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We present results from simulations of the photocurrent observed in recently fabricated InAs

quantum dot infrared photodetectors that respond with strong resonance peaks in the �10 lm

wavelength range. The results are in good agreement with experimental data generated earlier.

Multiphoton scattering of electrons localized in the quantum dots are not only in accordance with

the observed patterns, but are also necessary to explain the photocurrent spectrum obtained in the

calculations. VC 2011 American Institute of Physics. [doi:10.1063/1.3556432]

I. INTRODUCTION

For many years now, mid-infrared photodetection has

consistently been an issue of interest in various research

fields.1 Infrared photodetectors fabricated with self-

assembled grown quantum dots (QDIPs) in III-V based

structures, instead of quantum well heterojunctions (QWIPs),

have become promising thanks to their varying peculiar

characteristics.2,3 Some of the advantages of QDIPs over

QWIPs arise from the following properties4: (1) S-polarized

light can couple more efficiently to charge carriers in the

QDIPs yielding stronger coupling with the normal incident

light while in the QWIPs the light must be shed with at least

some component transverse to the normal (growth) direction.

In a QWIP, electrons behave as if they were free in the direc-

tion perpendicular to the normal, so that the electric field

component in that direction can only shift the unperturbed

levels, producing no coupling between them; (2) improved

precision of the absorption resonances follow from the nar-

row linewidths of the well defined atomiclike energy levels;

(3) fewer constraints when designing multicolor devices, as

one can, for example, combine modules of different dot

sizes; (4) lower dark currents are expected, as a consequence

of the longer relaxation times, typical in the much smaller

size confinement of QDIP structures; (5) potential for larger

gains, achieved in the III-V QDIPs due to the less effective

recombination of charge carriers as compared to QWIPs; (6)

sharper linewidths and strongly localized states mediating

the emission processes, which are thought to improve the

operation of the QDIPs at higher temperatures as compared

to QWIPs.5,6

InAs quantum dot structures grown on InGaAlAs have

been experimentally investigated in Refs. 12 and 13 for mid-

infrared photodetection. In this work we review some of these

measurements of photocurrent in QDIP in light of new theo-

retical results. As it will be recalled, the existence of the

peaks experimentally observed cannot be understood by con-

sidering only the inherent single-photon processes in the

structures. It has been conjectured in Ref. 13 that higher order

processes due to electron-electron interactions, specifically

the Auger scattering, might be responsible for the appearance

of the peaks. We see here, however, by using a single-elec-

tron model, that it is possible to reproduce the observed pho-

tocurrent peaks and all their main trends, leading to an

alternative explanation in terms of multiple photon processes.

Reference to multiple photon processes has become

common in the recent literature in order to understand the

optical responses of infrared devices, and experimental evi-

dence that they occur in these devices has been gathering

now for a while, together with theoretical approaches to

explain them.7–10

Multi-photon processes may differ in their nature, in the

sense that photons can either be absorbed simultaneously or

in sequential scattering events. As we will see, the transitions

that come out of the single-electron calculations presented

here are due to sequential processes, with the electrons being

photoexcited out of the dot via multi-photon transitions

(bound to continuum transitions).

The transitions generating the photocurrent are strongly

enhanced by the presence of intermediate energy levels in se-

quential photon absorptions. This process is conceptually

similar to multiphoton ionization of an atom, however, the

dipole matrices in the semiconductor system we investigated

are considerably larger.11 This allows for the multi-photon

resonance channels to contribute in the photoexcitation of
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electrons for the relatively low intensity light sources used to

generate the experimental plots presented at the top of

Fig. 2.

II. PRELIMINARY DISCUSSION OF THE SYSTEM AND
THE RESULTS

In this Section, we briefly describe the system studied

and anticipate the main aspects of the new results obtained

in our calculations and compare them to the results of early

measurements. Additional details about both the system’s

structure and the experimental results have been presented in

Refs. 12 and 13.

The representation of the system investigated is shown

in Fig. 1. The dots are lens shaped self-assembled structures

that protrude from a wetting layer, as schematically shown in

the figure.

