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Thermodynamic variables in the context of a nonequilibrium statistical
ensemble approach
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We consider the question of the definition of thermodynamic-like variables in the context of a
statistical thermodynamics, which is a large generalization of Gibbs statistical thermostatics and
linear and local-equilibrium classical irreversible thermodynamics. It is based on a nonequilibrium
ensemble approach known as the nonequilibrium statistical operator method. Some of these
quasithermodynamic variables are characteristic of the nonequilibrium state and go to zero in the
limit of local or global equilibrium, but others go over the thermodynamic variables that are present
in such a limit. We consider in particular temperature-like variables for the different subsystems of
the sample. For illustration we apply the theory to the study of optical properties of highly
photoexcited plasma in semiconductors, following a good agreement between theory and
experimental data. It is shown that high-resolution spectroscopy provides an excellent experimental
testing ground for corroboration of the theoretical concepts, and a quite appropriate way for
characterizing and measuring nonequilibrium thermodynamic-like variables19%7 American
Institute of Physicq.S0021-960807)51642-4

I. INTRODUCTION which are introduced by the variational method to this

trielelv?hntr(r)nne d'SnC?nr;S;derﬂéjibtg ?ent?ﬁ ‘:’rtr?t'csjt'ﬁalnl]i\méa“;' which provide an alternative, and completely equivalent, de-
cal thermodynamicso stan thermodynamigshow- scription of the nonequilibrium state of the system. Of

ever well established in the case of thermostatics and classi- . : _ )
. : ; . . course, if desirable, and this is often the case, a mixed rep-
cal (linean irreversible thermodynamics, at present is not

completely satisfactorily established for systems arbitrarilyresem‘fﬂIon using part specific and part intensive variables
can be introduced.

away from equilibrium. One quite promising approach is the : . . __
so-called informational irreversible thermodynamidST, We consider next this question of the definition of a

sometimes also dubbed as information-theoretic thermod)Bm'?er nor(;equfilibri;lm th(;rn;odgnamic_ phafse spacl;a '(;] a par-
namics, briefly and partially described in Ref. 2; see alsdicular study of a thermohydrodynamics of many-body sys-

Ref. 3. IST was initiated with the pioneering work of tems of carriers and Igttice yibrations in the highly excited
Hobso® sometime after the publication of Jaynes’ seminalPhotoinjected plasma in semiconductors. We concentrate our
papers on the foundations of statistical mechanics based gHtention on a particular Lagrange multiplier, which is a non-
information theory> Nowadays, as described in Refs. 2 and€duilibrium thermodynamic intensive variable playing the
3, IST acquires a closed form in the framework of the non-ole of a nonequilibrium temperature-like quantity, which we
equilibrium statistical operator methgMESOM), and, par- call quasitemperatureThis concept of nonequilibrium tem-
ticularly, within Zubarev’s approach to NESOf° perature has been used on a phenomenological basis in dif-
All the existing approaches to irreversible thermodynam-ferent contexts by several authors, apparently beginning with
ics face the quite difficult problem of a proper definition of Lev D. Landau more than half a century ago. The most com-
the macroscopic state space, appropriate for the descriptidROn cases are nonequilibrium temperatures for electron or
of many-body systems arbitrarily away from equilibrium. nuclear spins! molecules;” plasma;® electrons excited in
The situation is also present in IST, but in this approach thétrong electric fields} electrons in superconductorspho-
basic variablegthose that compose the nonequilibrium ther-toexcited carriers® photoexcited phonon, and nuclear
modynamic space statare given in terms of the average reactions?® Difficulties arising in its definition in the kinetic
over the NESOM nonequilibrium ensemble of well definedtheory of dense gases were pointed out some time ago by L.
mechanical guantities, and a condition is present to ensur@arcia-Colin and M. S. Greeli.Recently, the question was
the closure of the kinetic equations which describe the evoraised, on sound basis, in the framework of extended irre-
lution of the macroscopic state of the system. Moreover, irversible thermodynamic®. The presentation is organized as
terms of these basic variables—let us call themttremo-  follows: in Sec. Il, after a very brief review of the statistical
dynamic macroscopic variablesthe Lagrange multipliers, method, we show a way to define nonequilibrium
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7384 Luzzi et al.: Thermodynamic variables in nonequilibrium

temperature-like variableguasitemperaturgsn the frame-  NESO, the basic set of macrovariableg;(t)}, j=1,2,..., is
work of the theory. We discuss the all important problem ofintroduced, given by the average over the NESOM-
their dependence on the basic set of nonequilibrium thermaaonequilibrium ensemble of the basic dynamical quantities
dynamic variables—with particular attention to the fluxes. In|5j , that is,

Sec. lll we particularize the results to the case of photoex- -

cited semiconductors in electric fields, which produce fluxes Qi()=Tr{Pje(t)}. ©)

of mass and of heat. In Sec. IV the measurement in opticah this way, that is, in terms of these specific variables, the
experiments of the quasitemperature of carriers and phonaRonequilibrium thermodynamic space state in IST is intro-
modes(i.e., the case of individual quasiparticles that arise inqyced. The NES@(t) does satisfy the.iouville equation

the standard theory of solid state physitsdescribed. We \yhose solutions, as known, constitute an algebraic group
consider first the cases @) carriers, in flux-free conditions, composed of two subsets: one is composed of the retarded
and then in the presence of an electric field that generateg|ytions(evolving towards the futujeand the other is the
irreversible fluxes, an@) for polar phonons. This is consis- one of advanced solutioriseturning from the future to the
tently done in _the framework of the st_atlstlcal-mechanlcalpash, and thus time reversibility is verified. To ensure irre-
method, coupling the response function theory that thgersibility in the behavior of macroscopically dissipative sys-
method provideSwith the nonlinear kinetic equations that tems, while evolving from an initial condition, thed hoc

section we summarize and discuss the results. neglecting the subset of advanced solutions is introduced.
This is accomplished in a practical way introducing Bogoli-

Il. THEORETICAL BACKGROUND: MaxEnt-NESOM ubov's concept of quasiaveragddn Zubarev's approach to

AND QUASITHERMODYNAMIC VARIABLES NESOM this is done by adding an infinitesimal sou(tet

, _goes to zero at the end of the calculation of quasiavejdges
For the sake of completeness, we first recall the basnghe Liouville equatior?® (It is a generalization of Kirk-

tenets of the statistical-mechanical approach to be useg,;qq's time-smoothing procedu?&,it implies in random
namely, the so-called nonequilibrium statistical operatorpgissonian transitions with lifetime 2, and is a particular
method(NESOM for shor}. It constitutes an ensemble algo- ¢4y, of Prigogine dynamic condition for dissipativity and
rithm theory for nonequilibrium systems, which largely gen-pag 4 close connection with a similar procedure in formal
eralizes Boltzmann’s and Gibbs’ seminal ideas, has PreCUcattering theory as described by Gell-Mann and
sors in Kirkwood?! Green?? Zwanzig?® Mori,?* and others, Goldberger® Let us call Zubarev's NES®,(t), which is
and has been extended and perfected by the Russian Scho@len by ' o

of Statistics, deriving, mainly, from the work of N. N. Bo-
goliubov (see, for example, Refs. 25 and)26irst, accord-
ing to Bogoliubov’s principle of correlation weakenirand

