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We consider the question of the definition of thermodynamic-like variables in the context of a
statistical thermodynamics, which is a large generalization of Gibbs statistical thermostatics and
linear and local-equilibrium classical irreversible thermodynamics. It is based on a nonequilibrium
ensemble approach known as the nonequilibrium statistical operator method. Some of these
quasithermodynamic variables are characteristic of the nonequilibrium state and go to zero in the
limit of local or global equilibrium, but others go over the thermodynamic variables that are present
in such a limit. We consider in particular temperature-like variables for the different subsystems of
the sample. For illustration we apply the theory to the study of optical properties of highly
photoexcited plasma in semiconductors, following a good agreement between theory and
experimental data. It is shown that high-resolution spectroscopy provides an excellent experimental
testing ground for corroboration of the theoretical concepts, and a quite appropriate way for
characterizing and measuring nonequilibrium thermodynamic-like variables. ©1997 American
Institute of Physics.@S0021-9606~97!51642-4#

I. INTRODUCTION

The science of thermodynamics admits approaches that
belong to several levels of description, and among them, a
relevant one is considered to be the statistical level.1 Statis-
tical thermodynamics~or Gibbsian thermodynamics!, how-
ever well established in the case of thermostatics and classi-
cal ~linear! irreversible thermodynamics, at present is not
completely satisfactorily established for systems arbitrarily
away from equilibrium. One quite promising approach is the
so-called informational irreversible thermodynamics~IST,
sometimes also dubbed as information-theoretic thermody-
namics, briefly and partially described in Ref. 2; see also
Ref. 3!. IST was initiated with the pioneering work of
Hobson4 sometime after the publication of Jaynes’ seminal
papers on the foundations of statistical mechanics based on
information theory.5 Nowadays, as described in Refs. 2 and
3, IST acquires a closed form in the framework of the non-
equilibrium statistical operator method~NESOM!, and, par-
ticularly, within Zubarev’s approach to NESOM.6–10

All the existing approaches to irreversible thermodynam-
ics face the quite difficult problem of a proper definition of
the macroscopic state space, appropriate for the description
of many-body systems arbitrarily away from equilibrium.
The situation is also present in IST, but in this approach the
basic variables~those that compose the nonequilibrium ther-
modynamic space state! are given in terms of the average
over the NESOM nonequilibrium ensemble of well defined
mechanical quantities, and a condition is present to ensure
the closure of the kinetic equations which describe the evo-
lution of the macroscopic state of the system. Moreover, in
terms of these basic variables—let us call them thethermo-
dynamic macroscopic variables—the Lagrange multipliers,

which are introduced by the variational method to this
Boltzmann–Gibbsian approach, are completely defined. It
ought to be stressed that these Lagrange multipliers compose
a set ofnonequilibrium thermodynamic intensive variables
which provide an alternative, and completely equivalent, de-
scription of the nonequilibrium state of the system. Of
course, if desirable, and this is often the case, a mixed rep-
resentation using part specific and part intensive variables
can be introduced.

We consider next this question of the definition of a
proper nonequilibrium thermodynamic phase space in a par-
ticular study of a thermohydrodynamics of many-body sys-
tems of carriers and lattice vibrations in the highly excited
photoinjected plasma in semiconductors. We concentrate our
attention on a particular Lagrange multiplier, which is a non-
equilibrium thermodynamic intensive variable playing the
role of a nonequilibrium temperature-like quantity, which we
call quasitemperature. This concept of nonequilibrium tem-
perature has been used on a phenomenological basis in dif-
ferent contexts by several authors, apparently beginning with
Lev D. Landau more than half a century ago. The most com-
mon cases are nonequilibrium temperatures for electron or
nuclear spins,11 molecules,12 plasma,13 electrons excited in
strong electric fields,14 electrons in superconductors,15 pho-
toexcited carriers,16 photoexcited phonons,17 and nuclear
reactions.18 Difficulties arising in its definition in the kinetic
theory of dense gases were pointed out some time ago by L.
Garcia-Colin and M. S. Green.19 Recently, the question was
raised, on sound basis, in the framework of extended irre-
versible thermodynamics.20 The presentation is organized as
follows: in Sec. II, after a very brief review of the statistical
method, we show a way to define nonequilibrium
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temperature-like variables~quasitemperatures! in the frame-
work of the theory. We discuss the all important problem of
their dependence on the basic set of nonequilibrium thermo-
dynamic variables—with particular attention to the fluxes. In
Sec. III we particularize the results to the case of photoex-
cited semiconductors in electric fields, which produce fluxes
of mass and of heat. In Sec. IV the measurement in optical
experiments of the quasitemperature of carriers and phonon
modes~i.e., the case of individual quasiparticles that arise in
the standard theory of solid state physics! is described. We
consider first the cases of~1! carriers, in flux-free conditions,
and then in the presence of an electric field that generates
irreversible fluxes, and~2! for polar phonons. This is consis-
tently done in the framework of the statistical-mechanical
method, coupling the response function theory that the
method provides9 with the nonlinear kinetic equations that
describe the irreversible evolution of the system. In the last
section we summarize and discuss the results.

II. THEORETICAL BACKGROUND: MaxEnt-NESOM
AND QUASITHERMODYNAMIC VARIABLES

For the sake of completeness, we first recall the basic
tenets of the statistical-mechanical approach to be used,
namely, the so-called nonequilibrium statistical operator
method~NESOM for short!. It constitutes an ensemble algo-
rithm theory for nonequilibrium systems, which largely gen-
eralizes Boltzmann’s and Gibbs’ seminal ideas, has precur-
sors in Kirkwood,21 Green,22 Zwanzig,23 Mori,24 and others,
and has been extended and perfected by the Russian School
of Statistics, deriving, mainly, from the work of N. N. Bo-
goliubov ~see, for example, Refs. 25 and 26!. First, accord-
ing to Bogoliubov’s principle of correlation weakeningand
accompanying hierarchy of relaxation times~Ref. 26, and
see also Refs. 27 and 28!, the Hamiltonian of the system is
separated out into two contributions, namely,

H5H01H8, ~1!

where H0 contains the kinetic energies of the free sub-
systems and part of the interactions, namely, those strong
enough to produce relaxation of correlations in times smaller
than the characteristic time of the experiment~typically the
instrumental resolution time!. The other part,H8, contains
the other part of the interactions, that is, those producing
long relaxation times. Asecondfundamental step consists of
the choice of the basic dynamical variables that should pro-
vide the macroscopic description of the system dynamics.
This is provided by aclosure condition, termed Zubarev–
Peletminskii symmetry condition, namely, the set$Pj%, j
51,2,..., of basic dynamical variables is composed of the
quantitiesP̂j satisfying the relationship

1

i\
@ P̂j ,H0#5(

k
a jkP̂k , ~2!

where thea’s arec-numbers.Third, the NESOM statistical
operator, the NESO%(t), is a superoperator depending on
these quantities, and as noticed, we resort to Zubarev’s
method in its variational approach.6–10 In terms of Zubarev’s

NESO, the basic set of macrovariables$Qj (t)%, j 51,2,..., is
introduced, given by the average over the NESOM-
nonequilibrium ensemble of the basic dynamical quantities
P̂j , that is,

Qj~ t !5Tr$P̂j%~ t !%. ~3!

