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Abstract 

The determination of the particle-size distribution [D(r)] 
from small-angle scattering intensity data is discussed. 
The influence of the maximum available scattering vec- 
tor hmax on  D(r) retrieval is investigated with the help of 
numerical experiments with previously known solutions. 
The numerical corrector method provides a good answer 
even in cases where hmax is much smaller than those 
values necessary with other retrieval methods. 

1. Introduction 

The use of small-angle scattering (SAS) techniques 
(Guinier & Fournet, 1955; Glatter & Kratky, 1982) has 
steadily increased during recent years, partly due to 
the availability of powerful X-ray and neutron radia- 
tion sources. Analytical solutions and various numerical 
methods have been proposed (Glatter, 1977; Fedorova & 
Schmidt, 1978; Glatter, 1980; Mulato & Chambouley- 
ton, 1996) to retrieve the size distribution [D(r)] of the 
particles producing the scattering from SAS intensity 
data [l(h)], where r is the particle characteristic size 
and h is modulus of the scattering vector defined by 
47r sin 0/A, where 0 is half the scattering angle and A 
is the wavelength of the radiation used. The analysis 
of systems having scattering particles with varied size 
(polydisperse systems) is extremely involved because it 
is always an ill-posed problem, in which the inverse 
relationship between scattering intensity l(h) and particle 
size D(r) has to be worked out from a limited range of 
experimental information. 

In the present paper, D(r) will be considered to be 
a distribution of particles of varying size but identi- 
cal shape (solid spheres) embedded in a matrix, thus 
forming a two-phase system. With the use of gedanken 
experiments, we analyse the influence of the available 
scattering-vector range on the retrieval process of D(r) 
using the new recurrence numerical corrector method 
of Mulato & Chambouleyron (1996). Theoretical ex- 
periments will be performed to study the detrimental 
effects of truncated SAS intensity data, i.e. the maximum 
available scattering vector hmax, on  the retrieved D(r). 
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2. Numerical method for computing D(r) 

The anti-transform integral equation relating l(h) and 
D(r) is (Fedorova et al., 1978) 

(X3 

O(r) - (1 / r  2) f [l(h)h 4 - C 4 ] { [ 1 -  2/(hr)2]cos2hr 
o 

- [ 1  - l/2(hr)2](2/hr)sin2hr}dh, (1) 

where C4 is the limit of l(h) × h 4 for h --, oc. 
In a previous study, Mulato & Chambouleyron (1996) 

reported a numerical corrector method to compute D(r) 
from truncated experimental l(h) curves. The proposed 
fixed-point iteration may be written as 

Dk+l = Dk + Pz{T3[I- Tz(Dk)]}, (2) 

where P2 represents the projector operator on the phys- 
ical subspace where each D(r) should belong, TI is the 
integral transformation that relates the SAS data to the 
original D(r) and T3 is the transformation described by 
(1) using the integration limits hmin and hmax in place 
of 0 and cx~. In (2), I is the original SAS intensity data. 
At each step, a new D(r) curve is obtained based on 
a previous one. 

3. Considerations on a safe h 
interval for the finding of a good C4 

The different Gaussian-like D(r) used in the present 
work are given by 

D(r) = (1/Norm) e x p { - [ ( r -  re)/W]2}, (3) 

where rc is the center of the distribution, w its width 
and Norm a normalization constant. Fig. 1 shows (solid 
lines) two D(r) 's  with re = 5 A, w -- 2/~, Norm = 3.54 
(Fig. la) and r~ = 50A, w = 5/~,, and Norm = 8.86 
(Fig. lb). 

The theoretical scattering intensity function l(h) of 
these particle-size distributions were obtained following 
the procedure described by Mulato & Chambouleyron 
(1996). Figs. 2(a) and (b) show ,(h) x h 4 as a function 
of h for the two D(r) distributions of Figs. l(a) and 
(b), respectively. This kind of plot is illustrative of the 
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most important aspects of the numerical calculation of 
the anti-transform integral equation: the determination of 
C4 [Fedorova & Schmidt, 1978, see equation (3)]. It can 
be seen in Figs. 2(a) and (b) that: (i) the amplitude of the 
oscillations decreases with increasing h; (ii) the number 
of oscillations increases with increasing particle size (re); 
and (iii) the scattering-vector value for which l(h) × h 4 
becomes constant is smaller for D(r) 's  having a larger 
re. Although not seen at the scale of the drawing of Fig. 
2(b), the l(h) × h 4 curve reaches a constant value only 
for h > 0.6 A - l  (the oscillations in the [0.4-0.6 A -1] h 
interval can be easily seen on a different scale). 