= t ’
a Qg(t)—exp[ln Q(t,O)—J dt'es' -0
ccompanying hierarchy of relaxation timéRef. 26, and

see also Refs. 27 and R8&he Hamiltonian of the system is % i In at’ t—1) 4
separated out into two contributions, namely, dt’ ' '
H=Ho+H’', 1) whereQ_is an auxiliary—but of large practical relevance in

where H, contains the kinetic energies of the free sub-the theory—operator, given by the Gibbsian-like distribution
systems and part of the interactions, namely, those strong R
enough to produce relaxation of correlations in times smaller  ¢(t,0) =exp{ —o(t)— E Fj(t)Pj] , (5a
than the characteristic time of the experiméypically the !
instrumental resolution time The other partH’, contains gnd
the other part of the interactions, that is, those producing 1
long relaxation times. Aecondundamental step consists of Tl sy — Y it
the choice of the basic dynamical variables that should pro- e(t.t'—y) exp{ ih (t t)H] e(t’.0)
vide the macroscopic description of the system dynamics.
. . o 1
This is provided by aclosure condition, termed Zubarev Xexp[ N (t’—t)H], (5b)
Peletminskii symmetry conditipmamely, the se{P;}, j if

=1,2,..., of basic dynamical variables is composed of th(?/vhere #(t) (which ensures the normalization Eand in

quantitiesP; satisfying the relationship IST plays the role of the logarithm of a nonequilibrium par-

1 . N tition function) and the nonequilibrium thermodynamic in-

7 [P ,Ho]=2k aj Py, (2 tensive variable§(t) are the Lagrange multipliers that the
method introduces.

where thea’s are c-numbers.Third, the NESOM statistical Using Eq.(4) it is possible to show that the NESO is

operator, the NES@(t), is a superoperator depending on composed of two terms
these quantities, and as noticed, we resort to Zubarev’s _ )
method in its variational approa€h'®In terms of Zubarev’s 0.()=e(t,00+e. (1), (6)
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with relevant physical meanings: The first one on the right of  Moreover, we recall that the equations of irreversible
this Eq.(6), i.e., o(t,0), provides for the instantaneous val- €volution for the basic variables follow consistently from the
ues of the basic dynamical variables, but does not describ@ethod [cf. Eq. (7)]: for the space-dependent variables
the dissipative processes, which is doneddyt).6=° Fur-  Qj(r.t), these equations take a general form of the type
thermore, as noticed, the Lagrange multipliers, or nonequi-

librium thermodynamic intensive variables, are completely 5 Q;(r,t)=—div I;(r,t) + §(r,t), (12
defined by Eq(3). A fourth, and last, step is the construction

of a NESOM-based nonlinear, nonlocal in space, memorwherel; is interpreted as the flux of quanti; ,***"and¢,
dependent, quantukinetic theory This follows straightfor- accounts for sources and/or sinks of such a quantity. Making
wardly, in principle, by noting that the equations of evolution use of is Eq(12), we can write a continuity equation for the
for the basic specific variables are simply the average oveRESOM entropy density, namely,

the nonequilibrium ensemble of the quantum mechanical

Heisenberg equation of motion, that is, Es_(r,t)+div l(r ) =o4r,t). (13
% Qi(r,t)=Tr iﬁ [ﬁ’j(r),H]Qs(t) , (7)  Inthis Eq.(13), |5 is the flux of NESOM entropy given by
[
n
where we have introduced a dependence on the space vari- IS(r't):zl Fi(r,l(r,b), (14
J:

able. It has, in general, a formidable structure of unmanage-

able proportions. However, using the separation of thavhereos, which accounts for the presence of sources and/or
Hamiltonian of Eq.(1), that of the NESCp as given by Eq. sinks, takes the form

(6), and the closure condition of Edq2), Eq. (7) can be n

written in the form of a far-reaching generalization of Mori— Tur )= L (r D) -VE(r-t)+F(rt)&(r.t 15
Langevin equationgas shown in Refs. 31 and 32; see also os(r.t) 12'1{ i(nD-VRDHR(nDg (o} (19

Refs. 6, 7, and 33 namely, and represents the space and time-dependent entropy-

J production density in the formalism.
e Qi(r,y=J(r,t)+ 7(r.1), (8) We consider next the differential coefficients of the NE-
SOM entropy. We recall that in equilibrium conditions the
where J(© is, in Mori's nomenclaturé* a precession term differential coefficients of the thermodynamic entropy play
(as shown below it is given by the divergence of the flux ofan important role: they constitute the set of equations of state
quantity Q)1 p|us a Superco”ision operator which can be which relate extensive and intensive variables. Take a system
written as the superposition of an infinite series of collisioncomposed of subsystems. Let (r,t) be the energy densi-
integrals, and can be interpreted as involving two, threeties andn,(r,t) the number densities in eaef(=1,2,...s)
four, and so on, particle collisiorf$:>? subsystem, which are taken as basic specific variables in NE-
Let us consider now the NESOM-based construction of 85OM. We callg,(r,t) ande(r,t) their associated intensive
statistical thermodynamics, the so-called informational stavariables[Lagrange multipliers= in Eq. (5) that the formal-
tistical thermodynamics. In IST, a relevant state function igSm introduce$ But, as shown elsewhef€] the closure
the NESOM entropy(or informational entropy, or IST en- condition of Eq.(2) requires the introduction of the fluxes of
tropy, or quasientropy’ extensive|y discussed in Ref), 34 these quantitié§6'37as basic variables, and with them all the

given by other higher order fluxegof tensorial rankr=2). Conse-
_ quently, the NESO depends on all the densities and their
S(t)=-Tr{o.(t)In o(t,0)} fluxes, and Eq(11) tells us that the Lagrange multipliers
" associated with them depend, each one, on all these basic
— + 3. _ _ variables, namely, the densities(r,t), n(r,t), their vec-
¢(0) ,2‘1 fd rFi(r.0Q;(r,H © torial fluxes I, (r,t), I,.(r,t), and the tensorial fluxes

w(r,t), wO(r,t) (with r=2).

