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ABSTRACT: 

The red blood cell (RBC) viscoelastic membrane contains proteins and glycoproteins embedded in a fluid lipid bilayer 

that are responsible for cell agglutination. Manipulating RBCs rouleaux with a double optical tweezers, we observed 

that the cells slide easily one over the others but are strongly connected by their edges. An explanation for this 

behavior could be the fact that when the cells slide one over the others, proteins are dragged through the membrane. It 

confers to the movement a viscous characteristic that is dependent of the velocity between the RBCs and justifies why 

is so easy to slide them apart. Therefore, in a first step of this work, by measuring the force as a function of the relative 

velocity between two cells, we confirmed this assumption and used this viscous characteristic of the RBC rouleaux to 

determine the apparent membrane viscosity of the cell. As this behavior is related to the proteins interactions, we can 

use the apparent membrane viscosity to obtain a better understanding about cell agglutination. Methods related to cell 

agglutination induced by antigen-antibody interactions are the basis of most of tests used in transfusion centers. Then, 

in a second step of this work, we measured the apparent membrane viscosity using antibodies. We observed that this 

methodology is sensitive to different kinds of bindings between RBCs. Better comprehension of the forces and 

Optical Trapping and Optical Micromanipulation IV, edited by Kishan Dholakia, Gabriel C. Spalding, 
Proc. of SPIE Vol. 6644, 66440M, (2007) · 0277-786X/07/$18 · doi: 10.1117/12.734284

Proc. of SPIE Vol. 6644  66440M-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/26/2015 Terms of Use: http://spiedl.org/terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Producao Cientifica e Intelectual da Unicamp

https://core.ac.uk/display/296643146?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

bindings between RBCs could improve the sensibility and specificity of the hemagglutination reactions and also 

guides the development of new potentiator substances. 
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INTRODUCTION: 

  The red blood cell (RBC) viscoelastic membrane contains proteins and glycoproteins embedded in a fluid 

lipid bilayer that are responsible for cell agglutination. In cell agglutination some proteins from one cell link to other 

red blood cells. Mechanical measurements performed in agglutinated RBCs can provide valuable information about 

the type of cell agglutination and the number of bonds between the cells. 

It was shown in previous work that when the RBC cells are dragged in a shear movement one over the other 

using a double optical tweezers, the proteins and/or the antigens that link the cells are dragged through their lipidic 

membrane and the force involved in this movement is of viscous nature [1]. Because the viscous forces are 

proportional to the drag velocity, an apparent membrane viscosity can be extracted from the curve force vs drag 

velocity. From this measurement it is possible to have information not only on the number and type of the bonds 

between the cells, but also on the whole membrane protein/antigen network that are dragged together. In this work, we 

show that we can use the measurement of the apparente membrane viscosity to differentiate RBC agglutination 

obtained using antibodies against erythrocyte antigens of the Rh system and control cells (RBCs). 

Methods related to cell agglutination caused by antigen-antibody interactions are the basis of most of 

immunohematologic tests used in transfusion centers. Besides the protein binding, however, there are a set of barriers 

to prevent that the agglutination process would happen spontaneously in the blood stream. Due to the presence of the 

glycolipids, the RBC membrane surface is negatively charged and creates a repulsive electric (zeta) potential between 

the cells that prevents them to come close and, therefore, their aggregation [2, 3]. Better comprehension of the forces 

and bindings between RBCs could improve the sensibility and specificity of the hemagglutination reactions and also 

guides the development of new potentiator substances. 

 
MATERIALS AND METHODS: 
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The RBC units were obtained from Hematology and Transfusion Center UNICAMP. Samples were diluted in 

plasma ABO compatible (0.5:1000 µL) with known refractive index (Abbe refractometer). The performed test was 

also analyzed using antibodies against erythrocyte antigen (system Rh), samples without antibodies were analyzed as 

control. Silica beads (Bangs Laboratories, Fishers, IN, USA) diluted in physiological serum was added to 10 µL of 

RBC solution. These silica beads act as a pico-Newton force transducer after a calibration using the displacement of 

the bead from the equilibrium position assuming a geometrical optics model. The displacement of the center of the 

bead under the presence of external forces was quantified with the software Image Pro Plus (Media Cybernectics, 

Baltimore, MD, USA). Previous calibration of this procedure against hydrodynamic force showed good results [4]. All 

the measurements were carried out at room temperature (25 oC). All the measurements were recorded in real time and 

captured by the computer.  

