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The fractional Schrödinger equation is solved for the delta potential and the double
delta potential for all energies. The solutions are given in terms of Fox’s H -function.
C© 2010 American Institute of Physics. [doi:10.1063/1.3525976]

I. INTRODUCTION

In recent years the study of fractional integrodifferential equations applied to physics and other
areas has grown. For example, in Ref. 1 the authors discussed the integrodifferential equations
with time-fractional integral, in Ref. 2 author has studied the partial differential equations with
time-fractional derivative, and in Ref. 3 author has presented a discussion involving time- and space-
fractional partial differential equations whose solutions are given in terms of Fox’s H -function.
Moreover, recently the fractional generalized Langevin equation is proposed to discuss the anomalous
diffusive behavior of a harmonic oscillator driven by a two-parameter Mittag-Leffler noise.4

In this paper we discuss the fractional Schrödinger equation (FSE), as introduced by Laskin in
Refs. 5 and 6. It was obtained in the context of the path integral approach to quantum mechanics. In
this approach, path integrals are defined over Lévy flight paths, which is a natural generalization of
the Brownian motion.7

There are some papers in the literature studying solutions of FSE. Some examples are
Refs. 8, 9, and 10. However, recently Jeng et al.11 have shown that some claims to solve the
FSE have not taken into account the fact that the fractional derivation is a nonlocal operation. As a
consequence, all those attempts based on local approaches are intrinsically wrong.

Jeng et al. pointed out that the only correct one they found is the one12 involving the delta
potential. However, in Ref. 12 the FSE with delta potential was studied only in the case of negative
energies. The main objective of this paper is to solve the FSE for the delta potential for all energies
and generalize this approach for the double delta potential, expressing the solutions in terms of Fox’s
H -function.

We organized this paper as follows. First, we study some properties of the FSE, its representation
in momentum space, and the equation of continuity for the probability density. Then we solve the
FSE for the delta and double delta potentials, presenting their respective solutions in terms of Fox’s
H -function. Some calculations and properties of Fox’s H -function are given in Appendixes A
and B.

II. THE FRACTIONAL SCHRÖDINGER EQUATION

The one-dimensional FSE is

i�
∂ψ(x, t)

∂t
= Dα(−�

2�)α/2ψ(x, t) + V (x)ψ(x, t), (1)
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where 1 < α ≤ 2, Dα is a constant, � = ∂2
x is the Laplacian, and (−�

2�)α/2 is the Riesz fractional
derivative,13 that is,

(−�
2�)α/2ψ(x, t) = 1

2π�

∫ +∞

−∞
ei px/�|p|αφ(p, t)dp, (2)

where φ(p, t) is the Fourier transform of the wave function,

φ(p, t) =
∫ +∞

−∞
e−i px/�ψ(x, t)dx, ψ(x, t) = 1

2π�

∫ +∞

−∞
ei px/�φ(p, t)dp. (3)

The time-independent FSE is

Dα(−�
2�)α/2ψ(x) + V (x)ψ(x) = Eψ(x). (4)

In the momentum representation, this equation is written as

Dα|p|αφ(p) + (W ∗ φ)(p)

2π�
= Eφ(p), (5)

where (W ∗ φ)(p) is the convolution,

(W ∗ φ)(p) =
∫ +∞

−∞
W (p − q)φ(q)dq, (6)

and W (p) = F[V (x)] is the Fourier transform of the potential V (x).
A very interesting property that follows the FSE is the presence of a source (or sink) term in

the continuity equation for the probability density. In order to see this, we need to write the Riesz
fractional derivative in terms of the Riesz potential. Let Rαψ(x) be the Riesz potential of ψ(x) of
order α given in13

Rαψ(x) = 1

2�(α) cos (απ/2)

∫ +∞

−∞

ψ(ξ )

|x − ξ |1−α
dξ, (7)

for 0 < α < 1, and R̃αψ(x) be its conjugated Riesz potential given by

R̃αψ(x) = 1

2�(α) sin (απ/2)

∫ +∞

−∞

sign(x − ξ )ψ(ξ )

|x − ξ |1−α
dξ. (8)

We suppose that ψ(x) satisfies the appropriated conditions to guarantee the existence of these
operations (see Ref. 14). Since these potentials are written in terms of convolutions, their Fourier
transform can be easily calculated. First, we note that∫ +∞

−∞
e−i px/�

1

|x |1−α
dx = 2�

α|p|−α�(α) cos (πα/2), (9)

∫ +∞

−∞
e−i px/�

sign(x)

|x |1−α
dx = −2i�α|p|−α�(α) sin (πα/2)sign(p). (10)