The NESOM-entropy production function is But, the Lagrange multipliers in NESOM are the differ-
n ential coefficients of the entropy in IJEf. Eq.(11)], i.e., as
P =7 J Iread ted, th in thi ilibrium thermo-
o(t)=dSdt=>, d3er(r,t) —Q(r 1), (10)  already noted, they are in this sense nonequilibrium the
=1 at dynamic variables conjugated to the basic ones. Taking only

the case of the densities, we have that
which can be associated with a generalizédtheoremc*3°

and the differential of the NESOM entropy at space position  B,(r,t)= 5§(t)/53/(r,t), (163
r and timet satisfies the Pfaffian fornfgeneralized Gibbs’ —
relation @ (r,t)=38S(t)/on(r,t), (16b)
N where 6 stands for the functional derivati?& The IST en-
d?r,t)zz F,(r,ydQi(r,1). (11) trop_y_ of Eq._ 9 goes over the _Corresponding one of local
j=1 equilibrium in classical irreversible thermodynamics, when

J. Chem. Phys., Vol. 107, No. 18, 8 November 1997



7386 Luzzi et al.: Thermodynamic variables in nonequilibrium

all Lagrange multipliers8, become an identicaB for all ence of a constant electric field, and in both cases in a ho-
subsystems and are the reciprocal of the local equilibriuninogeneous condition. Following NESOM, for the descrip-
temperature, while the, become equal to- Bu,, where tion of the macroscopig¢nonequilibrium thermodynamic
the u, are the local chemical potentials for the different state of the system, we take as basic variablasfor the
chemical species in the material. All the other Lagrange mulcarriers,H., the particle numberd\, and N, (e for elec-
tipliers, that is those associated with the fluxes, are null irtrons, h for holes, the linear momentap, and py, (which
such a limit. Of course, when the complete equilibrium isdivided by the mass are the fluxes of mattehe energy
achieved, they go over the corresponding values in equilibfluxes, I, and I,,, and all the other higher rank tensorial
rium, and Gibbs’ grand-canonical distribution is recoveredfluxes, 3!’ and¢{”, for mass motion, an&g) and;bﬂ), for
Consequently, in NESOM we can introduce the space anghermal motion ¢(=2,3,...)3 and, (b) the phonon popula-
time-dependent nonequilibrium temperature-like variablesjong ;jq, in modeq of branchy. Explicitly,

® (r,t), which we shall caljuasitemperaturéor each sys-

tem/=1 to s,iamely A= €uCl.Cras (193
BAT =680/ 38 (r,H)=0(1,0), 17) “

where then ® depends on all the set of variables No=> Cf.Ca, (19b)

{er Moo L, T, WL with the Boltzmann constant 3

taken as a unit.
We stress that Eq17) is the formal definition of the P :2 ﬁkc&acka, (190
so-called quasitemperature in IST, a very convenient one be- k
cause of the analogy with local equilibrium and equilibrium R
theories, which are recovered in the appropriate asymptotic [,= >, €a(Ak/m,)Cl.Cya, (19d)
limit. But we recall that it is a Lagrange multiplier that the K
method introduces from the outset, and then it is explicitly
defined by the average value of the energy operator over the (2=, [%k(%k/m,)]C].Cya, (19¢
nonequilibrium ensemble. Therefore, its evolution in time, K
and then its local and instantaneous value, follow from the
solution of the generalized transport equations, namely Eq.  #2=>, e,
(12), for the densities and all their fluxes. Moreover, we can K
obtain(the extensive details are omitted for the sake of brevwhere[AB] stands for tensorial product of vectors.
ity) an expression of the form It should be noticed that we are treating the carriers in
— -1 T Landau’s single quasiparticle approximatiGre., Coulomb
0=, H=Tr (2N interaction is dealt with in the random phase
—AO {er Nl okl o--.t, (18 approximation.** Further, we introduced the effective mass
approximatiorf? i.e., e,,=%?k?/2m, (a=e for electrons and
a=h for holes, C(C") are annihilation(creation operators
in band stateka. Furthermore,

fik Ak

. .| ChaCra (199

/=1.2,..s, whereT* is the expression for the guasitem-
perature in a flux-free description ad® is the modification
that the inclusion of the fluxes produce. The point is illus-
trated in Appendix A. Vay= béyb
We emphasize that in Eq18) all the expressions are
given in NESOM at the microscopitmechano-statistical
level, and with A® vanishing in the absence of fluxes.
Clearly, Eq.(18) tells us that if® is a measurable quantity, it
is affected by the presence of fluxés particular the heat - e
flux, which is a combination of all the fluxes of quantities dynamu(:rf;ll qua(nrgmes of Eqs(19] Ec(t), Na(t), Pa(t),
Q). Here we will pursue these results further, consideringa(t): ¢a’(1), #a°(t), andwq,(t), respectively. The associ-
accessible experiments that provide the characterizatio®ed NESOM intensive variabled.agrange multipliers of
and, particularly, measurements of the quasitemperaturesSec. 1) are indicated, respectively, h§.(t); — Bc(t) ua(t);
obtaining a corroboration of the concepts thus introduced Be()Va(t); = Be(t) aa(t); — B(HUL (1); — B(HUL(1);
through a good agreement of theory and experimental dataandF,(t). Moreover, in Eq(1) we have in this case

(20

with b(b") being annihilatior(creation operators in phonon
statesqy. Vectorsk andq run over the Brillouin zone.

We call the corresponding NESOM macrovariaHles.,
the average value over the nonequilibrium ensemble of the

qy»

: (21)

-~ . 1
Ho=Hc+ 2> hog,| bl by, + =
IIl. QUASITEMPERATURES IN A PARTICULAR o Te % w‘”( Ty 2

ILLUSTRATIVE EXAMPLE . . . .
wherew,, are the frequency dispersion relations for the dif-

Let us consider the system composed of carrietsc-  ferent types of phonongyy, in general, is A for acoustic
trons and holgsand lattice vibrationgphonong in a highly  phonons, LO for longitudinal, and TO for transverse optical
photoexcited plasma in semiconductoldEPS.3**° We  phonon$*® Also, the Zubarev—Peletminskii condition, Eq.
consider the system alternatively without and with the pres{2), is satisfied, with all coefficienta being null in this case.

J. Chem. Phys., Vol. 107, No. 18, 8 November 1997
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The partial Hamiltonian operatat’ in Eq. (1) is composed Clearly, the average values of the quantities of EfjS)
now of the carrier—phonon interaction, carrier—radiation in-depend on these two distribution functions, which have a
teraction, and the interaction of the carriers with an appliedorm reminiscent of a shifted Fermi—Dirac and a Planck dis-
electric field, of intensity, in the cases when the latter is tribution function, respectively, given at each timei.e.,

switched on. evolving along with the dissipative processes that develop in
Finally, according to the NESOR,°the auxiliary NSO  the media.
is then given by Let us consider the subsystem of carriers with energy

E.(t), and the phonon subsystems composed of the superpo-
at,o):exp[ — (1) = Bo(D[He— pe(t)Ne— zen(H)Np] sition [cf. Eq. (21)] of single independent subsystems corre-
sponding to each statgy, with energy per modg in branch
y given byf wg,vq,(t) (the zero point energy is just a con-

T B(UVe(V) - Pet Be(OVA(1)- Pt Belt) ae(t) stant of no relevangeFollowing Eq.(163), we introduce the

et Bc(t)ah(t)'TH+BC(T)1~J§)(t)®%(2) carrier quasitemperatui@,(t) [cf. Eq.(17)],
+BOUP (D) ® 32+ B(HUL (1) @ P2 Be(t) = 6S(1)/ SE (1) = 1/kgO (1) (24)
- - (where we have explicitly introduced the Boltzmann constant
+Bc(t)U§12)(t)®f//§12)+...+2 qu(t){)qy , kg) and the phonon quasitemperatures per mege(t),
- - ay -
22 Bqy(1) = 6S(1)] 6h g, vq, (1) =F (D) oy,

where a dot stands as usual for the scalar product of vectors, L = 1kgO4q,(1), @9
and we wrote® for fully contracted tensorial product. whereS(t) is the NESOM entropy for the given description