In this way, that is, in terms of these specific variables, the
nonequilibrium thermodynamic space state in IST is intro-
duced. The NESO%(t) does satisfy theLiouville equation,
whose solutions, as known, constitute an algebraic group
composed of two subsets: one is composed of the retarded
solutions~evolving towards the future!, and the other is the
one of advanced solutions~returning from the future to the
past!, and thus time reversibility is verified. To ensure irre-
versibility in the behavior of macroscopically dissipative sys-
tems, while evolving from an initial condition, thead hoc
nonmechanical hypothesis~a generalizedStosszahlansatz! of
neglecting the subset of advanced solutions is introduced.
This is accomplished in a practical way introducing Bogoli-
ubov’s concept of quasiaverages.26 In Zubarev’s approach to
NESOM this is done by adding an infinitesimal source~that
goes to zero at the end of the calculation of quasiaverages! to
the Liouville equation.6,9 ~It is a generalization of Kirk-
wood’s time-smoothing procedure,21 it implies in random
Poissonian transitions with lifetime«21, and is a particular
form of Prigogine dynamic condition for dissipativity,29 and
has a close connection with a similar procedure in formal
scattering theory as described by Gell-Mann and
Goldberger.30 Let us call Zubarev’s NESO%«(t), which is
given by

%«~ t !5expH ln %̄~ t,0!2E
2`

t

dt8e«~ t82t !

3
d

dt8
ln %̄~ t8,t82t !J , ~4!

where%̄ is an auxiliary—but of large practical relevance in
the theory—operator, given by the Gibbsian-like distribution

%̄~ t,0!5expH 2f~ t !2(
j

F j~ t !P̂j J , ~5a!

and

%̄~ t8,t82t !5expH 2
1

i\
~ t82t !HJ %̄~ t8,0!

3expH 2
1

i\
~ t82t !HJ , ~5b!

where f(t) ~which ensures the normalization of%̄ and in
IST plays the role of the logarithm of a nonequilibrium par-
tition function! and the nonequilibrium thermodynamic in-
tensive variablesF j (t) are the Lagrange multipliers that the
method introduces.

Using Eq. ~4! it is possible to show that the NESO is
composed of two terms

%«~ t !5 %̄~ t,0!1%«8~ t !, ~6!
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with relevant physical meanings: The first one on the right of
this Eq.~6!, i.e., %̄ (t,0), provides for the instantaneous val-
ues of the basic dynamical variables, but does not describe
the dissipative processes, which is done by%«8(t).

6–10 Fur-
thermore, as noticed, the Lagrange multipliers, or nonequi-
librium thermodynamic intensive variables, are completely
defined by Eq.~3!. A fourth, and last, step is the construction
of a NESOM-based nonlinear, nonlocal in space, memory
dependent, quantumkinetic theory. This follows straightfor-
wardly, in principle, by noting that the equations of evolution
for the basic specific variables are simply the average over
the nonequilibrium ensemble of the quantum mechanical
Heisenberg equation of motion, that is,

]

]t
Qj~r ,t !5TrH 1

i\
@ P̂j~r !,H#%«~ t !J , ~7!

where we have introduced a dependence on the space vari-
able. It has, in general, a formidable structure of unmanage-
able proportions. However, using the separation of the
Hamiltonian of Eq.~1!, that of the NESO% as given by Eq.
~6!, and the closure condition of Eq.~2!, Eq. ~7! can be
written in the form of a far-reaching generalization of Mori–
Langevin equations~as shown in Refs. 31 and 32; see also
Refs. 6, 7, and 33!, namely,

]

]t
Qj~r ,t !5Jj

~0!~r ,t !1J j~r ,t !, ~8!

whereJ(0) is, in Mori’s nomenclature,24 a precession term
~as shown below it is given by the divergence of the flux of
quantity Q!, plus a supercollision operator which can be
written as the superposition of an infinite series of collision
integrals, and can be interpreted as involving two, three,
four, and so on, particle collisions.31,32

Let us consider now the NESOM-based construction of a
statistical thermodynamics, the so-called informational sta-
tistical thermodynamics. In IST, a relevant state function is
the NESOM entropy~or informational entropy, or IST en-
tropy, or quasientropy, extensively discussed in Ref. 34!,
given by

S̄~ t !52Tr$%«~ t !ln %̄~ t,0!%

5f~ t !1(
j 51

n E d3rF j~r ,t !Qj~r ,t !. ~9!

The NESOM-entropy production function is

s̄~ t !5dS̄/dt5(
j 51

n E d3rF j~r ,t !
]

]t
Qj~r ,t !, ~10!

which can be associated with a generalizedH-theorem,34,35

and the differential of the NESOM entropy at space position
r and timet satisfies the Pfaffian form~generalized Gibbs’
relation!

ds̄~r ,t !5(
j 51

n

F j~r ,t !dQj~r ,t !. ~11!

Moreover, we recall that the equations of irreversible
evolution for the basic variables follow consistently from the
method @cf. Eq. ~7!#: for the space-dependent variables
Qj (r ,t), these equations take a general form of the type

]

]t
Qj~r ,t !52div I j~r ,t !1j j~r ,t !, ~12!

whereI j is interpreted as the flux of quantityQj ,36,37 andj j

accounts for sources and/or sinks of such a quantity. Making
use of is Eq.~12!, we can write a continuity equation for the
NESOM entropy density, namely,

]

]t
s̄~r ,t !1div I s~r ,t !5ss~r ,t !. ~13!

In this Eq.~13!, I s is the flux of NESOM entropy given by

I s~r ,t !5(
j 51

n

F j~r ,t !I j~r ,t !, ~14!

wheress , which accounts for the presence of sources and/or
sinks, takes the form

s̄s~r ,t !5(
j 51

n

$I j~r ,t !•¹F j~r ,t !1F j~r ,t !j j~r ,t !%, ~15!

and represents the space and time-dependent entropy-
production density in the formalism.

We consider next the differential coefficients of the NE-
SOM entropy. We recall that in equilibrium conditions the
differential coefficients of the thermodynamic entropy play
an important role: they constitute the set of equations of state
which relate extensive and intensive variables. Take a system
composed ofs subsystems. Let« l (r ,t) be the energy densi-
ties andnl (r ,t) the number densities in eachl (51,2,...,s)
subsystem, which are taken as basic specific variables in NE-
SOM. We callb l (r ,t) andw l (r ,t) their associated intensive
variables@Lagrange multipliersF in Eq. ~5! that the formal-
ism introduces#. But, as shown elsewhere,3,37 the closure
condition of Eq.~2! requires the introduction of the fluxes of
these quantities6,36,37as basic variables, and with them all the
other higher order fluxes~of tensorial rankr>2!. Conse-
quently, the NESO depends on all the densities and their
fluxes, and Eq.~11! tells us that the Lagrange multipliers
associated with them depend, each one, on all these basic
variables, namely, the densities« l (r ,t), nl (r ,t), their vec-
torial fluxes I «l (r ,t), Inl (r ,t), and the tensorial fluxes
C«l

(r )(r ,t), Cnl
(r )(r ,t) ~with r>2!.

