the same section. A necessary and sufficient condition for
orthogonality is established. In Section 3, some special choices for parameters of the generalized Givens transformation are
discussed. In Section 4, somenumerical examples are given to illustrate the numerical performance, especially efficiency and
flexibility, of the new transformation, together with some possible applications. In Section 5, we present our conclusions.
Note that we simply introduce the generalized Givens transformation here. Further practical applications of the generalized
Givens rotation are not the focus of this paper; they will be studied in future work.

2. Generalized Givens transformation

The usual Givens transformation is an orthogonal matrix of a rotation in two dimensions. Upon its usage, it is possible to
assemble similarity transformations to tridiagonalize sparse symmetric matrices efficiently.

Suppose that the 3 × 3 symmetric matrix A has the following structure:
a11 uT

u A22


where u is a two-dimensional vector, and A22 is a 2 × 2 symmetric matrix. Then, the structure of the similarly Givens
transformation is

1 0T

0 G

 
a11 uT

u A22

 
1 0T

0 GT


=


a11 keT1
ke1 Â22


. (1)

In this section, a generalized Givensmatrixwith its computational algorithm is introduced. Its properties are studied aswell.
Now, we consider non-symmetric matrices. Assume that the 3 × 3 non-symmetric matrix A is defined by

a11 vT

u A22


where u and v are two two-dimensional vectors, and that A22 is a 2 × 2 non-symmetric matrix. In this case, Eq. (1) would
be generalized as

1 0T

0 P

 
a11 vT

u A22

 
1 0T

0 P−1


=


a11 k2eT1
k1e1 Â22


. (2)

Definition 1. The generalized Givens matrix P is defined by

P = α


c d
s c


. (3)

The inverse of P is given by

P−1
= β


c −d

−s c


, (4)

with β satisfying the equation

αβ(c2 − sd) = 1. (5)



58 R. Biloti et al. / Computers and Mathematics with Applications 66 (2013) 56–61

Note that the generalized Givens matrix is the Givens matrix if α = β = 1, d = −s, and s2 + c2 = 1. This is why we refer
to P in (3) as a generalized Givens matrix.

The algorithm below computes P to satisfy Eq. (2); that is, given two two-dimensional vectors u and v, P will be
determined such that

Pu = k1e1, and P−Tv = k2e1. (6)

Algorithm 1. Step1. Given vectors u = (x, y)T and v = (z, w)T such that zx ≠ 0 and uTv ≠ 0;
Step2. choose α and β such that (αβ xz uTv) > 0;
Step3. compute

c =


xz

αβuTv
, (7a)

s = −
y
x
c, (7b)

d =
w

z
c, (7c)

k1 = αc

x +

yw
z


, (7d)

k2 = βc

z +

yw
x


. (7e)

Note that, in Step 2, α and β are free parameters. The choice of these two parameters is discussed later.
The next theorem shows that Algorithm 1 is well defined.

Theorem 1. Let u = (x, y)T and v = (z, w)T be such that uTv ≠ 0, xz ≠ 0, and xz/(αβuTv) > 0. If P and P−1 are as defined
in (3) and (4), respectively, with k1 and k2 defined by (7), then Pu = k1e1 and P−Tv = k2e1. Moreover, det(P) = α/β .

Proof. It follows from (6) that

(cx + dy) = k1/α, (8a)

(sx + cy) = 0, (8b)
(cz − sw) = k2/β, (8c)

(cw − dz) = 0, (8d)

where u = (x, y)T and v = (z, w)T . Writing s and d in terms of c , from (8b) and (8d), we obtain

s = −
y
x
c and d =

w

z
c, (9)

as stated in (7b) and (7c), respectively.
Under the assumption that xz/(αβuTv) > 0, which can be guaranteed by appropriate choices of α and β discussed later

on, from (5) and (9), it is straightforward to determine the value of c as in (7a).
Replacing the expressions for c , d, and s in (8a) and (8c), we obtain the expressions (7d) and (7e) for k1 and k2, respectively.
Note that, from (7d) and (7e), the ratio x/z is

x
z

=
β

α

k1
k2

.

From (3), det(P) = α2(c2 − sd). Using (5), simple algebraic manipulation leads to det(P) = α/β . �

Remark 1. If x = z = 0 but yw ≠ 0, it is still possible to obtain P such that Pu = k1e1 and P−Tv = k2e1. From (8a)–(8d),
c = 0, d = 1, and s = −1. To obtain P with the desired property, it is enough to take α = β = 1. Then k1 = y and k2 = w.

From the theorem, it is obvious that det(P) = det(P−1) = c2 − sd = 1 if α = β = 1. The next result follows by imposing
that P−1

= PT .

Theorem 2. The generalized Givens matrix P is orthogonal if and only if α = β and d = −s. For the given non-zero vectors u
and v, P is orthogonal if and only if

y
x

=
w

z
whenever xz ≠ 0.
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Proof. The result follows immediately from the fact that P−1
= PT for orthogonal matrices. �

Remark 2. P is orthogonal if uTv ≠ 0 and x = z = 0, by Remark 1.

Remark 3. Consider the task of tridiagonalizing a matrix. Suppose that the matrix A of order n has the following structure:

A =


T A12
A21 A22


,

where T is a k × k tridiagonal matrix, AT
12 = [0 · · · 0 p], and A21 = [0 · · · 0 q], with both p and q being vectors in R(n−k). To

move forward one step in the tridiagonalization process, it is necessary obtain a matrix Pk such that

PkAP−1
k =


T σ12ET

n−k
σ21En−k Â22


,

where Ej = [0 · · · 0 e(j)
1 ], and e(j)

1 is the first canonical vector of dimension j. The matrix Pk can be composed as a product of
generalized Givens matrices, given by

Pk = Pk,nPk,n−1 · · · Pk,k+2,

where each Pk,j is

(10)

where c , d, s, α, β , k1, and k2 are given by (7), with u = (ak+1,k, aj,k)T and v = (ak,k+1, ak,j)T .