It follows from the convolution theorem that

F[Rαψ(x)] = �
α|p|−αφ(p), (11)

F[R̃αψ(x)] = −i�αsign(p)|p|−αφ(p), (12)

where φ(p) is the Fourier transform of ψ(x). Then, we have

F
[

d

dx
R̃1−αψ(x)

]
= i

p

�
F[R̃1−αψ(x)] = h−α|p|αφ(p), (13)

that is,

d

dx
R̃1−αψ(x) = (−�)α/2ψ(x), (14)
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where 0 < α < 1. For 1 < α < 2 in (−�)α/2, we use that in this case 0 < 2 − α < 1 and then

F
[

d2

dx2
R2−αψ(x)

]
= − p2

�2
F[R2−αψ(x)] = −h−α|p|αφ(p), (15)

that is,

− d2

dx2
R2−αψ(x) = (−�)α/2ψ(x). (16)

Let us now use this result in the FSE. If we follow the usual steps, that is, we multiply the FSE
by ψ∗ and subtract from this the complex conjugated FSE multiplied by ψ , we obtain that

∂ρ

∂t
+ ∂ J

∂x
= S, (17)

where, as usual, the probability density ρ = ψ∗ψ , but the expressions for the probability current J
and the source term S are

J = 2Dα�
α−1Re

[
iψ

∂

∂x
(R2−αψ∗)

]
, (18)

S = 2Dα�
α−1Re

[
i
∂ψ

∂x

∂

∂x
(R2−αψ∗)

]
, (19)

respectively.

III. DELTA POTENTIAL

Let us consider the case

V (x) = V0δ(x), (20)

where δ(x) is the Dirac delta function and V0 is a constant. Its Fourier transform is W (p) = V0 and
the convolution (W ∗ φ)(p) is

(W ∗ φ)(p) = V0 K , (21)

where the constant K is

K =
∫ +∞

−∞
φ(q)dq. (22)

The FSE in the momentum representation (5) is(
|p|α − E

Dα

)
φ(p) = −γ K , (23)

where

γ = V0

2π�Dα

. (24)

Now we have two situations: (i) E < 0 and (ii) E ≥ 0. The case E < 0 has been considered by
Dong and Xu,12 but we shall consider it again here for the completeness.
(i) E < 0 Let us write

E

Dα

= −λα, (25)

where λ > 0. Then Eq. (23) gives

φ(p) = −γ K

|p|α + λα
. (26)
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Using this in Eq. (22) gives that

1 = −γ

∫ +∞

−∞

dp

|p|α + λα
= −2γ λ1−α

∫ +∞

0

dq

qα + 1
. (27)

This integral gives (π/α) csc π/α (see formula 3.241.2, p. 322, of Ref. 15), and therefore,

1 = −2γ λ1−α π

α
csc

π

α
. (28)

Thus, as in usual (α = 2) quantum mechanics, bound states exist only for a delta potential well
(V0 < 0). There is only one bound state whose energy follows using Eq. (25), that is,

E = −
(

g csc π/α

α�D1/α
α

)α/(α−1)

, (29)

where we wrote V0 = −g (g > 0). Note that for α = 2 and D2 = 1/(2m), we recover the usual
result E = −mg2/2�

2.
The wave function ψ(x) is obtained by the inverse Fourier transform of φ(p), that is,

ψ(x) = −γ K

2π�

∫ +∞

−∞

ei px/�

|p|α + λα
dp. (30)

This integral is given by Eq. (B12) in Appendix B, and the result is

ψ(x) = −αγ K

2λα|x | H 2,1
2,3

[(
�

−1λ
)α |x |α

∣∣∣∣ (1, 1), (1, α/2)
(1, α), (1, 1), (1, α/2)

]
, (31)

where H m,n
p,q [x |−] denotes Fox’s H -function (see Appendix B).

In order to compare the wave function for different values of α, we will first, normalize them.
The calculation of

∫ +∞
−∞ |ψ(x)|2dx seems to be too complicated because of the presence of Fox’s

H -function; however, this task can be easily done by using Parseval’s theorem, that is,∫ +∞

−∞
ψ∗

1 (x)ψ2(x)dx = 1

2π�

∫ +∞

−∞
φ∗

1 (p)φ2(p)dp. (32)

Using formula 3.241.4 (p. 322) of Ref. 15, we have∫ ∞

−∞

dp

(|p|α + λα)2
= 2π

α

(
α − 1

α

)
λ1−2α csc

π

α
, (33)

and then for the wave function to be normalized to unity, we must have

(γ K )2 = α�λ2α−1

(
α

α − 1

)
sin

π

α
. (34)