But, the Lagrange multipliers in NESOM are the differ-
ential coefficients of the entropy in IST@cf. Eq. ~11!#, i.e., as
already noted, they are in this sense nonequilibrium thermo-
dynamic variables conjugated to the basic ones. Taking only
the case of the densities, we have that

b l ~r ,t !5dS̄~ t !/d« l ~r ,t !, ~16a!

w l ~r ,t !5dS̄~ t !/dnl ~r ,t !, ~16b!

whered stands for the functional derivative.38 The IST en-
tropy of Eq. ~9! goes over the corresponding one of local
equilibrium in classical irreversible thermodynamics, when
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all Lagrange multipliersb l become an identicalb for all
subsystems and are the reciprocal of the local equilibrium
temperature, while thew l become equal to2bm l , where
the m l are the local chemical potentials for the different
chemical species in the material. All the other Lagrange mul-
tipliers, that is those associated with the fluxes, are null in
such a limit. Of course, when the complete equilibrium is
achieved, they go over the corresponding values in equilib-
rium, and Gibbs’ grand-canonical distribution is recovered.
Consequently, in NESOM we can introduce the space and
time-dependent nonequilibrium temperature-like variables
Q l (r ,t), which we shall callquasitemperaturefor each sys-
tem l 51 to s, namely

b l ~r ,t !5dS̄~ t !/d« l ~r ,t ![Q l
21~r ,t !, ~17!

where then Q depends on all the set of variables
$«k ,nk ,I «k ,Ink ,C«k

(r ) ,Cnk
(r )%, with the Boltzmann constant

taken as a unit.
We stress that Eq.~17! is the formal definition of the

so-called quasitemperature in IST, a very convenient one be-
cause of the analogy with local equilibrium and equilibrium
theories, which are recovered in the appropriate asymptotic
limit. But we recall that it is a Lagrange multiplier that the
method introduces from the outset, and then it is explicitly
defined by the average value of the energy operator over the
nonequilibrium ensemble. Therefore, its evolution in time,
and then its local and instantaneous value, follow from the
solution of the generalized transport equations, namely Eq.
~12!, for the densities and all their fluxes. Moreover, we can
obtain~the extensive details are omitted for the sake of brev-
ity! an expression of the form

Q l ~r ,t !5b l
21~r ,t !5Tl

* ~«k ,nk!

2DQ l $«k ,nk ,I «k ,I nk ,...%, ~18!

l 51,2,...,s, whereT* is the expression for the quasitem-
perature in a flux-free description andDQ is the modification
that the inclusion of the fluxes produce. The point is illus-
trated in Appendix A.

We emphasize that in Eq.~18! all the expressions are
given in NESOM at the microscopic~mechano-statistical!
level, and with DQ vanishing in the absence of fluxes.
Clearly, Eq.~18! tells us that ifQ is a measurable quantity, it
is affected by the presence of fluxes~in particular the heat
flux, which is a combination of all the fluxes of quantities
Qj !. Here we will pursue these results further, considering
accessible experiments that provide the characterization
and, particularly, measurements of the quasitemperatures,
obtaining a corroboration of the concepts thus introduced
through a good agreement of theory and experimental data.

III. QUASITEMPERATURES IN A PARTICULAR
ILLUSTRATIVE EXAMPLE

Let us consider the system composed of carriers~elec-
trons and holes! and lattice vibrations~phonons! in a highly
photoexcited plasma in semiconductors~HEPS!.39,40 We
consider the system alternatively without and with the pres-

ence of a constant electric field, and in both cases in a ho-
mogeneous condition. Following NESOM, for the descrip-
tion of the macroscopic~nonequilibrium thermodynamic!
state of the system, we take as basic variables:~a! for the
carriers,Ĥc , the particle numbers,N̂e and N̂h ~e for elec-
trons, h for holes!, the linear momenta,p̂e and p̂h ~which
divided by the mass are the fluxes of matter!, the energy
fluxes, Îe and Îh , and all the other higher rank tensorial
fluxes,ŵ

> e
(r ) andŵ

> h
(r ) , for mass motion, andĉ

> e
(r ) andĉ

> h
(r ) , for

thermal motion (r 52,3,...),37 and, ~b! the phonon popula-
tions n̂q , in modeq of branchg. Explicitly,

Ĥc5(
ka

ekaCka
† Cka , ~19a!

N̂a5(
k

Cka
† Cka , ~19b!

P̂a5(
k

\kCka
† Cka , ~19c!

Îa5(
k

eka~\k/ma!Cka
† Cka , ~19d!

ŵ
> a

~2!5(
k

@\k~\k/ma!#Cka
† Cka , ~19e!

ĉ
> a

~2!5(
k

ekaF\k

ma

\k

ma
GCka

† Cka , ~19f!

where@AB# stands for tensorial product of vectors.
It should be noticed that we are treating the carriers in

Landau’s single quasiparticle approximation~i.e., Coulomb
interaction is dealt with in the random phase
approximation!.41 Further, we introduced the effective mass
approximation,42 i.e.,eka5\2k2/2ma ~a5e for electrons and
a5h for holes!, C(C†) are annihilation~creation! operators
in band stateska. Furthermore,

n̂qg5bqg
† bqg , ~20!

with b(b†) being annihilation~creation! operators in phonon
statesqg. Vectorsk andq run over the Brillouin zone.

We call the corresponding NESOM macrovariables@i.e.,
the average value over the nonequilibrium ensemble of the
dynamical quantities of Eqs.~19!# Ec(t), Na(t), Pa(t),
Ia(t), w

> a
(r )(t), c

> a
(r )(t), andnqg(t), respectively. The associ-

ated NESOM intensive variables~Lagrange multipliers of
Sec. II! are indicated, respectively, bybc(t);2bc(t)ma(t);
2bc(t)va(t); 2bc(t)aa(t); 2bc(t)u> a

(r )(t); 2bc(t)U> a
(r )(t);

andFqg(t). Moreover, in Eq.~1! we have in this case

Ĥ05Ĥc1(
qg

\vqgS bqg
† bqg1

1

2D , ~21!

wherevqg are the frequency dispersion relations for the dif-
ferent types of phonons.~g, in general, is A for acoustic
phonons, LO for longitudinal, and TO for transverse optical
phonons!.40 Also, the Zubarev–Peletminskii condition, Eq.
~2!, is satisfied, with all coefficientsa being null in this case.
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The partial Hamiltonian operatorH8 in Eq. ~1! is composed
now of the carrier–phonon interaction, carrier–radiation in-
teraction, and the interaction of the carriers with an applied
electric field, of intensityE , in the cases when the latter is
switched on.

Finally, according to the NESOM,6–10 the auxiliary NSO
is then given by

%̄~ t,0!5expH 2f~ t !2bc~ t !@Ĥc2me~ t !N̂e2mh~ t !N̂h#

1bc~ t !ve~ t !• P̂e1bc~ t !vh~ t !• P̂h1bc~ t !ae~ t !

• Îe1bc~ t !ah~ t !• ÎH1bC~T!u> e
~2!~ t ! ^ ŵ

>

~2!

1bc~ t !u> h
~2!~ t ! ^ ŵ

> h
~2!1bc~ t !U> e

~2!~ t ! ^ ĉ
> e

~2!

1bc~ t !U> h
~2!~ t ! ^ ĉ

> h
~2!1...1(

qg
Fqg~ t !v̂qgJ ,

~22!

where a dot stands as usual for the scalar product of vectors,
and we wrotê for fully contracted tensorial product.