3. Particular choices for α and β

The choice of the two parameters α and β is important for the generalized Givens transformation, because the freedom
of choice can be exploited to attain particular computational requirements, such as optimality, or other concerns. In this
section, we shall discuss some particular choices forα and β to attain some good properties for thematrix or for applications
of the transformation. Note that the hypothesis of Theorem 1 holds for all choices in this section.

3.1. Equalized P and P−1

To keep both P and P−1 with same magnitude we have to set |α| = |β|. To simplify expression (7a), we can define

α

sign(xz)
=

β

sign(uTv)
=

1
|uTv|

. (11)

It is very clear that xz/(αβuTv) is always positive for this particular choice of α and β . Substituting (11) into (7), we obtain
the corollary below.

Corollary 1. For the special choice of α and β in (11), the values for c, d, s, k1, and k2 are

c =


|xz|, d =
w

z


|xz|, s = −

y
x


|xz|, (12)

k1 = α

√
|xz|
z

uTv, k2 = β

√
|xz|
x

uTv.
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Finally, the expressions for k1 and k2, in terms of the input vectors only, are

k1 = sign(x)sign(uTv)


|x|
|z|

|uTv| (13)

and

k2 = sign(x)


|z|
|x|

|uTv|. (14)

3.2. Low computational cost

If the intention is to keep the computational cost as low as possible, an interesting choice for α and β is

α =
1

uTv
, and β = xz. (15)

Clearly, the condition xz/(αβuTv) > 0 is satisfied. The expressions of all coefficients of P are simpler than for the previous
choices. Hence, this choice leads to lower computational costs.

Corollary 2. For the special choice of α and β in (15), the values for c, d, s, k1, and k2 are

c = 1, d =
w

z
, s = −

y
x
, k1 =

1
z
, k2 = z(uTv). (16)

3.3. (Anti)symmetric output

Instead of asking properties for P , we could also look for good properties for the result of applying P . In this way, we
explore choices for α and β for which |k1| = |k2|. With

α = z, and β = sign(uTv)x (17)

the coefficients in (7) are given by

c =


1/|uTv|, s =

y
x
c, d =

w

z
c, k1 =

k2
sign(uTv)

= c(uTv). (18)

4. Numerical tests

In this section, we give a numerical example to illustrate the possible application and flexibility of the new transforma-
tion. Here, we suppose that there is no breakdown for all steps in the computation. The implementation was done using
MATLAB on PCs with 1.8 GHz and enough memory and disk space. Each matrix considered was tridiagonalized with and
without pivoting. As usual, the bigger the matrices, the greater the accuracy improvements due to the pivoting. Never-
theless, pivoting is crucial even for small cases, since the situation of xz = 0 or xz + yw = 0 can break the algorithm
down.

To serve as a criterion for the quality of the generalized Givens rotation, for several matrices, we measure the accuracy
of the computation of the eigenvalues after the proposed tridiagonalization with respect to those computed directly from
the original matrices.

We performed several tests with many different matrices, concerning size, structure, and sparsity. Some matrices were
randomly generated, by MATLAB, while others were generated with LAPACK Test Matrix Generators DLATMR,1 and they are
suitable for testing an eigenvalue algorithm. The following table shows a comparison of the computed eigenvalues of the
original matrices and the computed eigenvalues of the tridiagonalizedmatrices. In the third and fourth columns we present
the relative errors ∥λT − λ∥2/∥λ∥2, where λ is a vector containing all eigenvalues of the original matrix and λT is that for
the tridiagonalized matrix obtained by our algorithm. In all cases, the eigenvalues were computed by the standard MATLAB
routine.

1 This is available at http://math.nist.gov/MatrixMarket/data/misc/xlatmr/.

http://math.nist.gov/MatrixMarket/data/misc/xlatmr/
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Problem Matrix type n Relative error
Without pivoting With pivoting

1 Full 6 6.8478e − 16 4.4669e − 16
2 Full 50 3.8864e − 11 5.0242e − 13
3 Sparse 50 – 9.1725e − 14
4 Full 100 1.4004e − 08 5.0773e − 14
5 Sparse 100 – 1.7619e − 15
6 Sparse 200 – 8.1781e − 12
7 Sparse 225 – 3.8786e − 11

The matrices of problems 1 to 6 have no particular structure. Three of them (1, 2, and 4) are full, and the others are
sparse. Thematrix of problem7 [5,17] is related to a five-point central finite difference discretization of the two-dimensional
variable-coefficient linear elliptic equation

−(pux)x − (quy)y + rux + (ru)x + (su)y + tu = f ,

where
p ≡ p(x, y) = exp(−xy)
q ≡ q(x, y) = exp(xy)
r ≡ r(x, y) = β(x + y)
t ≡ t(x, y) = 1/(1 + x + y)

and β = 20. The domain is the unit square [0, 1] × [0, 1], with Dirichlet boundary conditions. All those matrices are non-
symmetric.

All numerical results confirm the good numerical performance of the transformation.

5. Conclusions

We introduce a generalized Givens rotation, which simultaneously eliminates two elements of two vectors respectively.
The new transformation has two parameters, whose choice gives us freedom to attain some desired properties. We have
discussed some special choices for these two parameters.

Numerical examples given here have illustrated possible applications and the flexibility of the new transformation. The
numerical results gave good numerical performance of the transformation. We shall do further research on the transforma-
tion.
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