Finally, with the appropriated choice of the phase, we have


(x) = Nα

|x | H 2,1
2,3

[(
�

−1λ
)α |x |α

∣∣∣∣ (1, 1), (1, α/2)
(1, α), (1, 1), (1, α/2)

]
, (35)

where

Nα = α2

2

√
�

λ(α − 1)
sin

π

α
. (36)

In Fig. 1 we plot this wave function for some values of α.
(ii) E ≥ 0 In this case, we write

E

Dα

= λα, (37)

where λ > 0. Since f (x)δ(x) = f (0)δ(x), the solution of Eq. (23) in this case is

φ(p) = −γ K

|p|α − λα
+ c1δ(p − λ) + c2δ(p + λ), (38)
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123517-5 The fractional Schrödinger equation J. Math. Phys. 51, 123517 (2010)

FIG. 1. Plot of 
̄ = 
/L−1/2 as a function of x̄ = x/L , where L = (�α Dα/E)1/α , as given by Eq. (35), for different values
of α.

where c1 and c2 are arbitrary constants. Using this in Eq. (22) gives that

K = −γ K
∫ +∞

−∞

dp

|p|α − λα
+ c1 + c2, (39)

where the integral is interpreted in the sense of Cauchy principal value, and it gives

∫ +∞

−∞

dp

|p|α − λα
= 2λ1−α

∫ +∞

0

dq

qα − 1
= −2λ1−α π

α
cot

π

α
, (40)

where we have used formula 3.241.3 (p. 322) of Ref. 15–see Eq. (B18). The constant K is therefore

K = (c1 + c2)αλα−1

αλα−1 − 2πγ cot π/α
, (41)

and we have

φ(p) = c1δ(p − λ) + c2δ(p + λ) − γ (c1 + c2)αλα−1

(αλα−1 − 2πγ cot π/α)

1

(|p|α − λα)
. (42)

Next, we need to calculate the inverse Fourier transform of φ(p) to obtain ψ(x), that is,

ψ(x) = C1eiλx/� + C2e−iλx/� − γ (C1 + C2)αλα−1

(αλα−1 − 2πγ cot π/α)

∫ +∞

−∞

ei px/�

|p|α − λα
dp, (43)

where we defined C j = c j/2π� for j = 1, 2. The above integral is calculated in Appendix B and is

given by Eq. (B20). Using this result and the definitions of γ in Eq. (24) and λ in Eq. (37), we can
write that

ψ(x) = C1eiλx/� + C2e−iλx/� + �α

(C1 + C2)

2
�α

(
λ|x |
�

)
, (44)
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123517-6 Oliveira, Costa, and Vaz, Jr. J. Math. Phys. 51, 123517 (2010)

where

�α

(
λ|x |
�

)
= α�

λ|x |
(

H 2,1
2,3

[(
λ|x |
�

)α ∣∣∣∣ (1, 1), (1, (2 + α)/2)
(1, α), (1, 1), (1, (2 + α)/2)

]

−H 2,1
2,3

[(
λ|x |
�

)α ∣∣∣∣ (1, 1), (1, (2 − α)/2)
(1, α), (1, 1), (1, (2 − α)/2)

])
, (45)

and

�α =
[(

E

U

) α−1
α

− cot
π

α

]−1

, (46)

and

U =
(

V0

α�D1/α
α

)α/(α−1)

. (47)

Now we want to find the constants C1 and C2 in order to compare the wave function for different
values of α, and we will do this by studying the asymptotic behavior of it. The asymptotic behavior
of Fox’s H -function is given, if � > 0, by Eq. (A8) or Eq. (A10) according to �∗ > 0 or �∗ = 0,
respectively—see Eq. (A7). In �α(λ|x |/�), we have the difference between two Fox’s H -functions
of the form

H 2,1
2,3

[
wα

∣∣∣∣ (1, 1), (1, μ)
(1, α), (1, 1), (1, μ)

]
,

for μ = (2 + α)/2 and μ = (2 − α)/2. In both cases we have � = α > 0, but �∗ = 0 for
μ = (2 + α)/2 and �∗ > 0 for μ = (2 − α)/2. Therefore, using Eq. (A8) when μ = (2 − α)/2 and
Eq. (A10) when μ = (2 + α)/2, we have, respectively, that

H 2,1
2,3

[
wα

∣∣∣∣ (1, 1), (1, (2 + α)/2)
(1, α), (1, 1), (1, (2 + α)/2)

]
= 2w

α
sin w + o(1), |w| → ∞, (48)

H 2,1
2,3

[
zα

∣∣∣∣ (1, 1), (1, (2 − α)/2)
(1, α), (1, 1), (1, (2 − α)/2)