As noted in Sec. II, there is no wholly satisfactory way
to choose the basic variables, which needs to be done in a
case by case approach. For the given choice we have intro-
duced, we took into account the well known fact that in
HEPS the carrier system is brought into internal thermaliza-
tion very rapidly ~subpicosecond time scale!39,40,43 by the
action of the long range and strong Coulomb interaction;
hence the choice ofĤc andN̂a , with, then,bc andma play-
ing the role of a carrier’s reciprocal quasitemperature@cf. Eq.
~17!# and of quasichemical potentials, respectively. When an
electric field is present, it produces a current, i.e., mass mo-
tion, and then it is required to introduce the linear momen-
tum, with va playing the role of a drift velocity. Also, Joule
and electrothermal effects, which are required to introduce
the energy flux, should be present. Once the fluxes of matter
and energy are introduced, it is natural for the method to
incorporate all the other higher order fluxes.36,37 The choice
of the phonon populations is a result of the theoretical and
experimental verification that the different modes are differ-
ently photoexcited.44

We introduce a simplifying assumption, viz. that of ne-
glecting higher order,r>2, fluxes, which are showna pos-
teriori to have negligible influence. In other words, we intro-
duce a truncation procedure, retaining only the variablesEc ,
Na , Pa , Ia , nqg . Under these conditions, a straightforward
calculation tells us that

Tr$Cka
† Cka%̄~ t,0!%5 f ka~ t !

5@11exp$bc~ t !@eka2ma~ t !

2va~ t !•\k2ekaaa~ t !•\k/ma#%#21,

~23a!

and

Tr$bqg
† bqg%̄~ t,0!%5nqg~ t !5@exp$Fqg~ t !%21#21.

~23b!

Clearly, the average values of the quantities of Eqs.~19!
depend on these two distribution functions, which have a
form reminiscent of a shifted Fermi–Dirac and a Planck dis-
tribution function, respectively, given at each timet, i.e.,
evolving along with the dissipative processes that develop in
the media.

Let us consider the subsystem of carriers with energy
Ec(t), and the phonon subsystems composed of the superpo-
sition @cf. Eq. ~21!# of single independent subsystems corre-
sponding to each stateqg, with energy per modeq in branch
g given by\vqgnqg(t) ~the zero point energy is just a con-
stant of no relevance!. Following Eq.~16a!, we introduce the
carrier quasitemperatureQc(t) @cf. Eq. ~17!#,

bc~ t !5dS̄~ t !/dEc~ t !51/kBQc~ t ! ~24!

~where we have explicitly introduced the Boltzmann constant
kB! and the phonon quasitemperatures per modeQqg(t),

bqg~ t !5dS̄~ t !/d\vqgnqg~ t !5Fqg~ t !/\vqg

51/kBQqg~ t !, ~25!

whereS̄(t) is the NESOM entropy for the given description
of the HEPS, i.e., the one given by Eq.~9! but with %̄ of Eq.
~22! after takingue,h

(2) , Ue,h
(2) , etc., null, in the truncated de-

scription we are using. Furthermore, the other Lagrange mul-
tipliers are given by

bc~ t !ma~ t !52dS̄~ t !/dNa~ t !, ~26a!

bc~ t !va~ t !52dS̄~ t !/dPa~ t !, ~26b!

bc~ t !aa~ t !52dS̄~ t !/dIa~ t !, ~26c!

which define the quasichemical potentials,ma , the drift ve-
locities,va , and the quantitiesaa interpreted as drift veloci-
ties associated with the energy fluxes.

Next we look for the equivalent of Eq.~18!, i.e., a way
to put into explicit evidence the dependence of the quasitem-
peratures on the fluxesP and I ~of matter and of energy,
respectively!. In the limit of a weak contributiona•I , we
obtain up to second order ina that

Ec~ t !5Ẽc~ t !1(
a

@Aa~ t !va~ t !•aa~ t !1Aa8~ t !aa
2~ t !#,

~27a!

Na~ t !5Ña~ t !1Ba~ t !va~ t !•aa~ t !1Ba8~ t !aa
2~ t !, ~27b!

Pa~ t !5C1a~ t !va~ t !1C2a~ t !aa~ t !1C2a8 ~ t !aa
2~ t !, ~27c!

Ia~ t !5D1a~ t !va~ t !1D2a~ t !aa~ t !1Da8~ t !, ~27d!

where the coefficients on the right are given in Appendix B.
Equations~27a! and ~27b! for Ec andNa are composed

of a-independent contributions, indicated by the variables
with an upper wavy line, plus terms involving the Lagrange
parametersv and a. Using Eqs.~27c! and ~27b! we can
express the latter in terms ofP and I , namely,

va~ t !5L1a~ t !Pa~ t !1L2a~ t !Ia~ t !, ~28a!

aa~ t !5M1a~ t !Pa~ t !1M2a~ t !Ia~ t !, ~28b!
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where the kinetic coefficientsL andM are given in Appen-
dix C. Moreover, these two fluxes are related to the flux of
heat through the expression

Ia5kBQcI s5(
a

@ Ia2~ma /ma!P#, ~29!

whereI s is the flux of NESOM entropy in this case@cf. Eq.
~14!#.

We proceed now to compare, for this particular case, the
description as given by the statistical distribution of Eq.~22!,
and the one based on only the energy and concentration, that
is, neglecting all the fluxes. The latter case has then associ-
ated the NSO given by

%̄0~ t !5expH 2f02bco~ t !@Ĥc2meo~ t !N̂e2mho~ t !N̂h#

1(
qg

Fqg~ t !nqgJ . ~30!

We introduce the corresponding carriers’ quasitemperature in
this flux-free representation, that is

kBT* ~ t !51/bco~ t !, ~31!

and a straightforward calculation~see last part of Appendix
B! tells us that

E0~ t !5
3

2 (
a

Na~ t !kBT* ~ t !, ~32!

which has the form of an equipartition of carriers’ energy at
the quasitemperatureTc* (t). Furthermore, the quasichemical
potential is given by the relation

na~ t !5~2pmakBT* /4p2\2!3/2 exp$bc@ma1 1
2 mava

2#%.
~33!

Combining Eq.~27a!, together with Eq.~B1! in Appen-
dix B, and Eq. ~32!, it follows in the considered
nondegenerate-like limit, that

Qc~ t !5Tc* ~ t !2DQc~ t !, ~34!

where

kBDQ5(
a

H 1

3
mava

21F2

3
Aa2BakBQ~11xa!Gva•aa

1F2

3
Aa82Ba8kBQ~11xa!Ga2J , ~35!

and the coefficientsA, B, A8, B8, andx are given in Ap-
pendix D.

Consider now the case when there is no flux of matter
~implying that thermalstriction effects, in this case thermo-
electric effects, are neglected!. Settingv50 in Eq. ~35!, and
using that, then,

Ia~ t !5~35/8ma!Na~T!kBTc* ~ t !aa~ t !, ~36!

we find

Qc~ t !5Tc* ~ t !2
2

5 (
a

@ma /kB
3Tc*

2#uIa~ t !/Na~ t !u2, ~37!

which, once we identifiedI with the heat flux, we fully re-
cover the result derived in the context of phenomenological
extended irreversible thermodynamics,20 however, in the
present case, for the two fluid system of electrons and holes.

We have obtained an expression for the~nonequilibri-
um! quasitemperatureQc , in this case defined by Eq.~24!,
which takes the form predicted by the general theory, viz.
Eq. ~18!: It is composed of the contributionTc* derived from
the generalized NESOM entropy depending only on energy
and density, plus the corrections due to the presence of the
fluxes of matter and energy.

IV. EXPERIMENTAL BACKGROUND:
CHARACTERIZATION AND MEASUREMENT OF
QUASITEMPERATURES

We address next the all important question of the char-
acterization and measurement of quasitemperatures. As it is
well known, theory and experiment are related through re-
sponse function theory.45,46 We resort here to the use of a
response function theory for arbitrary far-from-equilibrium
systems built within the scope of NESOM9,47 for the discus-
sion of experiments which can provide the sought after char-
acterization and measurement of quasitemperatures. We con-
sider the use of optical spectroscopy, a precise and powerful
experimental technique with high-resolution power. More-
over, two types of experiments will be considered, namely,
those in time-resolved and time-integrated optical spectros-
copy. The first provides resolution in ultrashort time scales
~femtoseconds!, thus allowing following the rapid dissipative
processes taking place in the HEPS, while the second pro-
vides information encompassing larger time intervals, typi-
cally in the nanosecond range. We consider, next, several
situations.