Up to now, ,4 was calculated in the region of the 
l(h) × h 4 curve tail where no oscillations exist. This 
tail would represent the interval between hc4 = 0.6 and 
hmax = 0.8 A - l  in Fig. 2(b). In fact, this h range can 
be imagined as an h safety interval needed to obtain 
a good C4. If the available hrnax is smaller than this 
hc4 value, increasing problems can be expected. The 
obtained Ca value will not be representative of the 
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Fig. 1. Gaussian-like particle-size distributions (see text). (a) Original: 
solid line (r,. = 5.~, w = 2/~, Norm = 3.34). Retrieved: 
open squares (hmax = 0.8/~- I), solid squares (hmax = 0.63 ,h,- l 
and h e 4 - - 1 0  -3 /~-I), and dotted line (hmax = 0.4,h,-t and 
h c  4 __ 10-3/~-l) .  (b') Original: solid line (re = 50~, w = 5,h,, 
Norm = 8.86). Retrieved: open squares (hmax = 0.8/~-1), solid 
squares (hmax = 0.2/~- I ), and dotted line (hmax = 0.1 ~ -  I ). 

limh---,~ [l(h) × h4]. As a consequence, the retrieved 
D(r) might not be the correct one and the method fails. 

It is clear that the safety h interval and the relative 
values of hmax and hc4 necessary to obtain a reliable 
Ca will depend on the specific particle-size distribution 
under analysis. The dependence is shown in Fig. 3, 
where minimum hc4 values have been represented as a 
function of rc for different Gaussian-like distributions of 
spherical scatterers. The parallel dotted lines represent 
different w values; from bottom to top, w = 25, 15, 
10 and 5,~, respectively. The dashed horizontal line 
at hc4 = 0.8]k -1 is a limit; for w <_ 2/~,, a safe 
hc4 does not exist for h < 0 .8 /~ - I ,  which is our 
maximum theoretical scattering-vector value. It should 
be noted that the spacing between dotted lines does 
not scale linearly with variations of w. The figure also 
indicates that some safe hc4 values are larger than 
the hmax values achievable in conventional small-angle 
scattering experiments (for example, hmax of the order 
of 0 .3 /~ - i ) .  This means that a particle-size distribution 
having r,, < 80 A and w < 25 A would not be correctly 
retrieved. According to Fig. 3, the retrieval of particle- 
size distributions as the ones given in Figs. l(a) and 
(b) would require hmax values much larger than 0.8 and 
0.6/~,-1, respectively. 
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Fig. 2. Scattering-intensity data/(h) × h 4 as a function of scattering 
vector for the particle-size distributions of Figs• l(a) and (b), 
respectively• 
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4. I m p r o v e d  results  wi th  smal l er  hmax va lues  

Advantage can be taken from the fact that the numerical 
corrector method is based on a fixed-point iteration 
process. As a different procedure, C4 will now he 
determined as the mean value of l(h) x h 4 in a selected 
tail interval. 

Consider the original D(r) (solid line) of Fig. l (a)  
and its corresponding l(h) (Fig. 2a). Using hmax = 0.8 
and hc4 = 0.6/~ -1, the present numerical corrector 
method retrieved the particle-size distribution shown as 
open squares in Fig. l(a).  If hmax is chosen equal to 
or smaller than 0.6A, - l  and hc4 is chosen as 75% of 
hmax, the corrector method does not work correctly. It is 
interesting to note that when hmax is chosen as 0 .63 /~ - l  
and he4 as 10-3A, -1, the retrieved D(r) is the one 
shown as solid squares in Fig. 1 (a). In fact, a substantive 
portion of the original particle-size distribution was 
retrieved. Pinning hc4 at 10 - 3 / ~ - l  and decreasing the 
hmax value even more leads to a poor result in the 
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Fig. 3. Theoretical hC4 limit as a function of rc (see text), hc4 are safe 
h values, above which the l(h) x h a function reaches its constant 
value (C4). The parallel dotted lines from bottom to top represent 
different D(r)'s where w = 25, 15, 10 and 5/~, respectively. For 
w equal to or less than 2/~, hc4 stays above the horizontal dashed 
line at 0.8 A -I .  

retrieved D(r). The dotted line in Fig. l(a) corresponds 
to hmax -- 0 .4 /~-1 .  In summary,  decreasing hmax leads 
to a retrieved particle-size distribution having a smaller 
area and also to a shifted D(r) peak. 

Consider now the example shown in Fig. l(b). As 
previously stated, hc4 was chosen as 75% of hmax in 
all cases. The results given by the numerical corrector 
method are shown in Fig. l(b) as open squares (for 
hmax = 0.8 ~ - I ) ,  solid squares (for hmax = 0.2 A, -1)  and 
dotted line (for hmax -- 0.1 ~ -  I). For hmax < 0 . 1 / ~ -  1, 
increasing failures in the retrieval process were observed. 
Under such extreme conditions, the method does not 
work any longer. 

5. C o n c l u s i o n s  

In summary,  the numerical corrector method works 
reasonably well even for hmax and hc4 values much 
smaller than those predicted by a safe hmax value, which 
determines the interval where no oscillations exist in the 
l(h) x h a curve. This is a clear advantage of  the fixed- 
point iteration process, which improves the retrieval at 
each new step. The weak dependence of the method 
on hmax makes the numerical generation of tails of  
the scattering intensity data unnecessary. The retrieval 
of  narrow particle-size distributions centered at small 
rc values requires a high hmax. Broad and intense rc- 
centered D(r) ' s ,  on the other hand, can be retrieved from 
l(h) scattering data with relatively small hmax values. 
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