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Abstract

Congested traffic has become a part of the day-to-day for the res-
idents of big metropolitan centers. From an economic viewpoint, this
problem has been causing huge financial damage and strategic measures
must be taken to tackle it. An alternative means of solving the problem
is the inclusion of toll charges on routes with a view to de-congesting
the road network. The mathematical formulation of this alternative
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involves the solving of an optimization problem with equilibrium con-
straints (MPEC). This work proposes an algorithm for the solution of
this problem based on the strategy of inexact restoration.

Keywords: Optimization Problem with Equilibrium Constraints, Urban
Traffic Problem, Inexact Restoration

1 Introduction

Congested traffic has become a part of the day-to-day for the residents of
big metropolitan areas. With the growth of these areas the construction of
new roads and highways to handle the increased traffic flow is not always
possible. From the economic viewpoint, according to research in the USA [5],
about 48 billion dollars are consumed annually with this type of problem and
approximately 65% of the drivers of the American cities analyzed have suffered
this problem.

In Brazil, the same problem occurs in its big cities, specially, in the coun-
try’s biggest city. We are, of course, referring to São Paulo. To minimize
the impacts of congested traffic, it’s necessary that the responsible authorities
make decisions aiming to control the problem. One alternative would be to
charge taxes or tolls (fees) on some routes (roads or avenues) in an attempt to
divert the traffic during some periods of the day.

The principal aim of this study is to approach the SBTPP Problem as one
of Mathematical Programming with Equilibrium Constraints(MPEC) [16] so
as to solve it through an algorithm based upon Inexact Restoration.

2 Mathematical Programming with Equilibrium
Constraints (MPEC)

The problem of Mathematical Programming with Equilibrium Constraints con-
sists of:

Minimize
x,y

f(x, y)

s.a (x, y) ∈ Ω,

〈G(x, y), y − z〉 ≤ 0 ∀ z ∈ D(x),

y ∈ D(x),

(1)
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where Ω ≡ X × Y ⊂ IRn × IRm, D(x) = {y ∈ IRm : h(x, y) = 0 and g(x, y) ≥
0}, f : IRn×m → IR, hi(x, .) : IRm → IR are akin to i ∈ {1, ..., q}, x ∈ X,
gi(x, .) : IRm → IR i ∈ {1, ..., l} para todo x ∈ X e G : IRn × IRm → IRm.

2.1 The SBTPP Problem with Fixed Demand (SBTPPF)

In the literature, the problem of determining tolls with the aim of reducing
congestion is frequently denominated a Problem of Congestion Cost, which,
in this section, we will refer to as CPP, from the term in English, Congestion
Pricing Problem.

In general, the CPP problem can be divided into two classes. The first,
known as First Best Toll Pricing Problem ([5], [14] and [15]) assumes that all
the arches that make up the network are subject to tolls. In this study we refer
to this problem as FBTPP, notation for the expression in English First-Best
Toll Pricing Problem’. The second is known as the Second-Best Toll Pricing
Problem’ ([16] and [18]), which case takes into account that in some of the
arches no toll is levied. We will refer to this problem as SBTPP The FBTPP
problem can be considered a particular type of SBTPP if we assume that the
set of arches where tolls are not levied is empty.

Many researchers down the years have developed models and algorithms
to solve SBTPP ([8], [11], [16], [19] and [21]). In [16], the approach proposed
exploits the properties of the SBTPP problem and presents a reformulation of
it based on the literature of the MPEC problem. In this same study, a solution
algorithm based on the methodology of Slice Planes [6] is considered.

To facilitate the problem’s formulation, we define as follows: i : index of
network arches; I : set of all the arch indexes contained in the network; k
index of the pair Start/Destination; K : set of all of the Start/Destination
pair indexes; xk : flow of the arch for the Start/Destination pair k; tk : demand
for the Start/Destination pair k; Ek : Ek = eq − ep where ei is the canonic
vector; v : the aggregate flow vector, in this case v =

∑
k∈K x

k; si(v) : cost in
time of a flow unit over the arch i; A ∈ IRq×n : flow restriction matrix; Ti : toll
charged over the arch i; Y : set of indexes of the arches which are subject to
a toll (fee);

In [16], the following hypotheses are assumed about the STBPP problem:
Let us consider:
V = {(v, t) : v =

∑
k∈K x

k, Axk = Ektk, xk, tk ≥ 0 ∀k ∈ K} and we
assume that V is limited;

si is continuous and differentiable ∀ i ∈ I;
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On the other hand, these hypotheses are amongst those required for the
result of convergence of the Inexact Restoration Algorithm proposed in [3].