As noted in Sec. Il, there is no wholly satisfactory way of the HEPS, i.e., the one given by ) but with ¢ of Eq.

to choose the basic variables, which needs to be done in @) after takinguﬁfﬁ, ng,z etc., null, in the truncated de-

case by case approach. For the given choice we have i”_tr%cription we are using. Furthermore, the other Lagrange mul-
duced, we took into account the well known fact that intjpjiers are given by

HEPS the carrier system is brought into internal thermaliza- —
tion very rapidly (subpicosecond time scaf&*®43 by the Be(t) pma(t) == 8S(t)/ N4(1), (269
action of the long range and strong Coulomb interaction; —
hence the choice d%c and Na, with, then, 8. and u, play- Be(D)Va(t)= = 3S()/ P4 (1), (26b)
ing the role of a carrier's reciprocal quasitemperafefeEq. Bo(t) ay(t)=— 8S(1)/ 81 (1), (260
(17)] and of quasichemical potentials, respectively. When an _ ) ) ) )
electric field is present, it produces a current, i.e., mass mo¥hich define the quasichemical potentials,, the drift ve-
tion, and then it is required to introduce the linear momenJocities, v,, and the quantities, interpreted as drift veloci-
tum, with v, playing the role of a drift velocity. Also, Joule ties associated with the energy fluxes. .
and electrothermal effects, which are required to introduce  Next we look for the equivalent of Eq18), i.e., a way
the energy flux, should be present. Once the fluxes of mattdP Put into explicit evidence the dependence of the quasitem-
and energy are introduced, it is natural for the method tdPeratures on the fluxeB and| (of matter and of energy,
incorporate all the other higher order flux8$7 The choice  respectively. In the limit of a weak contributione-1, we
of the phonon populations is a result of the theoretical an@btain up to second order im that
experimental verification that the different modes are differ- _
ently photoexcited? Ec()=Ec() + X [Ag()Va(t)- ag(t) +AL(D) a’(1)],

We introduce a simplifying assumption, viz. that of ne- a 273
glecting higher ordert =2, fluxes, which are showa pos-
teriori to have negligible influence. In other words, we intro- Na(t)=ﬁa(t)+ Ba(t)Va(t) - ay(t)+ B;(t)ag(t), (27b
duce a truncation procedure, retaining only the variables )
Na, Pa, la, vq,. Under these conditions, a straightforward ~ Pa(t)=Cya(t)Va(t) + Caa(t) aa(t) + Coq(t) a3(t), (270
calculation tells us that

- la(t)=D1a(t)Va(t) + Daa(t) aa(t) + D4(1), (279
TH{CraCral (1.0} = fia(t) where the coefficients on the right are given in Appendix B.
=[1+exp{Bc(t)] exa— ralt) E_quations(27a and(??b) for E. gnd N, are compos_,ed
. of a-independent contributions, indicated by the variables
—Va(t) - fik— egaaa(t) - ikIMy]}] ™7, with an upper wavy line, plus terms involving the Lagrange

(239  parametersy and a. Using Egs.(270 and (27b) we can
express the latter in terms & and|, namely,

Va(t) =L1a()Pa(t) + Laa(t)14(1), (283
(23b) @,(1) =M 15(1) Pa(t) + Moa(D)14(1), (28b)

and

Tr{b],0q,0 (1,00} = vq,(t) =[expFq, (1)} —1] .
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where the kinetic coefficients andM are given in Appen- 2
dix C. Moreover, these two fluxes are related to the flux of ~ Oc()=Tc ()~ ¢ 2 [maGTE2I1L(D/NG(D[2, (37)
heat through the expression 2

which, once we identified with the heat flux, we fully re-

_ _ _ cover the result derived in the context of phenomenological
la=ksOcls ; [a= (palma)P], 9 extended irreversible thermodynami@showever, in the
present case, for the two fluid system of electrons and holes.
We have obtained an expression for tm®nequilibri-

(14)]- um) quasitemperatur®., in this case defined by E¢24),

We proceed. now to compare, for this _part.icular case, thG&vhich takes the form predicted by the general theory, viz.
description as given by the statistical distribution of E2f), Eq. (18): It is composed of the contributiof® derived from

. . ’ htﬂe generalized NESOM entropy depending only on energy
is, neglecting al! the fluxes. The latter case has then assock density, plus the corrections due to the presence of the
ated the NSO given by fluxes of matter and energy.

wherel is the flux of NESOM entropy in this casef. Eqg.

Qo(t)=exp[ — ¢o= Beo(D[He= teo(t)Ne= mno(t)Np] IV. EXPERIMENTAL BACKGROUND:
CHARACTERIZATION AND MEASUREMENT OF
QUASITEMPERATURES
+% qu(t)vqy]. (30)

We address next the all important question of the char-
. . _— . .acterization and measurement of quasitemperatures. As it is
We introduce the corresponding carriers’ quasitemperature in :
this flux-free representation, that is well known, theory and experiment are related through re-

' sponse function theo?*® We resort here to the use of a

kgT* (1) =1/Bcq(1), (31)  response function theory for arbitrary far-from-equilibrium

_ _ _ systems built within the scope of NESGKI for the discus-

and a straightforward calculatidisee last part of Appendix  sjon of experiments which can provide the sought after char-

B) tells us that acterization and measurement of quasitemperatures. We con-
3 sider the use of optical spectroscopy, a precise and powerful
Eo(t)zz > NL(DkgT* (1), (320  experimental technique with high-resolution power. More-
a

over, two types of experiments will be considered, namely,
which has the form of an equipartition of carriers’ energy atthose in time-resolved and time-integrated optical spectros-

the quasitemperatufE? (t). Furthermore, the quasichemical copy. The first provides resolution in ultrashort time scales
potential is given by the relation (femtoseconds thus allowing following the rapid dissipative

processes taking place in the HEPS, while the second pro-
N, (t)=(27m kg T* 147°1%) %2 exp{ Bl wat 3 mavg]}- vides information encompassing larger time intervals, typi-
(33 cally in the nanosecond range. We consider, next, several
situations.
Combining Eq.(273, together with Eq(B1) in Appen-
dix B, and Eq. (32), it follows in the considered A. The carrier quasitgm_perature for null v and a (e,
nondegenerate-like limit, that absence of an electric field )
e In this caseA® in Eq. (37) is null and the carrier qua-
Oc()=Tc (1) ~AB(L), (34) sitemperature is &} at nullv. This is in the nonequilibrium
where condition resulting from the pumping of the electromagnetic
energy provided by the laser beam that generates the HEPS.
This quasitemperature can be determined in experiments per-
forming measurements of optical properties of HEPS, par-
ticularly Raman scattering and luminescence. In both cases,

2
§ A,—Bakg®(1+ x,)