The double optical tweezers consisted of a Nd:YAG laser strongly focused through a 100X oil immersion 

objective (NA = 1.25) of an upright Olympus microscope equipped with a CCD camera and a x-y-z motorized stage 

controlled by a computer or a joystick. The laser beam is divided once and recombined using polarizer beam-splitters. 

Two sets of telescopes are used in the system to capture particles in the same focal plane. Two gimbal mounts are used 

to steer the beam position in the focal plane and the extra telescope is used to translate the steer pivot to the back 

aperture of the objective, avoiding power losses. This means that the gimbal mounts and the back aperture are 

conjugated optical planes.  

For the measurement of the apparent membrane viscosity the spatialy fixed optical tweezers trap a silica bead 

binded to one RBC of a set of two cells agglutinated by nonspecific and specific bonds, while the second optical 

tweezers trap directly the other RBC. By moving the second optical tweezers with a computer controlled piezoelectric 

actuator it was possible to inprint any velocity between the RBCs and, at the same time, to measure the displacement 

of the traped silica bead, as shown in figure 1. With this procedure we measured the optical force as a function of the 

velocity between the RBCs.  
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Figure 1. The measurement of the apparent membrane viscosity. 

 
 

RESULTS: 

The apparent membrane viscosity was determined using the Saffman Theory [5 - 6]. Basically, Saffman 

modeled a protein in a membrane as a cylindrical inclusion in a continuous film and computed the drag force on the 

cylindrical particle undergoing translational and rotational motion. He found for the force of a protein in translational 

movement: 

14
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where ηs is the intrinsic membrane shear surface viscosity, η is the fluid viscosity, a is the radius of the cylinder, C 

=0.58 is the Euler-Mascheroni Constant and u is the velocity. Considering that there are N proteins involved, we have: 
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The unit of the parameter that incorporate the number of proteins and the other factors ηm, called apparente 

membrane viscosity, is poise. Figure 2 shows the plot of the force versus velocity that confirms the expected viscous 

behavior for the movement of one cell on top of the other. From this chart we can obtain the apparent membrane 

viscosity. Figure 3 shows the apparent membrane viscosity using antibodies against erythrocyte antigens - Rh system 

and control cells. From this figure, we observe that this methodology is sensitive to different kinds of bindings 

between RBCs. The result obtained for control RBC membrane viscosity median was 1x10-3 poise.cm and the samples 

analyzed with antibodies showed 2x10-3 poise.cm (Table 1).  
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Figure 2. Plot of the optical force in function of the velocity between the cells. 

 
Table 1. Results obtained for membrane viscosity for control RBCs and RBC plus antibodies. 

 Number of cells 
analyzed 

Membrane viscosity 
(poise.cm x 10-4) Median (min-max) 

Control 20 10 (0.1 - 2.5) 
Antibodies 15 20 (1.0 - 4.0) 
 
 

 
Figure 3. Plot of the results obtained for membrane viscosity for control and RBC plus antibodies. 
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CONCLUSION: 

The results presented in this article demonstrated a new methodology using a double optical tweezers to 

determine the apparent membrane viscosity. The measurements of the apparent membrane viscosity are in agreement 

with values found in the literature. We observed that this methodology is sensitive to different kinds of bindings 

between RBCs. We were able to differentiate the apparent membrane viscosity measurements when compared control 

cells and RBCs linked to antibodies. The results showed that when antibodies were used on reaction, the membrane 

viscosity increased comparing to the control measurement (without antibodies).  This demonstrates that these 

methodology is sensitive to a variety of factors that can interfere in agglutination reactions performance. Better 

comprehension of the forces and bindings between RBCs could improve the sensibility and specificity of the 

hemagglutination reactions and also guides the development of new potentiator substances. 
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