Our calculations were carried for both coin-shaped dots

(as illustrated in Fig. 1) and lens-shaped dots. In the latter

case, the shape was adjusted to follow regular patterns

obtained in micrography images taken from the dots. Such a

difference in the shape of the dots yielded no relevant

changes in the final simulation results, although the energy

structure was of course rearranged for different geometries.

As we will see, the electron multi-scattering processes that

generate the photocurrent involve the excitation of electrons

from low lying states localized inside the dot up to a state in

the continuum, with absorption of a few photons, so that the

tens of intermediate states in between the ones involved do

not play a major role.

In Fig. 2, we see curves extracted from experimental

observations (at the top plot) together with some of the simu-

lated results. As we will see in the next Section, the quantum

dots are modeled as potential-barrier structures, and a single

electron, subjected to an external oscillating electric field, is

used to obtain the results of the calculations. The polariza-

tion of such a field is made perpendicular to the z direction

(see Fig. 1) to represent the real experimental situation

regarding the (normal) incidence of the photons. In addition,

a static electric field (Fz, disclosed in the labels of Fig. 2) is

considered along the z direction. We are not able to track

down the quantitative correspondence between the exact val-

ues of the real electric fields acting upon the electron inside

the samples. The reason for this is the existence of intrinsic

fields in the samples that are unknown. However, the order

of magnitudes are in correspondence as well as the behavior

obtained by varying Fz, in remarkable agreement, as seen in

Fig. 2.

III. THEORETICAL APPROACH FOR THE
SIMULATIONS

We would like to state up front that the reader who

becomes interested in deeper theoretical details than what is

presented here is very encouraged to refer to Ref. 15. Techni-

cal details like boundary conditions, continuous versus dis-

crete states, conservative versus nonconservative systems,

and others, are quite traditionally handled, and are explained

in both Ref. 15 and in the references therein, which form an

important part of the wide literature about these techniques.

An effective Hamiltonian for a single electron interact-

ing with an external oscillating electric field is used to run

the numerical simulations,

H ¼ � �h2

2m�
r2 þ VðrÞ � ezFz � exAðtÞ sin xt; (1)

where m� is the electron effective mass, assumed uniform

throughout the system, VðrÞ is the potential due to the quan-

tum dot structure, whose profile is shown in the right-hand-

side of Fig. 1, AðtÞ is the envelope amplitude of the

FIG. 2. (Color online) Comparison between experimental (at the top) and

calculated values for the photocurrent. The curves in either graph are not in

direct correspondence regarding the static electric fields indicated. The over-

all trends in the simulated results come out in good agreement with the

experiments despite the simplicity of the single-electron model used. Both

experimental and calculated curves are obtained for s-wave (normally inci-

dent) light shed on the structure.

FIG. 1. (Color online) Representation of the quantum dot structure studied.

The left panel illustrates the layers along the growth (z) axis. The structure is

cylindrically symmetrical around z. The right panel shows a 3D plot of the

potential: the vertical axis shows the potential energy while the other axis

perpendicular to z can be any of the infinitely many equivalent directions

passing through the center of the dot. The precise locus of the origin along z
is shown in Fig. 3.
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oscillating field, and Fz is the intensity of the static field. The

time-varying field interacts with the quantum structure, and

the resulting absorbtions at specific frequencies (x) give the

resonance channels for photons of energy �hx to be captured.

Hence, the spectral plots presented here are generated by

performing calculations for different values of x.

Band offsets due to the matching of the grown layers

and the self assembled dot were taken from Ref. 12, where

the existence of strains in the dot were accounted for by fol-

lowing the general ideas described in Ref. 14. The envelope

is taken in the form of a pulse, with Gaussian or some other

short living form used to excite the system. The results are

not very sensitive to the form chosen. The ground state of

the system is calculated first by setting AðtÞ � 0. The result-

ing ground-state wave function is used as wð0Þ, the state of

the system at t ¼ 0, when the oscillating pulse is turned on,

and the full Hamiltonian in Eq. (1) (with AðtÞ 6¼ 0) is used to

numerically evolve the system in time to obtain wðtÞ. A

time-dependent current density is then calculated by adding

the outgoing components of the current-flux,

Jðx; y; tÞ ¼
X

z0

Re
�h

im�
wðr; tÞ�rwðr; tÞ

� �
z¼z0

; (2)

from which the integrated current is taken,

I ¼
ð

ẑ � Jðx; y; tÞdxdydt; (3)

in arbitrary units. The value of z0 is chosen at two locations

far away from the dot in the z axis so that the above sum has

two terms, corresponding to outgoing contributions in the

directions 6z.