Va' @y

1
kgAO®=> [5 mau2+

a

/ / the calculation of the spectra is consistently performed in the
+|= AL—B.kg®(1+ 2 35 .
372 Tams (1*xa) | ] 39 framework of a response function theory based on
NESOM?#

and the coefficients, B, A’, B, andy are given in Ap- Let us consider first Raman scattering. The correspond-

pendix D. ing diff . : s
: . erential cross section &
Consider now the case when there is no flux of matter 9
Acp(1—e PV 17 71(q,0|t)

(implying that thermalstriction effects, in this case thermo-

2 —
electric effects, are neglectedettingy =0 in Eq.(35), and d“o(w,qlt) = Agp(1—e PV =17, 7 1(q, w|t),
using that, then, (38
I,(t) = (35/8n,)N,(T)kgT* (1) as(t) (36) where.Z are amplitude coefficients; stands for imaginary
a ara ey part, and where the upper expression corresponds to scatter-
we find ing by charge-density fluctuations and the lower one by spin-
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density fluctuations. Moreovefiw is the energy transfer and

fg the momentum transfer in the scattering events the

frequency and wave number dependent dielectric function,
and u the magnetic permeability. They are given, in the ran-

dom phase approximatidh,by>°4°

s(q,w|t>=1—<877e2/eOVq2>kE Fak,q;wlt), (39
M(q.w|t)=l+% (Ua/Np)Fa(k, g 0lt), (40)

wheree, is the background dielectric constalt,s the vol-
ume of the sampld) the exchange energy integral, and

fk+q,a(t) - fka(t)
w— Gka+ Equ,a‘l_ iS '

Fa(k,Giolt)= (419

with s— +0, we recall thaie, ,=#%2k?/2m} , and the distri-

bution functionf is now given by

fka(t):[1+exp{ﬁc(t)[eka_Ma(t)]}]il- (41b

Consider the nondegenerate-like limit, that is, when the
exponential in Eq(41b) is much larger than 1, which is the

usual experimental situation; in that case one finds that

Ek: Fa(k;g; 0[t) = Be()Na(t) = (2/7) Be()NA(D)1 (£)

+\2mnaBté (e &Y, (42)
wheren, is the density of carriers of type (e or h),
I(ga)=fwdxx exp{—x22} In| 3, (433
0 x—1
and
E2(1)=m,w?20%kgTE (1). (43b)
Thus, Eq.(38) becomes
S e

7389

a
o

— Theory —
©  Stokes Side ( Expt)

A Anti-Stokes Side (Expt ) |

RAMAN - DOPPLER INTENSITY (arb.units )
)

I 1 ll l 1 I 1 ' L I LJ
0 20 40 60 80 100 120

RAMAN SHIFT (102 A2 )

FIG. 1. Inelastic light scattering by single photoexcited carriens-BaAs.

(@ sample with concentration >210'® cm™3; (b) sample with 1.7

X 10" cm™3. Broken lines are the extrapolated Maxwell-like profile at qua-
sitemperatureT*. Carrier quasitemperatures af@ 560 and(b) 400 K.
(After Ref. 49. Experimental points are from Ref.)50

ferentiated slopes, one at low frequencies due to scattering
by holes and a second at not too low frequencies due to
scattering by electrons. Figure 1 shows the case oftype
GaAs sample, where the doping concentration of electrons is
much larger than the photoinjected concentration of pairs.
Hence, scattering by electrons predominates, and there is
only one discernible straight line that determinaTé'c-‘s:49'50

(a) is the case of scattering by charge-density fluctuations
and(b) by spin-density fluctuations. The expected deviations
from the Maxwellian profildcf. Eq. (45)] is a result of, as

where d”s® stands for the cross sections for scattering byalready mentioned, correlation and exchange effects: respec-
gharge—densny flugtuatloneCD) and_ spm_-densny fluctua- tively, a depletion in casé) and an enhancement in cabg
tions (SD) of single independent carriers, i.e., the sum of twojp, the regionw=qv,. Experimental data are from Ref. 50.

terms that have the form&NagB £, exp{—gﬁ}, and the de-

This is a time-integrated experiment, that i§; is a time

nominators introduce the corrections due to polarizatiorayerage value taken along the interval of the collection of

effects arising out of Coulomb interaction. Buiftl
—exp{— Bchw}] "t in Eq.(38) is approximatelkg T /1w,
and then

d202~ exp{— w?m,/20%kg T (1)}, (45)

data. The values of the quasitemperature in each case are
indicated in the figure, and the thermal bath temperature is
300 K.

Consider now the case of photoluminescence, another
kind of experiment sensitive to the nonequilibrium distribu-

which provides the maino-dependent contribution to the tion of carriers and, hence, dependent®@nThe lumines-

scattering cross section, since the denominators in(4).
have only influence forw=qv,, where v is the thermal

velocity kgTg = ma?§/2. Hence, outside this low frequency

range, thdogarithm of the scattering cross section versifs

is very nearly a straight lineywhose slope is inversely pro-

portional to T . Since, as a general ruley, is one order of

cence spectrum calculated in MaxEnt-NESOM is giveRby

x; fre(t) Frn(t) 8(h 0 — Eg— €xe— €xpn), (46)

magnitude larger tham,, one may expect two clearly dif- where.Z is an amplitude coefficient ariel; the energy gap.
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° CdSe

(8]

w

CARRIER QUASI TEMPERATURE ( 10%K )
=)

0 20 40 60 80 100
DELAY TIME (ps)

FIG. 3. Evolution of the carrier quasitemperature in highly excited GaAs.
The MaxEnt-NESOM calculatioffull line) is from Ref. 53, and experimen-
tal data(dot9 are from Ref. 54.

culation. In that way we collect information on the evolution
of the relaxation processes in the system, with the experi-
ment providing a quite appropriateeasuring technique al-
lowing the following of the time evolution of the carrier
T I B B | gquasitemperature in the picosecond time scale.

6880 6840 6800 6760 6720 The quasitemperatuf& can also be determined in mea-

LUMINESCENCE WAVELENGTH (&) f,,“;)e(gffﬁngg,\‘j’%i?s ;f\’,ee‘;”sy The response, calculated in

LUMINESCENCE INTENSITY ( arb. units )

FIG. 2. Photoluminescence spectra of CdSe platelets under high levels of a(w|t) =J{§G(t)w[1+exp{,8(t)(hw— EG)}]
excitation, obtained at the indicated delay time after pulse excitatidter