A. The carrier quasitemperature for null v and a „i.e.,
absence of an electric field …

In this caseDQ in Eq. ~37! is null and the carrier qua-
sitemperature is aTc* at null v. This is in the nonequilibrium
condition resulting from the pumping of the electromagnetic
energy provided by the laser beam that generates the HEPS.
This quasitemperature can be determined in experiments per-
forming measurements of optical properties of HEPS, par-
ticularly Raman scattering and luminescence. In both cases,
the calculation of the spectra is consistently performed in the
framework of a response function theory based on
NESOM.9,47

Let us consider first Raman scattering. The correspond-
ing differential cross section is:48

d2s~v,qut !5 H ACD~12e2b~ t !\v!21T «21~q,vut !
ASD~12e2b~ t !\v!21T m21~q,vut !,

~38!

whereA are amplitude coefficients,I stands for imaginary
part, and where the upper expression corresponds to scatter-
ing by charge-density fluctuations and the lower one by spin-
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density fluctuations. Moreover,\v is the energy transfer and
\q the momentum transfer in the scattering event;« is the
frequency and wave number dependent dielectric function,
andm the magnetic permeability. They are given, in the ran-
dom phase approximation,41 by39,49

«~q,vut !512~8pe2/e0Vq2!(
ka

Fa~k,q;vut !, ~39!

m~q,vut !511(
ka

~Ua /Na!Fa~k,q;vut !, ~40!

wheree0 is the background dielectric constant,V is the vol-
ume of the sample,U the exchange energy integral, and

Fa~k,q;vut !5
f k1q,a~ t !2 f ka~ t !

\v2eka1ek2q,a1 is
, ~41a!

with s→10, we recall thatek,a5\2k2/2ma* , and the distri-
bution functionf is now given by

f ka~ t !5@11exp $bc~ t !@eka2ma~ t !#%#21. ~41b!

Consider the nondegenerate-like limit, that is, when the
exponential in Eq.~41b! is much larger than 1, which is the
usual experimental situation; in that case one finds that

(
k

Fa~k;q;vut !5bc~ t !na~ t !2~2Ap!bc~ t !na~ t !I ~ja!

1A2pnabc~ t !ja~ t !e2ja
2
~ t !, ~42!

wherena is the density of carriers of typea ~e or h!,

I ~ja!5E
0

`

dxx exp $2x2ja
2% lnUx11

x21U, ~43a!

and

ja
2~ t !5mav2/2q2kBTc* ~ t !. ~43b!

Thus, Eq.~38! becomes

d2s~vut !5 H d2s0~vut !CD/u«~q,vut !u2

d2s0~vut !SD/um~q,vut !u2, ~44!

where d2s0 stands for the cross sections for scattering by
charge-density fluctuations~CD! and spin-density fluctua-
tions~SD! of single independent carriers, i.e., the sum of two
terms that have the form 2pNabcja exp$2ja

2%, and the de-
nominators introduce the corrections due to polarization
effects arising out of Coulomb interaction. But@1
2exp$2bc\v%] 21 in Eq. ~38! is approximatelykBTc* /\v,
and then

d2sa
0; exp $2v2ma/2q2kBTc* ~ t !%, ~45!

which provides the mainv-dependent contribution to the
scattering cross section, since the denominators in Eq.~44!
have only influence forv&qn̄a , where n̄ is the thermal
velocity kBTc* 5man̄a

2/2. Hence, outside this low frequency
range, thelogarithm of the scattering cross section versusv2

is very nearly a straight line,whose slope is inversely pro-
portional to Tc* . Since, as a general rule,mh is one order of
magnitude larger thanme , one may expect two clearly dif-

ferentiated slopes, one at low frequencies due to scattering
by holes and a second at not too low frequencies due to
scattering by electrons. Figure 1 shows the case of an-type
GaAs sample, where the doping concentration of electrons is
much larger than the photoinjected concentration of pairs.
Hence, scattering by electrons predominates, and there is
only one discernible straight line that determinatesTc* :49,50

~a! is the case of scattering by charge-density fluctuations
and~b! by spin-density fluctuations. The expected deviations
from the Maxwellian profile@cf. Eq. ~45!# is a result of, as
already mentioned, correlation and exchange effects: respec-
tively, a depletion in case~a! and an enhancement in case~b!
in the regionv&qn̄e . Experimental data are from Ref. 50.
This is a time-integrated experiment, that is,Tc* is a time
average value taken along the interval of the collection of
data. The values of the quasitemperature in each case are
indicated in the figure, and the thermal bath temperature is
300 K.

Consider now the case of photoluminescence, another
kind of experiment sensitive to the nonequilibrium distribu-
tion of carriers and, hence, dependent onQ. The lumines-
cence spectrum calculated in MaxEnt-NESOM is given by51

I ~vut !5AL~vut !

3(
k

f ke~ t ! f kh~ t !d~\v2EG2eke2ekh!, ~46!

whereA is an amplitude coefficient andEG the energy gap.

FIG. 1. Inelastic light scattering by single photoexcited carriers inn-GaAs.
~a! sample with concentration 231015 cm23; ~b! sample with 1.7
31017 cm23. Broken lines are the extrapolated Maxwell-like profile at qua-
sitemperatureT* . Carrier quasitemperatures are~a! 560 and~b! 400 K.
~After Ref. 49. Experimental points are from Ref. 50!.
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When in Eq.~46! we introduce the distributionsf of Eq. ~41!
in the nondegenerate-like limit and use the energy-
conserving delta function, we obtain

I ~vut !5g~vut !exp$2~\v2EG!/kBTc* ~ t !%, ~47!

meaning that the high frequency side of the spectrum decays
exponentially, with the exponent being inversely propor-
tional to the~nonequilibrium! quasitemperature. In that fre-
quency region, g~v! is an almost constant absorption coeffi-
cient, and thenthe logarithm of I(v) is a near straight line
~as experimentally verified!, whose slope is\/kBTc* , that is,

kBTc* ~ t !52\@d ln I ~vut !/dv#21, ~48!

gives a measure ofTc* . Time-resolved measurements of lu-
minescence are shown in Fig. 2.52 In this case the slope at the
high frequency side keeps increasing in time, which is an
indication of the fact that the carrier system relaxes its excess
energy to the lattice and, hence, the quasitemperature de-
creases in time. This provides a quite clear illustration as to
how the time evolution of the excited macrostate of the sys-
tem proceeds towards equilibrium as dissipative processes
develop in the medium. This is explicitly shown in Fig. 3,53

where experimental data54 compare very well with the cal-

culation. In that way we collect information on the evolution
of the relaxation processes in the system, with the experi-
ment providing a quite appropriatemeasuring technique al-
lowing the following of the time evolution of the carrier
quasitemperature in the picosecond time scale.