2.2 The MPEC formulation of SBTPPF

Let’s consider the problem of Equilibrium with Limited Flow given in [13]:

Minimize
v

∑n
i=1

∫ vi
0
si(t)dt (2)

s.a vi ≤ ci (capacity) i = 1, ..., n (BFEP )

v ∈ V = {z ∈ IRn : Az = b e z ≥ 0}

If ci were known for each arch i, the SBTPPF problem would be reduced
to solving the BFEP problem but, in general, it’s not easy to estimate ci. This
justification is not explicit in [16], where the SBTPP problem is treated as an
MPEC problem.

If we consider the optimality conditions of the BFEP (C.O.T):

〈s(v) + T, v − u〉 ≤ 0 ∀ u ∈ V (3)

Ti(ci − vi) = 0 i = 1, ..., n (C.O.T )

vi, Ti ≥ 0 i = 1, ..., n

Observe that:

• if Ti > 0 then ci = vi;

• if Ti = 0 then ci =∞;

In an intuitive manner we can conclude that the variable Ti plays the role
of the toll charge in arch i, with the goal of increasing or diminishing the flow
in this arch. As ci exists, but is unknown and, in practice, we are interested in
finding the pair (T, v) that solves the C.O.T problem and, at the same time,
minimizes the time cost (s(v), v), the mathematical formulation is:

Minimize
v,T

〈s(v), v〉

s.a

Ti = 0 if /∈ Y

Ti ≥ 0 if ∈ Y

〈s(v) + T, v − u〉 ≤ 0 ∀z ∈ V
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These details of this reformulation and their respective properties can be
found in [16].

3 Solution via the Inexact Restoration Algorithm

Consider the SBTPPF problem with the Mathematical Programming with
Equilibrium Constraints (MPEC).

Minimize
v,T

〈s(v), v〉

s.a

Ti = 0 se i ∈ Y FD-MPEC

Ti ≥ 0 se i /∈ Y

〈s(v) + T, v − z〉 ≤ 0 ∀z ∈ V

onde V = {z ∈ IRn : Az = b e z ≥ 0}, si : IRn → IR are separable and
monotonous and differentiable at least twice, for i ∈ {1, .., n}.

We define,

C(T, v, µ, γ) =


s(v) + T + Atµ− γ

Av − b
γ1v1
...
γlvl

 (4)

e
L(T, v, µ, γ, λ) = 〈s(v), v〉+ C(T, v, µ, γ)Tλ, (5)

where (µ, γ) ∈ ∆ ⊂ IRq × IRn, with ∆ convex.
To find the solution to the problem, we used the method proposed in [10].

The basic idea behind this method is to solve the MPEC problem through a
sequence of approximate problems in two, distinct phases: Minimization and
Restoration. In the minimization phase, the function L (defined in this section)
is minimized about a plane tangential to the constraint C (defined in this
section) and, in the restoration phase, the problem of equilibrium is solved by
using a projection algorithm [22], thus taking advantage of the characteristic of
the problem of equilibrium without any reformulation. In [10], the convergence
is demonstrated of the algorithm considering some of the hypotheses satisfied
by the SBPTTF problem.
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4 Numerical results

The following stopping criteria, input parameters and notations were used:

• ||dktan|| ≤ 10−4, ||C(sk)|| ≤ 10−4;

• Maximum number of external iterations k = 250;

• Restoration Constant r = 0, 9;

• Stopping Criterion for the Projection Algorithm:‖R(yk)‖ ≤ 10−4;

• ItRI : iterations of do Inexact Restoration Algorithm;

• ItMin: Minimization Phase iteration Counter;

4.1 Description of the Test Problems

To test and validate the algorithm proposed in this study, some tests from the
literature were solved and, apart from these, new tests were created based on
the literature.

• Test I We considered the problem studied in [7].

• Test II

Test II was considered as FBTPPF in [14] and SBTPPF in [16] The
parameters for the remaining tests were extracted from [13], but had
never before been treated as FBTPPF or SBTPPF. The cost function
was defined in the following manner:

si(vi) = ti(1 + 0.15(
vi
ci

)4) for every i ∈ A (6)

The tables containing the numerical experiments were organized in two
classes, the First-Best Toll Pricing Problem and Second-Best Toll Pricing
Problem. Comparing the solutions obtained in [17] and [13] in tests I and
III, respectively, we can conclude that the values of the solution in the ob-
jective function are equal to those obtained by Algorithm 2.1 as per Table
2.