]
= o(1), |w| → ∞, (49)

and then

�α

(
λ|x |
�

)
= 2 sin

λ|x |
�

+ o
(|x |−1

)
, |x | → ∞. (50)

The behavior of the wave function ψ(x) for x → ±∞ is, therefore,

ψ(x) = C1eiλx/� + C2e−iλx/� ± �α(C1 + C2) sin
λx

�
+ o

(
x−1

)
, x → ±∞, (51)

or

ψ(x) = Aeiλx/� + Be−iλx/� + o
(
x−1), x → −∞, (52)

ψ(x) = Ceiλx/� + De−iλx/� + o
(
x−1

)
, x → +∞, (53)

where we defined

A = C1 + i(C1 + C2)�2/2, B = C2 − i(C1 + C2)�2/2, (54)

C = C1 − i(C1 + C2)�2/2, D = C2 + i(C1 + C2)�2/2. (55)

Now let us consider the situation of particles coming from the left and scattered by the delta potential.
In this case D = 0 (no particles coming from the right) and B = r A and C = t A, where the reflexion
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123517-7 The fractional Schrödinger equation J. Math. Phys. 51, 123517 (2010)

FIG. 2. Reflection and transmission coefficients as a function of E/U , as given by Eq. (57), for different values of α.

R and transmission T coefficients are given by R = |r |2 and T = |t |2 (see, for example, Ref. 16).
The result is

r = −i�α

1 + i�α

, t = 1

1 + i�α

, (56)

and then

R = �2
α

1 + �2
α

, T = 1

1 + �2
α

. (57)

In Fig. 2 we show the behavior of these coefficients for different values of α. In Fig. 3 we show the
probability distribution |ψ(x)|2 for this situation when E/U = 2.

IV. DOUBLE DELTA POTENTIAL

Now let the potential be given by

V (x) = V0[δ(x + R/2) + μδ(x − R/2)]. (58)

When V0 < 0 this potential can be seen as a model for the one-dimensional limit of the molecular
ion H+

2 .17 The parameter R is interpreted as the internuclear distance, and the coupling parameters
are V0 and μV0. Its Fourier transform is

W (p) = V0ei pR/2� + V0μe−i pR/2� (59)

and for the convolution

(W ∗ φ)(p) = V0ei pR/2�K1(R) + V0μe−i pR/2�K2(R), (60)

where K1(R) and K2(R) are constants given by

K1(R) = K2(−R) =
∫ +∞

−∞
e−i Rq/2�φ(q)dq. (61)
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123517-8 Oliveira, Costa, and Vaz, Jr. J. Math. Phys. 51, 123517 (2010)

FIG. 3. Probability distribution |ψ(x)|2 (in units of A2) as a function of x/(�λ−1), as given by Eq. (44), for different values
of α, when E/U = 2, and r and t given by Eq. (56).

The FSE in momentum space is(
|p|α − E

Dα

)
φ(p) = −γ ei Rp/2�K1(R) − γμe−i Rp/2�K2(R), (62)

where we used the notation introduced in Eq. (24). Here again we need to consider two separated
cases: (i) E < 0 and (ii) E > 0.
(i) E < 0 If we use λ as in Eq. (25), we can write the solution of Eq. (62) in the form

φ(p) = −γ ei Rp/2�K1(R)

|p|α + λα
− γμe−i Rp/2� K2(R)

|p|α + λα
. (63)

Now we use this expression for φ(p) in the definition of constants K1(R) and K2(R) in Eq. (61),
and we obtain that

K1(R) = −2πγλ1−α I (0)K1(R) − μ2πγλ1−α I (Rλ/�)K2(R), (64)

K2(R) = −2πγλ1−α I (Rλ/�)K1(R) − μ2πγλ1−α I (0)K2(R), (65)

where we have defined

I (w) = 1

π

∫ +∞

0

cos wy

yα + 1
dy. (66)

The system (64) and (65) has nontrivial solutions only when

(2πγλ1−α I (0) + 1)(μ2πγλ1−α I (0) + 1) − μ[2πγλ1−α I (Rλ/�)]2 = 0. (67)

There are two solutions,

2πγλ1−α I (Rλ/�) = ±
√

(2πγλ1−α I (0) + 1)(2πγλ1−α I (0) + μ−1), (68)

and this gives

K2(R)

K1(R)
= ∓ 1

μ
F(μ), (69)
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where

F(μ) =
√

2πγλ1−α I (0) + 1

2πγλ1−α I (0) + μ−1
. (70)

The expression for φ(p) is

φ(p) = −γ K1(R)

[
ei Rp/2�

|p|α + λα
± F(μ)

e−i Rp/2�

|p|α + λα

]
. (71)

Using this, we have for the wave function ψ(x) that

ψ(x) = −γ K1(R)

2π�

[ ∫ +∞

−∞

ei p(x+R/2)/�

|p|α + λα
dp ± F(μ)

∫ +∞

−∞

ei p(x−R/2)/�

|p|α + λα
dp

]
. (72)

Now, if we identify the wave function for the single delta potential as given by Eq. (30), we can
write that

ψ(x) = A[
(x + R/2) ± F(μ)
(x − R/2)]. (73)

where 
(x) is given by Eq. (35) and A is a constant.