In order to implement the algorithm just outlined, we

numerically solve Schrodinger’s Equation by using the

method of the split-operator.15–18 This method consists of

propagating the wave function from a given initial state wðtÞ
to wðtþ DtÞ through the usual unitary propagator

Uðt; tþ DtÞ ¼ exp
�i

�h

ðtþDt

t

dt0Hðt0Þ
� �

; (4)

by splitting U into the product UpotUkinUpot, where the new

operators contain only potential (kinetic) parts of H. Such a

splitting introduces an error of order of some power of Dt,
due to the noncommuting nature of the potential and kinetic

operators. There is a compromise between the power of Dt
obtained in a particular choice of splitting and the number of

numerical steps necessary to find the solution. It is possible

to keep an error of the order of Dt3 with a considerably low

number of steps. Then, by choosing a conveniently dense

time-grid, the propagation of w is achieved with an arbitra-

rily small error. This yields arbitrarily precise outputs and a

very quick convergence for the time evolution of w.

We want to note here, that this method yields the photo-

current with no need of any information about the energy

spectrum or eigenstates of the system but one single initial

state (presently chosen to be the ground state) which is used

as the state vector at t ¼ 0. In this regard, the photocurrent

results (as the one shown in the lower panel of Fig. 2) are

fully simulated, in the sense that one evolves a Hamiltonian

in time, in a conveniently thought out manner, and then

obtains information from the results.

To unveil the physics beneath the simulation, we want

to relate the photocurrent results to the detailed characteris-

tics of the structure. The method of the split-operator is also

advantageous for this purpose, since it quickly obtains the

ground state and from this it constructs the excited states, as

outlined in what follows. In order to obtain the eigenstates of

a time-independent Hamiltonian, the evolution is performed

in the imaginary-time domain: From any trial wave function,

few steps yield convergence to the ground state; one then

repeats the program but now a Gram-Schmidt orthogonaliza-

tion constraint drives the evolution path to the first excited

state; repetition gives as many excited states as one chooses

to calculate.15

Thus, the method allows us to calculate the eigenstates

of the system exactly, one by one, while finding the spectrum

without more than an educated guess of the initial ground

state. The calculations are carried without the necessity of

going through usual limiting issues like truncation and/or ad-

equacy of a given basis.

IV. ANALYSIS OF THE RESULTS

As we have just noticed in the last Section, the calcu-

lated photocurrent obtained here is the direct output from the

propagation in time of a given Hamiltonian [presently given

by H in Eq. (1)], which is the representation of the system

studied. All effects of such a system are automatically

included in the simulation, and no access is needed to the

spectrum or its properties (like, e.g, selection rules or spec-

tral weights) in order to obtain the photocurrent. Rather it is

the calculated photocurrent itself that gives us access to the

resonances in the model system. From this perspective, the

oscillating electromagnetic field, given by the last term of

Eq. (1), works as a probe and we can understand the outcome

as resulting from the scattering of the electromagnetic field

by the quantum structure given in Fig. 1 and modeled in the

remaining terms ofH.

To understand why specific energy peaks show up in the

photocurrent, and what are the physical processes involved

in the absorption of light, we proceed to obtain the spectrum

as outlined in the end of the last Section. The cross-sectional

z-profile of the potential barriers is illustrated in Fig. 3 to

help with the subsequent analysis (we stress, however, that

the full three-dimensional (3D) potential of the quantum dot

structure of Fig. 1 is used to obtain all the results presented

in this article). Figure 3 shows a quantum well placed to the

left, while the deeper well on the right (which is crossed by

the ground-state energy line) is a cross-sectional representa-

tion of the dot.