The quasitemperatureTc* can also be determined in mea-
surements of gain spectra. The response, calculated in
MaxEnt-NESOM,55 is given by

a~vut !5AG~ t !v@11exp$b~ t !~\v2EG!%#

3(
k

f ke~ t ! f kh~ t !d~\v2EG2eke2ekh!,

~49!

whereAG is an amplitude coefficient, the distributionsf are
given by Eq.~41!, making the gain spectruma(vut) depen-
dent on the~nonequilibrium! quasitemperatureTc* (t) and the
~nonequilibrium! quasichemical potential. Figure 4 shows a
very good agreement between calculations consistently done
in the framework of the NESOM, and an experiment provid-
ing a time-integrated spectrum, withTc* being 15 K while
the thermal bath temperature is 2 K.56 The quasichemical
potential, m5EG1me1mh , is determined by the point
where there occurs transition from absorption to gain, as in-
dicated in the figure. In this experiment, the nondegenerate-
like limit does not apply, and the calculations were per-
formed using the distribution function of Eq.~41!.

We can then state that the carriers’ quasitemperature de-
fined in NESOM-based IST@cf. Eq. ~24!# is an observable
quantity ~one in the set that characterizes the macroscopic
state of the nonequilibrium system!. It can be determined by
means of, say, a ‘‘thermometer’’ consisting of a reading of
the slope of the logarithm of the high frequency side of the
recombination spectrum, or, as shown, of that in Raman scat-
tering experiments. Also, it follows from a best fitting pro-

FIG. 2. Photoluminescence spectra of CdSe platelets under high levels of
excitation, obtained at the indicated delay time after pulse excitation.~After
Ref. 52.!

FIG. 3. Evolution of the carrier quasitemperature in highly excited GaAs.
The MaxEnt-NESOM calculation~full line! is from Ref. 53, and experimen-
tal data~dots! are from Ref. 54.
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cedure as in the case of gain spectra, where one can also
easily determine the~nonequilibrium! quasichemical poten-
tial.

B. The carrier quasitemperature dependence on
fluxes

The presence of a uniform electric field produces fluxes
of matter and energy in the photoinjected carrier system, and
then a flux-dependent~nonequilibrium! carrier quasitempera-
tureQc is present in the Fermi–Dirac-type distribution func-
tion f̄ of Eq. ~23a!. It can also be determined using the ex-
periments referred to in Sec. IV A.

In this case, since the fluxes are created by the presence
of an electric field of intensityE , they are dependent on this
field intensity. The flux of matter is a result of the electric
field producing an electric current in the charged system, and
so P needs to be introduced in the macroscopic description
of the system. Also, because of the electrothermal effect it
follows heat motion, and so the energy fluxI is to be in-
cluded in the basic set of macrovariables@let us recall that
the heat flux is a combination of both, cf. Eq.~29!#. Hence,
Eq. ~34! holds in this case, once we consider the
nondegenerate-like limit in the carrier system.

Again, the determination ofQc follows from the photo-
luminescence spectra. In fact, in the non-degenerate-like re-
gime the carrier’s distribution function is

f̄ ka.exp$2bc@eka2ma2va•\k2ekaaa•\k/ma#%,
~50!

and then, in Eq.~46!, once f̄ of Eq. ~50! is introduced, we
obtain an exponential dependence of the form

I ~v!5g~v!exp$2~\v2EG!/kBQc%, ~51!

in the steady state generated by the constant electric field.
Hence, from the high frequency side of the spectrum, where
g~v!, namely, the absorption coefficient, is weakly depen-
dent onv, we obtain

kBQc52\@d ln I ~v!/dv#21. ~52!

Photoluminescence experiments in HEPS in the presence
of an electric field are, for example, available in the case of
modulation spectroscopy in semiconductor heterostructures,
which are currently the object of large interest.57

From the experimental data from modulation spectros-
copy provided by Mendezet al.,58 by means of application
of Eq. ~51! we obtain the values ofQc indicated by dots in
Fig. 5~a! ~right ordinate!, and the curve was obtained by a
polynomial interpolation.

We consider now the description that excludes the flux
of energy, namely, the one in terms of only the carriers’
energy, numbers, and momenta~as in Ref. 59!. Let us call
Qc

0 the quasitemperature corresponding to this description,
which, for weak to intermediate electric field intensities, in-
creases monotonically with a very nearly square dependence
on the electric field intensity~Ref. 59, and as shown below in
an explicit calculation depicted in Fig. 5!, namely,

Qc
05Tc* 1DE2, ~53!

where T0* is the photoexcited carriers’ quasitemperature at
null electric field andD is field independent. Hence, it fol-
lows that

~T* 2T0* !/E25D ~54!

is field independent. On the other hand, if the correction
DQc due to the presence of the energy flux is considered, we
have that

FIG. 4. Calculated~in MaxEnt-NESOM! gain spectrum~full line! and experimental data~dots! in highly photoexcited platelets of CdS.~After Ref. 56.!
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V~E !5~Qc2Tc* !/E25
Qc

02Tc*

E2 2
D IQc

E2 5D2
DQc

E2 .

~55!

Consequently a field-dependent departure of this quan-
tity V from a constant might be ascribed toDQ, which in
that way would evidence the influence of the energy flux on
the nonequilibrium temperature. This is verified in the above
referred experiment, as shown in Fig. 5~a! ~left ordinate!.

We reinforce this result with a theoretical analysis. To
this end we consider the HEPS produced in bulk GaAs by a
very short laser pulse. We choose for illustration the case of
photons having an energy of 120 meV above the energy gap
value; a concentration of photoinjected carriers~fixed by the
pulse intensity! n51.431017 cm23; several values of the
electric field intensity are considered; and the thermal bath is
taken at 300 K. We derive the equations of evolution for the
macrovariables in a description in IST that includes the car-
riers’ energy, concentration, and momentum, which are com-

putationally solved for the case of the numerical values given
above and using parameters characteristic of GaAs. In Fig.
5~b! the stationary carrier quasitemperature dependence on
the field intensity~right ordinate! is shown. Also, is shown
~left ordinate! the functionV~E! of Eq. ~55! in the condi-
tions, first, neglecting the influence of the energy flux, i.e.,
taking DQ50, which is indicated by the dot-dash line, and
second, introducing such an effect. Inspection of this curve
shows that the result already predicted in Fig. 5~a!, where we
used the experimental data, is recovered. ForDQ50, lead-
ing to the dot-dash line in Fig. 5~b!, we recover the almost
constantV @equal toD in Eq. ~55!# at low fields, followed by
a monotonic increased withE . On the other hand,V~E!
monotonically decreases in the Ohmic regime~the latter
roughly going up to 6 kV/cm, followed by a non-Ohmic
regime! in, qualitatively, the same way as detected from the
use of the experimental data.

Consequently, these results point to the fact that the ex-
perimental data appear to give an indication of the effective
dependence of the quasitemperature on the energy flux. From
the data of Fig. 5~a! we can estimate that the contribution
due to the presence of the energy flux leads to a decrease of
the otherwise flux-free quasitemperature by, roughly, the or-
der of 5% for field intensities in the range of 4 to 6 kV/cm.

C. The phonon „nonequilibrium … quasitemperature

As previously noticed; the phonon system requires the
definition of a ~nonequilibrium! quasitemperature for each
mode in each branch.~This applies particularly to optical
phonons in polar semiconductors; the acoustic phonons, if
there is a very good contact between the sample and a ther-
mal reservoir, are expected to remain in near thermal equi-
librium with the latter.! Equation~25! has introduced these
Qqg(t), which, as shown, are closely related to the Lagrange
multipliers Fqg of MaxEnt-NESOM. It may be noticed that
Eq. ~23b! becomes a Planck-like distribution with a particu-
lar quasitemperature for each mode once we writeFqg

5\vqg /kBQqg .
This is an observable quantity when resorting again to

optical spectroscopy. In the case of Raman scattering of
phonons, the intensity of the lines is dependent on the pho-
non population of each individual mode probed in the
experiment.60 More precisely, the ratio of Stokes to anti-
Stokes intensities is given by

I AS/I Suqg5~nqg11!/nqg5exp$\vqg /kBQqg%, ~56!

which provides a way to measureQqg , that is, from Eq.
~56!,

kBQqg5\vqg / ln~ I AS/I A!. ~57!