Particular case: μ = 1 Let us look at Eq. (68) in more details in this case. We can write it in the
form

± I (Rλ/�) = I (0) + λα−1

2πγ
. (74)

Since |I (Rλ/�)| ≤ |I (0)|, it is easy to see that there is nontrivial solutions for λ only when γ < 0,
which corresponds to the case of a double delta potential well. If we write V0 = −g with g > 0 and
denote

H = �αDα

gRα−1
, κ = λR

�
, (75)

then Eq. (74) can be written as

± I (κ) = I (0) − Hκα−1. (76)

In Fig. 4 we have the plot of the functions ±I (κ) and I (0) − π−1κα−1 (that is, for H = π−1) for
α = 2, 1.8, and 1.6 and the identification of the corresponding eigenvalues κ±

α . We can see that the
ground and excited states are the ones with superscript + and −, respectively, and that the energy
difference between these states diminishes as α decreases.

The wave function ψ(x) in Eq. (73) can be written as


±(x) = Nα[
(x + R/2) ± 
(x − R/2)], (77)

where Nα is a normalization constant given by

Nα =
[

2 ± 2

(
α

α − 1

)
α

π
sin

π

α

∫ +∞

0

cos pRλ/�

(pα + 1)2
dp

]−1/2

. (78)

In Fig. 5 we plot 
±(x) for some values of α.
(ii) E > 0 Here we use λ as in Eq. (37), and for the solution of Eq. (62) we have

φ(p) = 2π�C1δ(p − λ) + 2π�C2δ(p + λ) − γ ei Rp/2�K1(R)

|p|α − λα
− μγ e−i Rp/2�K2(R)

|p|α − λα
, (79)

where the constant 2π� was introduced for later convenience. Using this expression for φ(p) in
Eq. (61) of definitions of K1(R) and K2(R), we have

(1 + 2πγλ1−α J (0))K1(R) + μ2πγλ1−α J (λR/�)K2(R) = 2π�C ′
1, (80)

2πγλ1−α J (λR/�)K1(R) + (1 + μ2πγλ1−α J (0))K2(R) = 2π�C ′
2, (81)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

143.106.108.185 On: Tue, 16 Jun 2015 18:33:27



123517-10 Oliveira, Costa, and Vaz, Jr. J. Math. Phys. 51, 123517 (2010)

FIG. 4. Plot of the functions in Eq. (76) (with H = π−1) and identification of the eigenvalues of κ for different values of α.

where

C ′
1 = C1e−i Rλ/2� + C2ei Rλ/2�, C ′

2 = C1ei Rλ/2� + C2e−i Rλ/2�, (82)

and J (w) is the Cauchy principal value of the integral

J (w) = 1

π

∫ +∞

0

cos wq

qα − 1
dq. (83)

FIG. 5. Plot of 
̄± = 
±/L−1/2 as a function of x̄ = x/L , where L = (�α Dα/E)1/α , as given by Eq. (77), for different
values of α.
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In order to write the solution of these equations, it is convenient to define

ε = λα−1

2πγ
=

(
E

U

) α−1
α

, (84)

where U was defined in Eq. (47) in such a way that we have

K1(R) = 2π�ε

W
[(εμ−1 + J (0))C ′

1 − J (λR/�)C ′
2], (85)

K2(R) = 2π�ε

μW
[(ε + J (0))C ′

2 − J (λR/�)C ′
1], (86)

where

W = (ε + J (0))(εμ−1 + J (0)) − (J (λR/�))2. (87)

Using K1(R) and K2(R) in Eq. (79) gives φ(p). Then, for ψ(x), we have

ψ(x) = C1eiλx/� + C2e−iλx/�

+ 1

2αW
[(εμ−1 + J (0))C ′

1 − J (λR/�)C ′
2]�α

(
λ|x + R/2|

�

)

+ 1

2αW
[(ε + J (0))C ′

2 − J (λR/�)C ′
1]�α

(
λ|x − R/2|

�

)
, (88)

where we have expressed the result in terms of the function �α defined in Eq. (45).

V. CONCLUSIONS

We have solved the FSE for the delta potential and the double delta potential for all energies,
expressing the results in terms of Fox’s H -function.