In Fig. 4, we see the average position along the z axis

calculated for states up to the continuum. These positions

follow in the vicinity of the wave functions’ maxima, in par-

ticular for the lower energy states, which are localized in-dot

states. As the energy increases, we notice from Figs. 3 and 4

that the states become more numerous and closer in energy

and that for energies greater than that of the bottom of the

064510-3 Degani et al. J. Appl. Phys. 109, 064510 (2011)
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well the states become peaked inside the well. As we argue

ahead, these well states serve as intermediate states in the

absorption process.

In order to plot the energy spectrum, we use the follow-

ing density of states (DOS),

DOSðEÞ � A
X

n

e�½ðE��nÞ=D�2 ; (5)

given in arbitrary units, where D is a small artificial broaden-

ing energy to make the peaks resolved. Here, en are the

eigenvalues, calculated as explained in the last Section, and

the normalization constant A is determined by the conditionð
DOSðEÞdE ¼ 1: (6)

The DOS is shown in Fig. 5 for states up to the continuum.

The ground state has its energy about �240 meV, so that if

the electron in the ground state absorbs one single photon

with �hx � 240 meV, it could be excited to the continuum

and contribute to the photocurrent.

However, the measured photocurrent spectrum, shown

in Fig. 2, shows two relatively broad peaks that the simula-

tions suggest to be a group of peaks smeared out by the �7

K thermal bath present in the experiments (and absent in the

photocurrent calculations). These peaks have been produced

by scattering events whose energies lie out of the window of

�hx � 240 meV just described, having their maxima at ener-

gies of about 100 and 200 meV. The only possibility for a

single-electron Hamiltonian to reproduce them, as the one

used here does, is through multiphoton absorptions.

Indeed, careful examination of the DOS plotted in Fig. 5

suggests that the �200 meV peaks could arise from 2-photon

absorptions while the �100 meV peaks from 3-photon

absorptions.

The analysis made up until now suggests that multipho-

ton processes have a main contribution in the generation of

the photocurrent for the two peaks observed at energies less

than the continuum. This analysis is not suitable if one

wishes to understand why these peaks occur at the specific

energies observed, i.e., the role that specific states have in

order to set the selectivity shown in the experiments. In the

next Section, we further understand these aspects and

strengthen our proposition that multiphoton processes are the

main reason for the phenomena observed.

V. PROBING THE 3D STRUCTURE

The method of the split-operator described in Sec. III

can be used to probe the three-dimensional structure shown

in Fig. 1 in order to reveal more details related to its spec-

trum. The idea consists of three complementary methods.

The general idea is to calculate time-correlation func-

tions when probing the structure with different field polariza-

tions, so we can check for the system’s specific responses

and selection rules. For our purposes it suffices to use the

two first monopole (power spectrum) and dipole (absorption)

moments. The reason why these two time-correlation func-

tions will show different behaviors when the system is

probed with symmetrically different fields is the anisotropy

of the structure: the potential energy along the growth axis

(z) is very different from that along any of the equivalent

directions perpendicular to z.

A. Power spectrum

We calculate the power spectrum PðxÞ by first tilting

the static structure with a constant electric field applied in ei-

ther the z or x directions and obtaining the ground state of

the resulting static system. This is the t < 0 part of the

FIG. 3. (Color online) Potential barriers in the z direction in a cross-sec-

tioned region of the structure shown in Fig. 1. The ground state energy is

shown (E0). Band offsets taken from Ref. 12, where the strains in the dot

were included as in Ref. 14.

FIG. 4. (Color online) Calculated zh i for states up to the continuum and

superimposed on a projection of the physical structure showing the locations

of the dot and the various layers (dashed lines added for guidance).

FIG. 5. (Color online) Density of states for states up to the continuum, cal-

culated for the structure in the absence of both static and oscillating fields.
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calculation. Then, at t ¼ 0, the field is abruptly turned off

and the t < 0 ground state is propagated to positive times.

These calculations are done by using the numerical steps

described in Sec. III. The power spectrum is then directly

obtained from the Fourier transform of the time-correlation

function wðr; 0�Þjwðr; t > 0Þh i,

PðxÞ �
ð1

0

dteixt wðr; 0�Þjwðr; t > 0Þh i: (7)

The split-operator method calculates this time-correlation

function directly from the wave functions obtained at differ-

ent times and then the result is Fourier-transformed.