Figure 6 shows the time evolution of the~nonequilibri-
um! quasitemperature of a LO-phonon mode, where dots are
experimental points from a Raman time-resolved
experiment,61 determined through the use of Eq.~57!, and
the full line is the calculation in MaxEnt-NESOM.62 Optical
phonons are produced well in excess of equilibrium~in the
collision processes with carriers! in a privileged off-center

FIG. 5. Carrier quasitemperatureQ ~right ordinate! obtained from~a! the
photoluminescent spectra of a GaAs–GaAlAs superlattice for various field
intensities, after Ref. 58~upper figure! and ~b! a MaxEnt-NESOM calcula-
tion for the case of bulk GaAs~lower figure!. Also the functionV~E! of Eq.
~55!, which points to the dependence of the nonequilibrium temperature on
the energy flux:~a! in the upper figure the one derived from the experimen-
tal data, and~b! in the lower curve the one calculated according to the
method, while the dot-dash line is the one in which the energy flux is
disregarded.
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region of Brillouin zone.40,63 It leads to the phenomenon of
phonon quasitemperature overshoot, that is to say, these
privileged modes attain quasitemperatures larger than those
of the exciting carriers.44 In this pump–probe experiment,
mutual thermalization of carriers and phonons in all modes,
i.e., all attaining the same quasitemperature, follows in delay
times~after switch-off of the laser excitation! of the order of
several tens of picoseconds. From then on this common
~nonequilibrium! quasitemperature tends to the temperature
of equilibrium with the thermal reservoir.62

V. CONCLUDING REMARKS

We have mentioned in the Introduction the use of phe-
nomenological nonequilibrium temperatures.11–18 The con-
cept does not arise in classical irreversible thermo-
dynamics,64 where local equilibrium is assumed. For general
situations, different concepts of nonequilibrium temperatures
have been considered by several authors in several thermo-
dynamic approaches: Meixner sets the concept of a ‘‘dy-
namical temperature,’’65 Müller introduces ‘‘coldness,’’66

Muschik postulates a ‘‘contact temperature,’’67 Keizer intro-
duces it in the framework of his formulation of nonequilib-
rium thermodynamics based on statistical considerations of
molecular fluctuations,68 and Nettleton69 considers the con-
cept of a kinetic temperature related to the kinetic energy per
particle in a discussion within the framework of MaxEnt.
Two of the present authors have proposed, within the frame-
work of extended irreversible thermodynamics,20 a nonequi-
librium temperature stemming as the partial derivative of a
nonequilibrium entropy-like function that incorporates the
dissipative fluxes as variables. In a forthcoming paper,70 a
partial tentative comparison of several approaches with IST
is to be reported.

In the previous sections we have introduced a nonequi-
librium temperature-like variable~which we call quasitem-
perature! in the context of IST, which depends, in principle,
on all the macrovariables, composed of the densities, fluxes,

and higher-order fluxes of matter and of energy appropriate
for the description of the macroscopic state of the system.
This quasitemperature is not the only thermodynamic quan-
tity to contain contributions from irreversible fluxes; the
same applies to chemical potentials, drift velocities, and all
the intensive thermodynamic variables defined by the
Lagrange multipliers in the construction of the NESOM in its
variational formulation.

In Sec. IV we have described experiments thatevidence
and measure such (nonequilibrium) quasitemperature in
IST. We have considered the case of highly excited semicon-
ductors and pump–probe experiments providing measure-
ments of optical properties. This is a field of extensive re-
search because of the technological interest involved, i.e., the
functioning of semiconductors in electronic devices. We
have looked for experiments that can be described by means
of a response function theory for far-from-equilibrium sys-
tems encompassed in NESOM,8,47 and so introducing the
~nonequilibrium! quasitemperature~s! defined within its con-
text, that is~nonequilibrium! quasitemperatures for the dif-
ferent subsystems of the whole sample. In HEPS~see Ref. 40
and last of Refs. 28! in the usual experimental conditions it is
possible to introduce a carrier~nonequilibrium! quasitem-
perature and quasichemical potentials. In experiments prob-
ing the system in the first several tens of femtoseconds after
initiation of the exciting laser pulse, it is possible to intro-
duce carrier population functions~second of Refs. 43! with a
~nonequilibrium! quasitemperature for each single quasipar-
ticle quantum mechanical state. For an initial probing time
smaller than the period of a plasma wave~say, typically 10 fs
in the experiments we are considering!, a single-particle de-
scription is no longer possible. However, it is worth noticing
that 10 fs approaches the limit of detection in ultrafast spec-
troscopy in the visible and near visible region set forth by
Heisenberg’s uncertainty principle, and then the statistical
theory is almost always applicable. In the case of phonons
the definition of a (nonequilibrium) quasitemperature for
each single quasiparticle quantum mechanical stateis re-
quired. Carriers and phonons attain a unique~nonequilibri-
um! quasitemperature~that is, mutual thermalization, but in
nonequilibrium conditions! in relaxation times of, roughly,
less than 100 picoseconds.

We have first considered experiments associated with
measurement of optical properties in HEPS, the latter in a
homogeneous condition and free of fluxes, to obtain amea-
surement of the carrier quasitemperature. This was de-
scribed, first in time-integrated experiments with the data
shown in Fig. 1, and, next, a determination, resorting to ul-
trafast spectroscopy,71 of the time evolution of the carrier
quasitemperature while dissipative processes develop in the
sample, as shown in Figs. 2 and 3. This gives a description of
the irreversible evolution that takes place in the system. In
Fig. 4 we considered a measurement of gain spectrum, which
allows the determination of the quasitemperature as well as
the quasichemical potential.

In Sec. IV B, we have considered the important question
of the dependence of the nonequilibrium temperature on the
fluxes. Those of matter and heat are created by means of the

FIG. 6. Evolution of the quasitemperature of a LO phonon mode in GaAs.
Full line is the calculation in MaxEnt-NESOM, from Ref. 62, and dots are
from Ref. 61, with bars indicating the experimental error.
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action of an electric field acting on the itinerant carriers.
Experiments determining luminescence spectra also provide
a way to measure quasitemperatures in the carrier system.
The expected increase of the quasitemperature with the field
intensity is verified, but in a way that seems to clearly point
to the confirmation of thedependence of the (nonequilibri-
um) quasitemperature on the fluxes, as predicted by extended
irreversible thermodynamics, and also in IST as described in
this paper; theory and the experimental data of Ref. 58 are in
a relatively good agreement. This result encourages the real-
ization of detailed measurements for this specific purpose,
together with an accompanying detailed calculation. Optical
measurements, like those proposed here, have a large advan-
tage over all other types of measurements because of their
high-resolution power and the existing very advanced instru-
mentation.

In Sec. IV C we have considered a homogeneous and
flux-free phonon system. As in the case of the carriers,
theory ~in the context of the NESOM!, together with the
experiment, allows for the definition anddetermination of a
(nonequilibrium) quasitemperature per phonon mode. In this
case, Raman scattering provides an appropriate measuring
technique, as shown.