APPENDIX A: FOX’S H−FUNCTION

Fox’s H -function, also known as H function or Fox’s function, was introduced in the literature
as an integral of Mellin–Barnes type.18

Let m, n, p, and q be integer numbers. Consider the function

�(s) =

m∏
i=1

�(bi + Bi s)
n∏

i=1

�(1 − ai − Ai s)

q∏
i=m+1

�(1 − bi − Bi s)
p∏

i=n+1

�(ai + Ai s)

(A1)

with 1 ≤ m ≤ q and 0 ≤ n ≤ p. The coefficients Ai and Bi are positive real numbers; ai and bi are
complex parameters.

Fox’s H -function, denoted by

H m,n
p,q (x) = H m,n

p,q

(
x

∣∣∣∣ (ap, Ap)
(bq , Bq )

)
= H m,n

p,q

[
x

∣∣∣∣ (a1, A1), · · · , (ap, Ap)
(b1, B1), · · · , (bq , Bq )

]
, (A2)

is defined as the inverse Mellin transform, i.e.,

H m,n
p,q (x) = 1

2π i

∫
L
�(s) x−s ds (A3)

where �(s) is given by Eq. (A1), and the contour L runs from L − i∞ to L + i∞, separat-
ing the poles of �(1 − ai − Ai s), (i = 1, . . . , n) from those of �(bi + Bi s), (i = 1, . . . , m).
The complex parameters ai and bi are taken with the imposition that no poles in the integrand
coincide.
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There are some interesting properties associated with Fox’s H -function. We consider here the
following ones.

1. Change the independent variable

Let c be a positive constant. We have

H m,n
p,q

[
x

∣∣∣∣ (ap, Ap)
(bq , Bq )

]
= c H m,n

p,q

[
xc

∣∣∣∣ (ap, c Ap)
(bq , c Bq )

]
. (A4)

To show this expression, one introduce a change of variable s → c s in the integral of inverse Mellin
transform.

2. Change the first argument

Set α ∈ R. Then we can write

xα H m,n
p,q

[
x

∣∣∣∣ (ap, Ap)
(bq , Bq )

]
= H m,n

p,q

[
x

∣∣∣∣ (ap + αAp, Ap)
(bq + αBq , Bq )

]
. (A5)

To show this expression first, we introduce the change ap → ap + αAp and take s → s − α in the
integral of inverse Mellin transform.

3. Lowering of Order

If the first factor (a1, A1) is equal to the last one, (bq , Bq ), we have

H m,n
p,q

[
x

∣∣∣∣ (a1, A1), . . . , (ap, Ap)
(b1, B1), . . . , (bq−1, Bq−1)(a1, A1)

]
= H m,n−1

p−1,q−1

[
x

∣∣∣∣ (a2, A2), . . . , (ap, Ap)
(b1, B1), . . . , (bq−1, Bq−1)

]
.

(A6)
To show this identity is sufficient to simplify the common arguments in the Mellin–Barnes integral.

4. Asymptotic Expansions

The asymptotic expansions for Fox’s H -functions have been studied in Ref. 19. Let � and �∗

be defined as

� =
q∑

i=1

Bi −
p∑

i=1

Ai , �∗ =
n∑

i=1

Ai −
p∑

i=n+1

Ai +
m∑

i=1

Bi −
q∑

i=m+1

Bi . (A7)

If � > 0 and �∗ > 0, we have20

H m,n
p,q (x) =

n∑
r=1

[
hr x (ar −1)/Ar + o

(
x (ar −1)/Ar

)]
, |x | → ∞, (A8)

where

hr = 1

Ar

∏m
j=1 �(b j + (1 − ar )B j/Ar )

∏n
j=1, j �=r �(1 − a j − (1 − ar )A j/Ar )∏p

j=n+1 �(a j − (1 − ar )A j/Ar )
∏q

j=m+1 �(1 − b j − (1 − ar )B j/Ar )
, (A9)

and if � > 0, and �∗ = 0, we have20

H m,n
p,q (x) =

n∑
r=1

[
hr x (ar −1)/Ar + o

(
x (ar −1)/Ar

)]
+ Ax (ν+1/2)/�

(
c0 exp[i(B + Cx1/�)] − d0 exp[−i(B + Cx1/�)]

)
+ o

(
x (ν+1/2)/|�|), |x | → ∞, (A10)
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where

c0 = (2π i)m+n−p exp
[
π i

( p∑
r=n+1

ar −
m∑

j=1

b j
)]

,

d0 = (−2π i)m+n−p exp
[ − π i

( p∑
r=n+1

ar −
m∑

j=1

b j
)
π i

]
,

A = 1

2π i�
(2π )(p−q+1)/2�−ν

p∏
r=1

A−ar +1/2
r

q∏
j=1

B
b j −1/2
j

(
��

δ

)(ν+1/2)/�

,

B = (2ν + 1)π

4
, C =

(
��

δ

)1/�

,

δ =
p∏

l=1

|Al |−Al

q∏
j=1

|B j |B j , ν =
q∑

j=1

b j −
p∑

j=1

a j + p − q

2
.