Here, the purpose of tilting the structure with an external

electric field is to guarantee a t < 0 solution that will have

large enough projections in all eigenstates of the unperturbed

structure yielding the whole unperturbed spectrum to show

in the time-correlation function of Eq. (7). Applying the con-

stant electric field in the x and z directions also warrants that

the complete spectrum is obtained regarding both the longi-

tudinal (z) and transverse (x) quantizations present in the 3D

structure. The final spectrum is the combination of two

curves obtained by using the field in both directions, as

shown in Fig. 6.

The responses obtained for the two different directions

in which the constant fields are applied are related, as we see

in the next subsection, to the longitudinal (x) and transverse

(z) polarizations of the light that can be shed on the sample.

Here we also refer to these two branches of the spectrum

as s -wave and p -wave, for the x and z responses, respectively.

It becomes clear that PðxÞ indeed gives information

about the spectrum if we write the general-solution state in

the basis of the eigenstates of the unperturbed structure,

jwðr; tÞi ¼
X

n

e�i�nt=�hanjni; (8)

where en are the energy eigenvalues of the unperturbed sys-

tem. As it has already been stressed, our calculations do not

require the use of basis states, so such an expansion is writ-

ten here only as an auxiliary statement. From Eqs. (8) and

(7) we immediately see that

PðxÞ ¼
X

n

janj2dðx� �nÞ; (9)

which is clearly peaked at the eigenenergies.

B. Absorption spectrum

To calculate the absorption, we use the split-operator

method to solve for optical relations whose basic derivations

can be appreciated in Refs. 19 and 20. We proceed as in the

calculation of PðxÞ in the last subsection, however we use a

different time-correlation function. The absorption is taken

from the Fourier transform of

hnjeiHt=�hð�exiÞjwðr; t > 0Þi;

where xi is any one of the three position observables. This

correlation is the dipole moment averaged between the time-

evolved eigenstate one chooses to study and the full state of

the system. In the present case, we are investigating the

ground state, and the absorption will be given by19,20

aiðxÞ / xRe

ð1
0

dt eið�hxþ�0Þt=�h 0jxijwðr; tÞh i
� �

: (10)

Again, we state that the split-operator method used here

yields directly the time-correlation function in Eq. (10),

without the need to find the eigenstates (except for the

ground state in the case of the absorption).

If, nonetheless, we carry on an analysis similar to that of

the last subsection, using Eq. (8) to check the physical con-

tent of aiðxÞ, the resulting expression is written, in terms of

a basis set, as

aiðxÞ / xRe
X

n

an 0jxijnh i
ð1

0

dt ei½x�ð�n��0Þ=�h�t

" #
; (11)

where a small positive imaginary part is included in the

exponent’s frequency to resolve the peaks. It is clear from

this expression that the absorption provides information

about the energy differences as measured from a reference

state (which in the present case is chosen to be the ground

state), and that it also accounts for dipole-moment selection

rules through the matrix elements that appear in the sum.

Figure 7 depicts the absorption spectrum plotted to-

gether with the power spectrum. The solid-red and dashed-

FIG. 6. (Color online) Power spectrum plotted for both transverse (s) and

longitudinal (p) responses.

FIG. 7. (Color online) Absorption plotted on top of the energy spectrum

and the associated symmetries (s and p-wave). The numbers near the peaks

correspond to the exact values of the peak energies. The bottom plot is the

same graph as the one shown in Fig. 6, but now depicting some of the lower

transitions that are consistent with the absorption amplitudes. The inset

shows that there is a cluster of peaks �200 meV with lesser intensity and

slightly greater energies in the s-wave curve.
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blue curves refer to i ¼ x and i ¼ z, respectively. In this fig-

ure, it becomes clear that the strength of the possible transi-

tions are very large in the vicinity of the energies

experimentally observed, which correspond to about 100

meV and 200 meV photons. However, as we see in the next

subsection, the symmetries associated with the red and blue

lines in Fig. 7 correspond, respectively, to the s-wave and

p-wave polarizations of the incident field.