Ref. 52)
X 2 FieeOfin(t) 80— B~ e~ €xn),
When in Eq.(46) we introduce the distributionsof Eq. (41) (49
in the nondegenerate-like limit and use the energy-
conserving delta function, we obtain where._7g is an amplitude coefficient, the distributiohgre
iven by Eq.(41), making the gain spectrum(w|t) depen-
(0l =g(alexs~ (ho—Eq)/keTE (0}, (47)  9ven by Ea.4D), making the gain spectrum(u|) dep

dent on thenonequilibrium quasitemperatur&; (t) and the
meaning that the high frequency side of the spectrum decay®onequilibriun) quasichemical potential. Figure 4 shows a
exponentially, with the exponent being inversely propor-very good agreement between calculations consistently done
tional to the(nonequilibrium) quasitemperature. In that fre- in the framework of the NESOM, and an experiment provid-
quency region, @) is an almost constant absorption coeffi- ing a time-integrated spectrum, wifff being 15 K while
cient, and therihe logarithm of () is a near straight line the thermal bath temperature is 2°KThe quasichemical
(as experimentally verifiedwhose slope i¢/kgT; , thatis, potential, u=Eg+ ue+ up, is determined by the point
%/ 1 where there occurs transition from absorption to gain, as in-

keT¢ (t)=—#[d In | (w[t)/dw] ™, (48) dicated in the figure. In this experiment, the nondegenerate-
gives a measure of; . Time-resolved measurements of lu- like limit does not apply, and the calculations were per-
minescence are shown in Fig®2In this case the slope at the formed using the distribution function of E¢41).
high frequency side keeps increasing in time, which is an  We can then state that the carriers’ quasitemperature de-
indication of the fact that the carrier system relaxes its excesned in NESOM-based ISTcf. Eq. (24)] is an observable
energy to the lattice and, hence, the quasitemperature dguantity (one in the set that characterizes the macroscopic
creases in time. This provides a quite clear illustration as tetate of the nonequilibrium systenit can be determined by
how the time evolution of the excited macrostate of the sysmeans of, say, a “thermometer” consisting of a reading of
tem proceeds towards equilibrium as dissipative processehe slope of the logarithm of the high frequency side of the
develop in the medium. This is explicitly shown in Fig>®3, recombination spectrum, or, as shown, of that in Raman scat-
where experimental datacompare very well with the cal- tering experiments. Also, it follows from a best fitting pro-
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FIG. 4. Calculatedin MaxEnt-NESOM gain spectrunifull line) and experimental dat@ots in highly photoexcited platelets of Cd8After Ref. 56)

cedure as in the case of gain spectra, where one can al#o the steady state generated by the constant electric field.

easily determine thénonequilibrium) quasichemical poten- Hence, from the high frequency side of the spectrum, where

tial. g(w), namely, the absorption coefficient, is weakly depen-
dent onw, we obtain

) _ kg®.=—%[d In | (w)/dow] L. (52
B. The carrier quasitemperature dependence on
fluxes Photoluminescence experiments in HEPS in the presence

The presence of a uniform electric field produces ﬂuxesOf an ek_actrlc field are, for_examp_le, available in the case of
of matter and energy in the photoinjected carrier system, anHmdulatlon spectroscopy in semiconductor heterostructures,

then a flux-dependerihonequilibrium carrier quasitempera- which are currently the object of large inter@St.

ture © is present in the Fermi—Dirac-type distribution func- From Ith de;)(pe'\;medntalt d?g% E‘)rom modul?tmn I;ptetptros-
tion f of Eqg. (239. It can also be determined using the ex- copy provided Dy VIEndeet al, by means of application

periments referred to in Sec. IV A of Eq. (51) we obtain the values dd indicated by dots in

In this case, since the fluxes are created by the presené:ég' 5@ (right ordinate, and the curve was obtained by a

L ) o . polynomial interpolation.
of an electric field of intensity?, they are dependent on this P . -
field intensity. The flux of matter is a result of the electric We consider now the des_cnptlon that excludes the_ f|u>7<
) . . . f energy, namely, the one in terms of only the carriers
field producing an electric current in the charged system, an

so P needs to be introduced in the macroscopic descriptio e%ergy, numpers, and momer(&s in Ref. 59. L.et us Cé?" .
?BC the quasitemperature corresponding to this description,

of the system. Also, because of the electrothermal effect it °. : : A o
: : : which, for weak to intermediate electric field intensities, in-
follows heat motion, and so the energy fluxs to be in- . :
creases monotonically with a very nearly square dependence

cluded in the basic set of macrovariablést us recall that S . .
. L on the electric field intensityRef. 59, and as shown below in
the heat flux is a combination of both, cf. EQ9)]. Hence, S . ; A
an explicit calculation depicted in Fig),5namely,

Eq. (34) holds in this case, once we consider the
nondegenerate-like limit in the carrier system. 0°=T*+D#2, (53)
Again, the determination d® follows from the photo-
luminescence spectra. In fact, in the non-degenerate-like ravhere Tj is the photoexcited carriers’ quasitemperature at
gime the carrier’s distribution function is null electric field andD is field independent. Hence, it fol-
_ lows that
fra=exp{— Bl exa— ma—Va ik — egaay- kIm, ]},
B (50) (T*=T})/#%=D (54)
and then, in Eq(46), oncef of Eq. (50) is introduced, we

obtain an exponential dependence of the form is field independent. On the other hand, if the correction

A®. due to the presence of the energy flux is considered, we
l(w)=g(w)exp — (fo—Eg)/kgO}, (51)  have that
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300 putationally solved for the case of the numerical values given

above and using parameters characteristic of GaAs. In Fig.
5(b) the stationary carrier quasitemperature dependence on
the field intensity(right ordinate is shown. Also, is shown
(left ordinate the functionQ(#) of Eg. (55 in the condi-
tions, first, neglecting the influence of the energy flux, i.e.,
taking A® =0, which is indicated by the dot-dash line, and
second, introducing such an effect. Inspection of this curve
shows that the result already predicted in Fig) Swhere we
used the experimental data, is recovered. £@r=0, lead-
ing to the dot-dash line in Fig.(B), we recover the almost
constant [equal toD in Eq. (55)] at low fields, followed by
a monotonic increased witlf. On the other hand{}(#¥)
monotonically decreases in the Ohmic regirtthe latter
roughly going up to 6 kV/cm, followed by a non-Ohmic
regime in, qualitatively, the same way as detected from the
use of the experimental data.

Consequently, these results point to the fact that the ex-

250

(E)

200

150

FUNCTION

100

CARRIER QUASI TEMPERATURE,® (K)

X
ot
[
]
o 000 2 perimental data appear to give an indication of the effective
et @ dependence of the quasitemperature on the energy flux. From
g 800 & the data of Fig. &) we can estimate that the contribution
f__’ e due to the presence of the energy flux leads to a decrease of
Q 600 & the otherwise flux-free quasitemperature by, roughly, the or-
2 § der of 5% for field intensities in the range of 4 to 6 kV/cm.
400
[ 4
u
PR T T I § C. The phonon (nonequilibrium ) quasitemperature
0 2 4 6 8 i0 3} . . .
ELECTRIC FIELD (KV/cm) As previously noticed; the phonon system requires the

definition of a(nonequilibrium quasitemperature for each
. ) ) ) ) mode in each branch(This applies particularly to optical
FIG. 5. Carrier quasitemperatuf® (right ordinate obtained from(a) the

photoluminescent spectra of a GaAs—GaAlAs superlattice for various fielcphono_nS in polar semiconductors; the acoustic phonons, if
intensities, after Ref. 58upper figur¢ and (b) a MaxEnt-NESOM calcula-  there is a very good contact between the sample and a ther-
tion for the case of bulk GaAgower figure. Also the function}(#) of Eq.  mal reservoir, are expected to remain in near thermal equi-
(55), which points to the dependence of the nonequilibrium temperature OMbrium with the latter) Equation(25) has introduced these

the energy flux{a) in the upper figure the one derived from the experimen- .