APPENDIX B: CALCULATION OF SOME INTEGRALS

1. Calculation of the integral in Eq. (30)

Let I (w) be given by

I (w) = 1

π

∫ +∞

0

cos wy

yα + 1
dy. (B1)

Then the integral in Eq. (30) can be written as∫ +∞

−∞

ei px/�

|p|α + λα
dp = 2πλ1−α I (λx/�), (B2)

where we remember that λ > 0. In order to calculate I (w) we will take its Mellin transform, calculate
the resulting integral, and then take the corresponding inverse Mellin transform. We recall that the
Mellin transform pair is given by

M[ f (x)](z) =
∫ +∞

0
xz−1 f (x)dx, M−1[F(z)](x) = 1

2π i

∫ c+i∞

c−i∞
x−z F(z)dz. (B3)

We also observe that since the Mellin transform of I (w) takes only those positive values of w, and
since I (−w) = I (w), we only need to replace w by |w| in the end of the calculation for the result to
be valid for all w.

Now, since21

Mw[cos(wy)](z) = y−z�(z) cos
π z

2
, (B4)

we have that

Mw[I (w)](z) = 1

π
�(z) cos

π z

2

∫ +∞

0

y−z

yα + 1
dy. (B5)

This last integral is given by formula 3.241.2 (p. 322) of Ref. 15, that is,∫ +∞

0

xμ−1

xν + 1
dx = π

ν
csc

μπ

ν
= 1

ν
B

(
μ

ν
,
ν − μ

ν

)
, (B6)

where B(a, b) is the beta function and Re ν ≥ Re μ > 0. Using this result and the fact that

cos
π z

2
= sin

π (1 − z)

2
= π

�
(

1−z
2

)
�

(
1 − 1−z

2

) , (B7)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

143.106.108.185 On: Tue, 16 Jun 2015 18:33:27



123517-14 Oliveira, Costa, and Vaz, Jr. J. Math. Phys. 51, 123517 (2010)

we can write

Mw[I (w)](z) = 1

α

�
(

1−z
α

)
�

(
1 − 1−z

α

)
�(z)

�
(

1−z
2

)
�

(
1 − 1−z

2

) = F1(z). (B8)

Then I (w) is given by the inverse Mellin transform

I (w) = 1

2π i

∫ c+i∞

c−i∞
w−z F1(z)dz. (B9)

If we compare this expression with Eqs. (A1) and (A3), we see that

I (w) = 1

α
H 2,1

2,3

[
w

∣∣∣∣ (1 − 1/α, 1/α), (1/2, 1/2)
(0, 1), (1 − 1/α, 1/α), (1/2, 1/2)

]
. (B10)

Finally, if we use the properties given by Eqs. (A4) and (A5)), we have that

I (w) = 1

|w| H 2,1
2,3

[
|w|α

∣∣∣∣ (1, 1), (1, α/2)
(1, α), (1, 1), (1, α/2)

]
, (B11)

where we used the absolute value in order to this expression to hold also for the negative values of
w since I (−w) = I (w). Numerical values of Fox’s H -function on the RHS can be obtained by the
numerical integration of I (w) (the same in the next case). In this paper we have used Mathematica
7 in order to perform the numerical integrations used in all plots.

Finally, we have∫ +∞

−∞

ei px/�

|p|α + λα
dp = 2π�

λα|x | H 2,1
2,3

[(
�

−1λ
)α |x |α

∣∣∣∣ (1, 1), (1, α/2)
(1, α), (1, 1), (1, α/2)

]
, (B12)

which is the desired result. When α = 2 it is not difficult to show (see Eq. (1.125) of Ref. 18) that

H 2,1
2,3

[
w2

∣∣∣∣ (1, 1), (1, 1)
(1, 2), (1, 1), (1, 1)

]
= H 1,0

0,1

[
w2

∣∣∣∣−(1, 2)

]
= |w|

2
exp (−|w|), (B13)

and in such a way that we recover the well-known result∫ +∞

−∞

ei px/�

p2 + λ2
dp = π

λ
exp (−λ|x |/�). (B14)

2. Calculation of the integral in Eq. (43)

Let J (w) be given by

J (w) = 1

π

∫ +∞

0

cos wy

yα − 1
dy. (B15)