The experimental curves presented here have been

obtained at 7 K, using s-wave polarization for the light shed

on the sample, that is, the oscillating field, as well as the cal-

culated photocurrent in Fig. 2. The lower intensity of the

s-wave absorption, as shown in the inset of Fig. 7 explains

the relative intensity of the experimentally observed peaks.

As a general feature, we note also that the ground state

is the only low-lying state that combines both s and p-wave

symmetries, so that one might ask what would be the relative

contribution of the first excited state, lying �22 meV (almost

room temperature) above the ground state, if it turns out to

be initially occupied.

C. Probing for different light polarizations

To answer to questions like the one just posed and to

complete a thoroughly theoretical study of the system pre-

sented, we calculate the photocurrent by applying the oscil-

lating field in the z direction. We recall that both the

experimental and the calculated photocurrents shown in Sec.

II correspond to light shed normally on the dot, which means

the oscillating field in the x direction. Applying the oscillat-

ing field in different directions is accomplished by inter-

changing x with the proper observable in Eq. (1), and then

calculating the photocurrent as described in Sec. III. We will

use the operator z, which corresponds to the sample’s growth

direction, and since we can independently choose the oscilla-

tion amplitude in either case, we will refer to these ampli-

tudes by Ax and Az, respectively.

Another quantity of interest we also obtain is the ioniza-

tion probability, defined as

PnðtÞ ¼ 1� j njwðr; tÞh ij2; (12)

for w r; 0ð Þj i � nj i. This quantity has a variable value

0 	 PnðtÞ 	 1 and it is computed when a steady-state photo-

current is reached, when we denote its value by

Pn � Pnðt!1Þ. It clearly tells us whether, at a given time

t > 0, the steady state vector has any projection left on its

initial value, chosen to be an eigenstate. Thus it will be as

close to its maximum value of one as the event of the elec-

tron leaving the chosen eigenstate is more likely to occur for

times greater than the transient.

We see in Fig. 8 the photocurrent calculated for a p
polarized light shed on the system (top plot) together with

the ionization probabilities P0 and P1 (bottom plot), for both

the ground and first excited states, and for the static bias field

set to zero. For this polarization, the photocurrent excited by

multiple photons through states of negative energies is small

as compared to the values generated by single-photon

absorptions directly into the continuum, as it may be seen

with help of the inset graph. The ionization probability

reveals that there are resonances for energies near 200 meV,

however, except for a couple of peaks, they are quite attenu-

ated relative to the ones that correspond to the continuum,

E � 250 meV. In the case of the �100 meV region, the

resonances are strongly suppressed. This is consistent with

the absorption results, shown in Fig. 9 for a wider set of

energy differences.

For the p-wave polarization there is practically no

absorption near the 100 meV region. The photocurrent pro-

duced by the p-wave light in this region can be seen not to

be exactly vanishing if we re-scale the top plot of Fig. 8 in

that energy range, as shown in Fig. 10.

The opposite behavior is observed in the 100 meV

region for the s-wave-polarization photocurrent, as we see in

Fig. 11. It is clear that the strong ionization probability,

sharply placed about 100 meV, leads to the strong peak

observed in the photocurrent. We can also note, in the left

inset of Fig. 11, the role that the static bias field plays for the

existence of the 100 meV peak. In the insets of Fig. 11 it is

also clear that although the ionization probability is quite

FIG. 8. (Color online) Photocurrent, in arbitrary units (top), and the ioniza-

tion probability (bottom) for the p-wave polarization (oscillating field in the

z (growth) direction, whose amplitude Az is shown). The inset shows the

number of photons absorbed for different energy ranges. The static bias field

is zero for these curves.

FIG. 9. (Color online) Absorption of the top plot of Fig. 7 shown over a

wider energy range.

064510-6 Degani et al. J. Appl. Phys. 109, 064510 (2011)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

143.106.108.146 On: Fri, 19 Jun 2015 18:27:04



large for both zero and 50 kV/cm static biases, the photocur-

rent is only excited �100 meV if the bias is nonzero.