tal data, and(b) in the lower curve the one calculated according to the ®QV(t)j which, as shown, are Closely related to th_e Lagrange
method, while the dot-dash line is the one in which the energy flux ismultipliers F,, of MaxEnt-NESOM. It may be noticed that

disregarded. Eq. (23b becomes a Planck-like distribution with a particu-
lar quasitemperature for each mode once we WwHig,
=hwq,/KgOqy.
@2_1-3 A©, A®, This is an observable quantity when resorting again to
Q) =(0. T #2= . =D—- 7 - optical spectroscopy. In the case of Raman scattering of
’ g B (55) phonons, the intensity of the lines is dependent on the pho-

non population of each individual mode probed in the
Consequently a field-dependent departure of this quanexperimenf® More precisely, the ratio of Stokes to anti-
tity ) from a constant might be ascribed &9, which in  Stokes intensities is given by
that way would evidence the influence of the energy flux on
the nonequilibrium temperature. This is verified in the above | as/lslay=(vay+ 1)/ vq,=explfi gy /keO gy}, (56)
referred experiment, as shown in Figab(left ordinate. which provides a way to measuf@
We reinforce this result with a theoretical analysis. To(56),
this end we consider the HEPS produced in bulk GaAs by a
very short laser pulse. We choose for illustration the case of Kg® g, =t 00qy [IN(I A/l ) (57)
photons having an energy of 120 meV above the energy gap Figure 6 shows the time evolution of tlieonequilibri-
value; a concentration of photoinjected carriéfised by the  um) quasitemperature of a LO-phonon mode, where dots are
pulse intensity n=1.4x 10 cm 3, several values of the experimental points from a Raman time-resolved
electric field intensity are considered; and the thermal bath igxperimenf? determined through the use of EG7), and
taken at 300 K. We derive the equations of evolution for thethe full line is the calculation in MaxEnt-NESOR#.Optical
macrovariables in a description in IST that includes the carphonons are produced well in excess of equilibriimthe
riers’ energy, concentration, and momentum, which are comeollision processes with carrigrin a privileged off-center

qy» that is, from Eq.
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3000 T T T T T T and higher-order fluxes of matter and of energy appropriate
for the description of the macroscopic state of the system.
c CARRIER QUASITEMPERATURE . This quasitemperature is not the only thermodynamic quan-
o tity to contain contributions from irreversible fluxes; the
o ———— LO-PHONCN QUASITEMPERATURE | h . | . | d f | . d ”
& 2000 4=7.7 %105 om™ — same applies to chemical potentials, drift velocities, and a
. the intensive thermodynamic variables defined by the
% - Lagrange multipliers in the construction of the NESOM in its
< variational formulation.
= 1000 a In Sec. IV we have described experiments thatlence
Q . and measure such (nonequilibrium) quasitemperature in
3 | IST. We have considered the case of highly excited semicon-
i\{\% ductors and pump—probe experiments providing measure-
0 +—+ T" B — ments of optical properties. This is a field of extensive re-
0 10 20 30 search because of the technological interest involved, i.e., the
DELAY TIME (ps) functioning of semiconductors in electronic devices. We

have looked for experiments that can be described by means
FIG. 6. Evolution of the quasitemperature of a LO phonon mode in GaAsOf a response function theory for far-from-equilibrium sys-
Full line is the calculation in MaxEnt-NESOM, from Ref. 62, and dots are tems encompassed in NESd;I\W, and so introducing the
from Ref. 61, with bars indicating the experimental error. (nonequilibriun) quasitemperatufe) defined within its con-

text, that is(nonequilibrium quasitemperatures for the dif-
region of Brillouin zong®% It leads to the phenomenon of ferent subsystems of the whole sample. In HE&® Ref. 40

phonon quasitemperature overshoot, that is to say, the&d 1ast of Refs. 28n the usual experimental conditions it is
privileged modes attain quasitemperatures larger than thof9Ssible to introduce a carrignonequilibrium quasitem-

of the exciting carrier&* In this pump—probe experiment, perature and ql_JaS|che_m|caI potentials. In experiments prob-
mutual thermalization of carriers and phonons in all modesi"d the system in the first several tens of femtoseconds after
i.e., all attaining the same quasitemperature, follows in delajitiation of the exciting laser pulse, it is possible to intro-
times (after switch-off of the laser excitatipmf the order of ~dUCe carrier population functiorisecond of Refs. 43with a
several tens of picoseconds. From then on this commoff*onequilibrium quasitemperature for each single quasipar-
(nonequilibrium quasitemperature tends to the temperaturé'de guantum mechanical state. For an initial probing time

of equilibrium with the thermal reservdif. smaller than the period of a plasma wasay, typically 10 fs
in the experiments we are considening single-particle de-

scription is no longer possible. However, it is worth noticing
that 10 fs approaches the limit of detection in ultrafast spec-
We have mentioned in the Introduction the use of phetroscopy in the visible and near visible region set forth by
nomenological nonequilibrium temperaturés!® The con-  Heisenberg’s uncertainty principle, and then the statistical
cept does not arise in classical irreversible thermo-+theory is almost always applicable. In the case of phonons
dynamics$* where local equilibrium is assumed. For generalthe definition ofa (nonequilibrium) quasitemperature for
situations, different concepts of nonequilibrium temperaturegach single quasiparticle quantum mechanical statere-
have been considered by several authors in several thermquired. Carriers and phonons attain a unigoenequilibri-
dynamic approaches: Meixner sets the concept of a “dyum) quasitemperaturé&hat is, mutual thermalization, but in
namical temperature,® Mller introduces “coldness,®®  nonequilibrium conditionsin relaxation times of, roughly,
Muschik postulates a “contact temperatur8”Keizer intro-  less than 100 picoseconds.
duces it in the framework of his formulation of nonequilib- We have first considered experiments associated with
rium thermodynamics based on statistical considerations aheasurement of optical properties in HEPS, the latter in a
molecular fluctuation& and Nettletof® considers the con- homogeneous condition and free of fluxes, to obtanesa-
cept of a kinetic temperature related to the kinetic energy pesurement of the carrier quasitemperaturéhis was de-
particle in a discussion within the framework of MaxEnt. scribed, first in time-integrated experiments with the data
Two of the present authors have proposed, within the frameshown in Fig. 1, and, next, a determination, resorting to ul-
work of extended irreversible thermodynami@s; nonequi-  trafast spectroscoply, of the time evolution of the carrier
librium temperature stemming as the partial derivative of aguasitemperature while dissipative processes develop in the
nonequilibrium entropy-like function that incorporates the sample, as shown in Figs. 2 and 3. This gives a description of
dissipative fluxes as variables. In a forthcoming pdpexr, the irreversible evolution that takes place in the system. In
partial tentative comparison of several approaches with ISTFig. 4 we considered a measurement of gain spectrum, which