In the remaining tests, as these are new problems, we can only emphasize
that the stopping criteria of the algorithm were satisfied within a reasonable
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Table 1: Input Parameters
Test II Test III Test IV Test V

Link n.Link ti ci ti ci ti ci ti ci

A-E 1 5 12 5 102 5 25 5 25

A-F 7 6 18 5 162 5 25 5 25

B-E 8 3 35 3 35 5 25 5 25

B-F 4 9 35 9 182 5 25 5 25

E-F 9 9 20 9 20 5 25 5 25

E-G 2 2 11 2 11 5 25 5 25

E-I 12 8 26 8 26 5 25 5 25

F-E 10 11 4 11 20 5 25 5 25

F-H 5 6 33 11 20 5 25 5 25

F-I 11 7 32 7 32 5 25 5 25

G-C 3 3 25 3 25 5 25 5 25

G-D 18 6 24 6 24 5 25 5 25

G-H 15 9 19 9 19 5 25 5 25

H-C 17 8 39 8 39 5 25 5 25

H-D 6 6 43 6 43 5 25 5 25

H-G 16 4 36 4 36 5 25 5 25

I-G 13 4 26 4 26 5 25 5 25

I-H 14 8 30 8 30 5 25 5 25

number of iterations. Analyzing Table 2, we can compare only the solution
obtained in test II. In this case, the value for the objective function obtained
in reference [16] is 2455.06, while our algorithm returned 2521.8.

In relation to the others, once again a solution was reached that satisfied
the algorithm’s stopping criteria. For the purpose of comparative analysis, let’s
examine the solution obtained by Algorithm 2.1 compared with the solution
obtained in [13] when considering the problem as a FBTPPF, as per table 4.

The solution v returned in this case is exactly that obtained in [13]. On the
other hand, the solution T is slightly different but Ttv is exactly equal. This
is expected to happen, because only one solution for v, we can have various
solutions for T.

Table I contains the input parameters for the tests II, III, IV and V.

The tables bellow present the demands for Tests II, III, IV, V.
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Table 2: Numerical Results FBTPPF - Algorithm 2.1
Test ‖dktan‖ ‖C(sk)‖ ItRI (k) ItMin f ‖T‖
I 10−5 10−5 5 5 498 13
II 10−5 10−5 17 82 2253.9 14.3
III 10−5 10−4 30 650 2160.9 14.233
IV 10−5 10−5 5 70 2128.0 5.6569
V 10−5 10−5 6 71 1967.8 5.6569

Table 3: Numerical Results SBTPPF - Algorithm 2.1
Test ‖dktan‖ ‖C(sk)‖ ItRI (k) ItMin f ‖T‖
I* 10−5 10−5 5 5 498 13.8512
I** 10−5 10−5 3 3 552 0
II*** 10−5 10−4 6 6 2521.8 0.2453
III*** 10−5 10−4 8 138 2457.4 1.052
IV*** 10−5 10−4 3 3 2313.7 0
V*** 10−5 10−4 14 409 2153.3 0

II C D
A 10 20
B 30 40

III C D
A 10 20
B 30 40

IV C D
A 25 25
B 25 25

V C D
A 10 20
B 30 40

where: (*) Arch 1 charges no toll; (**) No arch charges tolls; (***) Only arches
3 and 18 charge tolls.
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Table 4: Test II Solution FBTPPF
Solution RI paper [13]

Link n.Link vi Ti vi Ti

A-E 1 9.41 0 9.41 0

A-F 7 20.6 0 20.6 0

B-E 8 38.34 4 38.34 4

B-F 4 31.67 0 31.67 0

E-F 9 0 0 0 0

E-G 2 21.3 10.34 21.3 11.2

E-I 12 26.44 0 26.44 0

F-E 10 0 0 0 0

F-H 5 39.47 7.2 39.47 7.2

F-I 11 12.78 0 12.78 0

G-C 3 29.6 4.86 29.6 4

G-D 18 20.76 0.86 20.76 0

G-H 15 0 0 0 0

H-C 17 19.39 0 19.39 0

H-D 6 39.24 0 39.24 0

H-G 16 0 0 0 0

I-G 13 29.06 2.34 29.06 3.2

I-H 14 10.16 0 10.16 0

s(v)tv 2253.917 2253.917
T tv 887.57 887.57
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5 Conclusions

This study presented an alternative method for solving the SBTPPF problem,
still unreported in the literature, based upon an algorithm of inexact restora-
tion. The advantage of this method is that it exploits the characteristics of
the problem of equilibrium and solves it without the traditional reformulations.
The solution algorithm behaved very well in all the test problems.