The differences between the peak structure and bias de-

pendence in the photocurrent and the ionization probability

can be understood as follows. The ionization probability Pn

defined in Eq. (12) clearly contains resonances for which a sin-

gle photon is absorbed even if there are no subsequent absorp-

tions allowed, whereas the photocurrent can only be excited if

the electron is promoted up to the continuum, which can only

occur, for the energies below the continuum, if multiple pho-

tons are absorbed. The existence of a peak in Pn not accompa-

nied by a similar peak in the photocurrent indicates that one or

more photons have been initially absorbed but that the electron

did not reach the continuum for that energy, through subse-

quent necessary absorptions. Besides the selection rules of the

unperturbed structure, frustration of subsequent absorptions

results from the energy mismatch of available states whose

energies are very sensitive to the static bias.

VI. MULTIPHOTON PROCESSES

From the structure’s selectivity revealed in our calcula-

tions, we see that multiple-photon absorptions are the main

physical processes leading to the observed results.

To illustrate this, we show in Figs. 12 and 13 the repre-

sentative drawing of the absorption “jumps” and the energy

regions that account for the different numbers of photons

absorbed.

At first glance, the final transitions represented by

arrows in Fig. 12 may appear somewhat arbitrary, given the

existence, in the continuum, of many states for the electron

to end up (see the DOS plotted in Fig. 5). However, as we

see in the absorption, in the top plot of Fig. 7, the whole

structure is very selective for a wide range of energies,

strongly suppressing the transitions whose differences in

energies are not about either 100 or 200 meV.

In Fig. 13, we see a plot of one of the photocurrent

curves calculated, and shown in Fig. 2, depicted in two dif-

ferent scales and shown within a slightly wider energy range,

which allows us to appreciate further details of the curve’s

structure.

VII. CONCLUSIONS

In this article, we presented a detailed theoretical study

of recent experiments done with quantum dot infrared photo-

detectors. We presented simulations based on the split-opera-

tor method, which has various advantages as compared to

other techniques, the main ones being provision of direct

access to the time dependent wave function without the need

FIG. 10. (Color online) Excerpt from the top plot of Fig. 8 zoomed by 50

times in the vertical scale.

FIG. 11. (Color online) Photocurrent shown for bias static field equal to

zero and various oscillating-field amplitudes for s-wave light. The left inset

photocurrent shows the 100 meV energy region for static bias fields of both

0 and 50 kV/cm for Ax ¼ 30 kV/cm. The right inset shows the ionization

probability for the ground state in the same energy range and for the same

oscillating field as in the left inset.

FIG. 12. (Color online) Schematic view of the multiphoton absorption

processes. The electron, initially in the ground state (represented by a

straight line at its energy), reaches the continuum and contributes for the

photocurrent after absorbing more than one photon.

FIG. 13. (Color online) Photocurrent, in arbitrary units, shown in both lin-

ear (top) and logarithmic scales. The energy regions originating different

multiphoton processes are indicated in the lower plot.
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of preliminary knowledge of either the spectrum or the asso-

ciated states. Slight adaptation of the method also permits

one to calculate the eigenstates and eigenenergies in a very

efficient manner. The results of the calculations agree well

with the observed behavior. In particular, two peaks that

have been experimentally observed in energy ranges for

which single photon absorptions cannot provide an explana-

tion for their existence, showed up at the same energies in

our simulations. Given the simplicity of the model used in

our program, the only possible processes that could account

for these peaks, in this model, are multiphoton absorptions.

In addition to the simulated photocurrent, we further investi-

gated various quantities, like the density of states, both the

power and absorption spectra, which build a strong case for

this simple explanation in terms of multiphoton absorptions.

However, scattering processes from interactions between the

electronic carriers are not accounted for in our calculations,

whence the importance of the multiphoton results given here

relative to ones that might come from interactions (like Au-

ger scattering), cannot be settled in this article, although it

has been suggested by two of us in Ref. 13, we recall, none-

theless, that the carrier densities of the samples are quite

low, which intuitively suggests that dynamical effects due to

interelectronic interactions should be minimal.
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