As final words we stress the demonstrated fact of the
dependence of the nonequilibrium entropy and temperature
in IST on the whole set of macrovariables that describe the
nonequilibrium macrostate of the system. As already noticed,
there is not a wholly satisfactory way to make a selection,
which depends on a case by case approach, according to the
problem in hand. Consequently, the entropy in IST is differ-
ent for each chosen set of basic macrovariables. In a single
quasiparticle description as the one used in dealing with
HEPS—and for that matter with any solid state system—one
should in principle incorporate as basic variables the whole
~infinite! set of fluxes of all orders. Usually a truncation pro-
cedure is required and, evidently, a criterion~involving an
expansion parameter! for evaluation of such truncation needs
to be produced.3,72 This implies showing that the information
lost when performing the truncation is not relevant when
compared with the one that is kept. We call attention to the
fact that Meixner73 and Tisza1 gave arguments of this kind,
in the sense that it is very unlikely that a nonequilibrium
state function playing the role of an entropy for quite general
nonequilibrium conditions may be uniquely defined.
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Ministry of Education and Science under Grant No. PB/94-
0718~J.C.V.,D.I.!, and from the State of Sa˜o Paulo Research
Foundation, FAPESP, and UNICAMP Foundation, FAEP,
~A.R.V.,R.L.!. One of us~R.L.! benefited from a Cathedra
for visiting professors of the Catalonian Foundation for Re-
search~Fundacio´ Catalana per a la Recerca!.

APPENDIX A: ENERGY-FLUX DEPENDENT
DESCRIPTION

Consider on the one hand the description of a gas of
fermions in terms of the basic set (E,N) composed of the
energy and the particle number, with Lagrange multipliers
(b* ,2b* m* ), and, on the other, the one that includes the
flux of energy, namely, in terms of (E,N,I ) with Lagrange
multipliers (b,2bm,2ba). As noted in the main text, this
implies neglecting thermostriction effects. We take for the
energy levels a parabolic dispersion relation. Applying the
theory described in Sec. II, we find in the first description
that

E5 3
2 NkBT* , ~A1!

N5~2pmkBT* /4p2\2!exp$m* /kBT* %, ~A2!

while in the second description it follows that

E5N0F3

2
kBQ1

945

32

kBQ

m
a2G , ~A3!

N5N0S 11
35

16

kBQ

m
a2D , ~A4!

I5
35

8

kB
2Q

m
aN0 , ~A5!

where

N05~2pmkBQ/4p2\2!exp$m/kBQ%, ~A6!

b* 51/kBT* , b51/kBQ, ~A7!

N is given by unit volume, and we have kept corrections up
to second order ina.

Equating Eqs.~A1! with ~A3! and ~A2! with ~A4!, and
making use of Eq.~A5!, after some algebra we obtain

Q5T* 2
2

5

m

kB
3T* 2 U I

NU2

. ~A8!

Equation~A8! recovers the results that are derived in the
context of phenomenological extended irreversible thermo-
dynamics~fourth citation in Ref. 20!.

APPENDIX B: COMPLEMENT TO EQS. „27…

The several coefficients present in Eqs.~27! are

Ẽc~ t !5(
ka

ekaf̃ ka~ t ![(
a

Ẽa~ t ! ~B1!

Ña~ t !5(
k

f̃ ka~ t !, ~B2!

Aa~ t !5bc~ t !(
k

eka
2 Fa~k1mava~ t !;t !, ~B3!

Aa8~ t !5bc
2~ t !(

k
eka

3 ~\ka /ma!2fa~k;t !, ~B4!
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Ba~ t !5bc~ t !(
k

ekaFa~k1mava~ t !;t !, ~B5!

Ba8~ t !5bc
2~ t !(

k
eka

2 ~\ka!2fa~k;t !/ma
2, ~B6!

C1a~ t !5maÑa~ t !, ~B7!

C2a~ t !5mabc~ t !(
k

eka~\ka /ma!2Fa~k;t ! ~B8!

C2a8 ~ t !5~\k/ma!~\ka /ma!fa~k;t ! ~B9!

D1a~ t !5Ea~ t !, ~B10!

D2a~ t !5bc~ t !(
k

eka
2 ~\ka /ma!2Fa~k;t !, ~B11!

D2a8 ~ t !5bc
2~ t !(

k
eka~\k/ma!~\ka /ma!2fa~k,t !

~B12!

whereka means, in this isotropic model, the component ofk
in the direction ofa, and

Fa~k;t !5 f̃ ka~ t !@12 f̃ ka~ t !#, ~B13a!

fa~k;t !5 1
2 Fa~k;t !@122 f̃ ka~ t !# ~B13b!

and

f̃ ka~ t !5@11exp$bc~ t !@eka2ma~ t !2va~ t !•\k#%#21.
~B14!

i.e., f̃ of Eq. ~B14! is reminiscent of a shifted instantaneous
Fermi–Dirac-like distribution@note that it is that of Eq.~23a!
in the absence of the term associated with the energy flux,
viz. the one containing the corresponding Lagrange multi-
plier a#. Finally, the expression in each equation after the
last sign is a calculation in a nondegenerate-like regime, that
is, f̃ of Eq. ~B14! is replaced in the calculation by the one
given by

f̃ ka~ t !5exp$2bc~ t !@eka2ma~ t !2va~ t !•\k#%. ~B15!

This Eq. ~B15! implies that in Eq.~B14! the exponential is
much larger than 1, which is known to be valid in the case of
high levels of excitation and not too large concentrations of
photoinjected carriers, as is the case in the usual experimen-
tal conditions and functioning in semiconductor electronic
devices.

In the case of the description given by the distribution of
Eq. ~30!, we obtain

Ec~ t !5(
ka

ekaf ka* ~ t !5
3

2 (
a

NakBT* ~ t !, ~B16!

the last identity following in the nondegenerate-like regime
when

f ka* ~ t !5exp$2bc* ~ t !@eka2ma* ~ t !#%, ~B17!

where

bc* ~ t !51/kBTc* ~ t !, ~B18!

is the reciprocal of the quasitemperature, andm* the qua-
sichemical potential in this description.

APPENDIX C: COMPLEMENTS TO EQS. „28…

The kinetic coefficients in Eqs.~28! are

L1a~ t !5C1a
21~ t !1C2a~ t !D1a~ t !C1a

21~ t !Da
21~ t !, ~C1!

L2a~ t !5C2a~ t !Da
21~ t !, ~C2!

M1a~ t !5D1a~ t !Da
21~ t !, ~C3!

M2a~ t !5C1a~ t !Da
21~ t !, ~C4!

D2
21~ t !5C2a~ t !D1a~ t !2C1a~ t !D2a~ t !, ~C5!

where coefficientsC andD are given in Appendix B.

APPENDIX D: COEFFICIENTS A, B , C, AND D OF
EQS. „27… AND „35… IN THE NONDEGENERATE
LIMIT

Using Eqs.~B1! to ~B2!, together with Eq.~B15!, we
obtain

Aa~ t !5kBQcÑa~ 35
4 17xa1xa

3! , ~D1!

Ba~ t !5Ña~ 5
2 1xa! , ~D2!

C1a~ t !5Ñama , ~D3!

C2a~ t !5kBQcÑa~ 5
2 18xa12xa

2! , ~D4!

D1a~ t !5kBQcÑa~ 5
4 1xa! , ~D5!

D2a~ t !5~kBQc!
2~Ña /ma!~ 35

8 1 185
12 xa117xa

212xa
3! ,

~D6!
wherexa5(1/2)mava

2/kBQc .
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