V. CONCLUDING REMARKS

is to be reported. allows the determination of the quasitemperature as well as
In the previous sections we have introduced a nonequithe quasichemical potential.
librium temperature-like variablévhich we call quasitem- In Sec. IV B, we have considered the important question

peraturg in the context of IST, which depends, in principle, of the dependence of the nonequilibrium temperature on the
on all the macrovariables, composed of the densities, fluxedluxes. Those of matter and heat are created by means of the

J. Chem. Phys., Vol. 107, No. 18, 8 November 1997



7394 Luzzi et al.: Thermodynamic variables in nonequilibrium

action of an electric field acting on the itinerant carriers. APPENDIX A: ENERGY-FLUX DEPENDENT
Experiments determining luminescence spectra also provideESCRIPTION

a way to measure quasitemperatures in the carrier system.
The expected increase of the quasitemperature with the ﬁeIPIer

intensity is verified, but in a way that seems to clearly pomtenergy and the particle number, with Lagrange multipliers
to the confirmation of thelependence of the (nonequilibri- (B*.— B* u*), and, on the other, the one that includes the

um) quasitemperature on the fluxes predicted by extended flux of energy, namely, in terms oF(N, 1) with Lagrange

irreversible thermodynamics, and also in IST as described in_" .~ . . .
) ) . .multipliers (8,— Bu,— Ba). As noted in the main text, this
this paper; theory and the experimental data of Ref. 58 are in . . -
) . implies neglecting thermostriction effects. We take for the

a relatively good agreement. This result encourages the real-

ization of detailed measurements for this specific purpos energy levels a parabolic dispersion relation. Applying the

together with an accompanying detailed calculation. Optica heory described in Sec. I, we find in the first description
measurements, like those proposed here, have a large advan-

Consider on the one hand the description of a gas of
mions in terms of the basic seE,N) composed of the

tage over all other types of measurements because of their g= 3 Nk, T*, (A1)
high-resolution power and the existing very advanced instru-
mentation. N=(2mmksT*/4m?h?)exp{u* IkgT*}, (A2)

In Sec. IV.C we have considered a homogeneous angie in the second description it follows that
flux-free phonon system. As in the case of the carriers,

theory (in the context of the NESOM together with the ECN 3 ® 945kg® A3
experiment, allows for the definition artetermination of a S 02 "B * 322 m ) (A3)
(nonequilibrium) quasitemperature per phonon maddethis
case, Raman scattering provides an appropriate measuring N=No(l+§@ az) (A4)
technique, as shown. 16 m '

As final words we stress the demonstrated fact of the 2
dependence of the nonequilibrium entropy and temperature | _— g’@

I aNg, (A5)

in IST on the whole set of macrovariables that describe the 8 m
nonequilibrium macrostate of the system. As already noticedynere
there is not a wholly satisfactory way to make a selection,
which depends on a case by case approach, according to the No=(2mmkg®@/47°%i%)exp{ u/kg®}, (A6)
problem in hand. Consequently, the entropy in IST is differ- B* =1ksT*, B=1/kg0, (A7)

ent for each chosen set of basic macrovariables. In a single
quasiparticle description as the one used in dealing withN is given by unit volume, and we have kept corrections up
HEPS—and for that matter with any solid state system—ond&o second order irv.

should in principle incorporate as basic variables the whole  Equating Eqs(Al) with (A3) and (A2) with (A4), and
(infinite) set of fluxes of all orders. Usually a truncation pro- making use of Eq(AS5), after some algebra we obtain
cedure is required and, evidently, a criterionvolving an > m E

expansion parametgior evaluation of such truncation needs O=T"—- 35— || -

to be produced.’? This implies showing that the information SkgT** N

lost when performing the truncation is not relevant when  Equation(A8) recovers the results that are derived in the
compared with the one that is kept. We call attention to the:ontext of phenomenological extended irreversible thermo-
fact that Meixnef® and Tisza gave arguments of this kind, dynamics(fourth citation in Ref. 20

in the sense that it is very unlikely that a nonequilibrium

state function playing the role of an entropy for quite general

nonequilibrium conditions may be uniquely defined.

(A8)

APPENDIX B: COMPLEMENT TO EQS. (27)

The several coefficients present in E¢&7) are

Eq(t)= fra(h =2, Eq(t B1
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is the reciprocal of the quasitemperature, antl the qua-
Ba(t)zﬁc(t); €xaF a(K+MaVa(t);t), (B5  sichemical potential in this description.

B‘;(t)zﬂg(t); i (fik,)2pa(k;t)/m2, (B6)  APPENDIX C: COMPLEMENTS TO EQS. (28)
The kinetic coefficients in Eq$28) are

C1a(t)=mgNg(1), (B7) Lla(t):CIal(t)+C2a(t)Dla(t)CIal(t)A;l(t), (C1)
Caalt)=MaBe eralhk,/Ma)?Fa(kit)  (B8)  Laa()=Caa()A,X(D), )
— -1
Cha(t) = (kImy) (7K, /my) da(k;t) (BY) Mia(t)=D1a() A5 (1), (C3
— -1
D1a(t) =Ea(t), (B10) M2a(t)=Cia(t) A, (1), (c4)
2 A7 H(t)=Caa(t)D 14(t) — C1a(t)D2a(1), (c5)
Dza(t):'gC(t); eia(fiky/ma)*Fa(kit), (B1Y)  \where coefficient< andD are given in Appendix B.
D3a(D) =B X €ical ikImg) (7K Ma)?Ba(K,1) APPENDIX D: COEFFICIENTS A, B, C, AND D OF
k (B12) EQS. (27) AND (35) IN THE NONDEGENERATE
LIMIT

wherek, means, in this isotropic model, the componenk of

in the direction ofa, and Using Egs.(B1l) to (B2), together with Eq.(B15), we

~ ~ obtain

Fa(kxt)sza(t)[l_fka(t)]a (Bl3a) Aa(t):kB@)CNa %+7Xa+x3) (Dl)

y— 1 . _9F ~
¢a(krt)_ 2 Fa(k!t)[l 2 fka(t)] (Ble) Ba(t):Na(g+Xa), (DZ)

and _
~ 1 Cla(t):Namaa (D3)

fra(t) =[1+exp{Bc(t)[ €ka— palt) —Va(t) - AKI}] " _

(B14) Caa(t) =kg®cNa( +8x,+2x2), (D4)

i.e., f of Eqg. (B14) is reminiscent of a shifted instantaneous B ~ /e
Fermi—Dirac-like distributiorinote that it is that of E¢(239 D1a(t)= kB@CNa( at Xa) '
in the absence of the term associated with the energy flux, _ 2,7 35 , 185 2 3
viz. the one containing the corresponding Lagrangegrynulti- D2a(t)=(ke®c) (Na/ma)(?jL 12 Xat 17Xﬁ+2xa)’
plier «]. Finally, the expression in each equation after the (D6)
last sign is a calculation in a nondegenerate-like regime, thawherex,= (1/2)Mav5/kg® .

is, f of Eq. (B14) is replaced in the calculation by the one
given by

(DY)
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