References

[1] R. Andreani, S.L.C. Castro,J.L. Chela, A. Friedlander, S.A. Santos, An
inexact-restoration method for nonlinear bilevel programming problems,
Comput. Optim. Appl., 43 (2009) 307-328.

[2] R. Andreani, J. M. Martinez, B. F. Svaiter, On the Regularization of mixed
complementarity problems, Numerical Functional Analysis and Optimiza-
tion, 21 (2000), 589-600.

[3] R. Andreani, J. M. Martinez, On the reformulation od Nonlinear Com-
plementarity Problems using the Fischer-Burmeister function, Applied
Mathematics Letters, 12 (1999), 7-12.

[4] R. Andreani, A. Friedlander, Bound Constrained Smooth Optimization for
Solving Variational Inequalities and Related Problems, Annals of Opera-
tions Research 116 (2002), 179-198.

[5] R. Arnott, K. Small, The economics of traffic congestion, Boston Col-
lege Working Papers in Economics 256, Boston College, Department of
Economics, 1994.

[6] M. S. Bazarra, H. D. Sherali, C. M. Shetty, Nonlinear Programming :
Theory and Algoritms, Second Edition, John Wiley & Sons, New York,
1993.

[7] J. F. Bonnans, A. Shapiro, Perturbation Analysis of Optimization Prob-
lems, Springer Series in Operations Research, Springer, 2000.

[8] L. Brotcorne, M. Labbé, P. Marcotte, G. Savard, A Bilevel Model for Toll
Optimization on a Multicommodity Transportation Network, Transporta-
tion Science 35-4 (2001), 345-358.



Solution of the urban traffic problem 1917

[9] P. H. Calamai, L. N. Vicente, Generating quadratic bilevel programming
test problems, ACM Transactions on Mathematical Software, 20 (1994),
103-119.

[10] J.L. Chela, Resolução do problema de programao matemática com re-
strições de equilíbrio usando restauração inexata, PhD thesis, University
of Campinas, 2006.

[11] P. Ferrari, Road network toll pricing and social welfare Trans. Res. B 36
(2002), 471-483.

[12] P. T. Harker and J. S. Pang. Existence of optimal solutions to mathemat-
ical programs with equilibrium constraints. Operations Research Letters
7.2 (1988), 61-64.

[13] D. W. Hearn, Bounding Flows in Traffic Assignment Models, Research
report N.80-4, Dept. of Industrial and Systems Enginnering, University
of Florida, Gainesville, FL 32611, 1980.

[14] D. W. Hearn, M. V. Ramana, Solving congestion toll princing models,
In Equilibrium and Advanced Transportation Modelling, P. Marcotte, S.
Nguyen (eds), Kluwer Academic Publisher, Boston, The Netherlands, pp.
109-124, 1998.

[15] D. W. Hearn e M. B. Yildirim, A toll pricing framework for traffic assign-
ment problems with elastic demands, In: Current Trends in Transporta-
tion and Network Analysis: Miscellanea in Honor of Michael Florian, M.
Gendreau, P. Marcotte(eds), Kluwer Academic Publisher, Dordrecht, The
Netherlands, 2001.

[16] D. W. Hearn, S. Lawphongpanich, An MPEC approach to second-best toll
pricing, Mathematical Programming Series B, 101 (2004), 33-55.

[17] D. W. Hearn, P. Bergendorff, M. V. Ramana, Congestion Toll Pricing
of Traffic Networks, Network Optimization, P. M. Pardalos, D.W. Hearn
and W.W. Hager (Eds.), Lecture Notes in Economics and Mathematical
Systems, Springer-Verlag, Vol. 450 (1997), 51-71.

[18] O. Johansson-Stenman, T. Sterner, What is the scope for environmental
road pricing? Road pricing Traffic Congestion and Environment, K.J.
Button, E.T. Verhoef (eds.), Edward Elgar Publishing Limited, London,
England, 1998.



1918 João Luiz Chela et al.

[19] M. Labbé, P. Marcotte, G. Savard, A bilevel model of taxation and its
application to optimal highway pricing, Manage. Sci, 44-12 (1998), 1608-
1622.

[20] A. Migdalas, Bilevel Programming in traffic planning: models, methods
and challenge, Journal of Global Optimization, 4, (1994) 340-357.

[21] M. Patriksson, R. T. Rockafellar, A Mathematical model and descent al-
gorithm for bilevel traffic management, Trans. Sci 36 (2002), 271-291.

[22] M. V. Solodov, B. F. Svaiter, A New Projection Method for Variational
Inequality Problems, SIAM Journal Control Optimization, 37 (1999), 765-
776.

Received: May 1, 2014