Then the integral in Eq. (31) can be written as∫ +∞

−∞

ei px/�

|p|α − λα
dp = 2πλ1−α J (λx/�), (B16)

where we remember that λ > 0. Taking the Mellin transform, we have that

Mw[J (w)](z) = 1

π
�(z) cos

π z

2

∫ +∞

0

y−z

yα − 1
dy. (B17)

This last integral is given by formula 3.241.3 (p. 322) of Ref. 15, that is,∫ +∞

0

xμ−1

1 − xν
dx = π

ν
cot

μπ

ν
, (B18)

where the integration is understood as the Cauchy principal value. We remember that in the inversion
of the Fourier transform, the integration is to be done in the sense of the Cauchy principal value.22
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Therefore we have

Mw[J (w)](z) = − 1

α
�(z) sin

π (1 − z)

2
cot

π (1 − z)

α
. (B19)

Using the relation 2 sin A cos B = sin (A + B) + sin (A − B) and writing the sine function in terms
of the product of gamma functions, we can write that

Mw[J (w)](z) = − 1

2α

�(z)�
(

1−z
α

)
�

(
1 − 1−z

α

)
�

(
(1 − z) (2+α)

2α

)
�

(
1 − (1 − z) (2+α)

2α

)
+ 1

2α

�(z)�
(

1−z
α

)
�

(
1 − 1−z

α

)
�

(
(1 − z) (2−α)

2α

)
�

(
1 − (1 − z) (2−α)

2α

) = F2(z).

Taking the inverse Mellin transform and using the definition of Fox’s H -function, we have that

J (w) = − 1

2α
H 2,1

2,3

[
w

∣∣∣∣ (1 − 1/α, 1/α), (1 − (2 + α)/2α, (2 + α)/2α)
(0, 1), (1 − 1/α, 1/α), (1 − (2 + α)/2α, (2 + α)/2α)

]

+ 1

2α
H 2,1

2,3

[
w

∣∣∣∣ (1 − 1/α, 1/α), (1 − (2 − α)/2α, (2 − α)/2α)
(0, 1), (1 − 1/α, 1/α), (1 − (2 − α)/2α, (2 − α)/2α)

]
.

Using the properties given by Eqs. (A4) and (A5) and replacing w by |w| since J (−w) = J (w), we
obtain

J (w) = − 1

2|w| H 2,1
2,3

[
|w|α

∣∣∣∣ (1, 1), (1, (2 + α)/2)
(1, α), (1, 1), (1, (2 + α)/α)

]

+ 1

2|w| H 2,1
2,3

[
|w|α

∣∣∣∣ (1, 1), (1, (2 − α)/2)
(1, α), (1, 1), (1, (2 − α)/2)

]
.

Finally, we have∫ +∞

−∞

ei px/�

|p|α − λα
dp = − �π

λα|x |
(

H 2,1
2,3

[
(�−1λ)α|x |α

∣∣∣∣ (1, 1), (1, (2 + α)/2)
(1, α), (1, 1), (1, (2 + α)/α)

]

− H 2,1
2,3

[
(�−1λ)α|x |α

∣∣∣∣ (1, 1), (1, (2 − α)/2)
(1, α), (1, 1), (1, (2 − α)/2)

] )
. (B20)

Let us see what happens in the particular case α = 2. From the definition of Fox’s H -function, we
can see that

H 2,1
2,3

[
|w|2

∣∣∣∣ (1, 1), (1, 0)
(1, 2), (1, 1), (1, 0)

]
= 0 (B21)

and that

H 2,1
2,3

[
w2

∣∣∣∣ (1, 1), (1, 2)
(1, 2), (1, 1), (1, 2)

]
= H 1,1

1,2

[
w2

∣∣∣∣ (1, 1)
(1, 1), (1, 2)

]
= w2 H 1,1

1,2

[
w2

∣∣∣∣ (0, 1)
(0, 1), (−1, 2)

]
.

But18

H 1,1
1,2

[
−z

∣∣∣∣ (0, 1)
(0, 1), (1 − b, a)

]
= Ea,b(z), (B22)

where Ea,b(z) is the two-parameter Mittag-Leffler function. However, it is known23 that

E2,2(z) = sinh
√

z√
z

. (B23)

Consequently, we have

H 2,1
2,3

[
w2

∣∣∣∣ (1, 1), (1, 2)
(1, 2), (1, 1), (1, 2)

]
= |w|2 E2,2(−|w|2) = |w| sin |w|. (B24)
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Then for α = 2, we have ∫ +∞

−∞

ei px/�

|p|2 − λ2
dp = −π

λ
sin

λ|x |
�

. (B25)
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