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Correlated random hopping disorder in graphene at high magnetic fields: Landau level broadening
and localization properties
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We study the density of states and localization properties of the lowest Landau levels of graphene at high
magnetic fields. We focus on the effects caused by correlated long-range hopping disorder, which, in exfoliated
graphene, is induced by static ripples. We find that the broadening of the lowest Landau level shrinks exponentially
with increasing disorder correlation length. At the same time, the broadening grows linearly with magnetic field
and with disorder amplitudes. The lowest Landau level peak shows a robust splitting, the origin of which we
identify as the breaking of the sublattice (valley) degeneracy.
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I. INTRODUCTION

The observation of the anomalous quantum Hall effect1,2

(QHE) is one of the most striking and robust manifestations
of the underlying massless Dirac fermions in graphene near
half-filling. The energy scales in graphene are such that the
quantization of the Hall plateaus can be observed even at
room temperature at sufficiently high magnetic fields.3 The
energetics in graphene also favors a direct experimental access
to the low-lying Landau levels by infrared spectroscopy4–6

and by scanning tunneling spectroscopy,7,8 something hardly
possible in conventional semiconductors.

Further information about the nature of the lowest Landau
levels in graphene has been recently obtained in thermal
activation experiments,9–13 showing that the zeroth Landau
level (n = 0) is much sharper than the first and higher Landau
levels. These observations are the main motivation of the
theoretical study presented in this paper.

Disorder is key to understand the electronic transport
properties in graphene,14–17 particularly in the quantum Hall
regime, where the conductivity plateaus are conventionally
explained by delocalized states surrounded by localized ones.
However, the mechanisms that lead to localization in QHE
in graphene are still not clear.18 Currently, there is still
some debate on the most relevant disorder mechanisms for
transport in graphene.15 Among those, ripple disorder is
believed to play an important role. Static ripples give rise to
random correlated hopping disorder,19,20 which is the disorder
mechanism analyzed in this paper.

The shape and width of the lowest Landau levels (LLs)
in graphene have been investigated in several theoretical
studies.21–29 The broadening of the LLs differs among disorder
models. In particular, the inclusion of a finite correlation length
on the hopping (off-diagonal) disorder model was recently
reported to induce an anomalously sharp n = 0 LL compared
to higher levels.25,26 It was found that the width of the zeroth
LL (�0) shrinks to zero as soon as the hopping correlation
length λ exceeds the lattice parameter a, in line with analytical
studies of the effects of long-range chiral disorder.30

Regarding the localization properties of the lowest LL, nu-
merical simulations using uncorrelated hopping disorder21,24

and white-noise random magnetic flux disorder31,32 observe

an interesting distinct qualitative feature in the quantum Hall
spectrum of graphene, namely, a splitting. It was found that,
in such chiral disorder models, the lowest LL splits into two
Gaussian-shaped peaks, even in the absence of both a Zeeman
term and electron-electron interactions. The splitting energy
�E is linearly proportional to the disorder strength and scales
with the square root of the applied perpendicular magnetic
field.24,31 A similar square-root magnetic field dependence of
the splitting of the n = 0 Landau level has been experimentally
observed in Ref. 9.

In this paper, instead of the white-noise random hopping
(or magnetic flux) model, we address the more realistic
correlated random hopping disorder model.25,26 We present
a systematic study of the shape of the lowest LLs and their
localization properties as a function of the hopping disorder
correlation length, as well as of other relevant parameters of
the system, such as disorder amplitude and magnetic field. We
find that �0 decays exponentially with the correlation length,
never fully vanishing for any finite λ. More importantly, we
observe that the ratio �1/�0 depends only on the disorder
correlation length, showing no significant variation neither
with the disorder strength nor with the magnitude of the applied
magnetic field B, provided the system is in the quantum Hall
regime. In addition, we study the splitting of the n = 0 LL,
which is inferred from the analysis of the participation ratio.
We show that this splitting shrinks with increasing values of
λ, but is still present even for correlation lengths for which the
n = 0 LL width becomes very small.

The paper is organized as follows. In Sec. II, we present
the model used in our numerical simulations. The analytical
framework for the interpretation of our results is discussed
in Sec. III. Next, we analyze the spectral (Sec. IV) and
localization properties (Sec. V) of the model. We conclude
by summarizing our results and discussing their relevance to
the interpretation of experiments on the quantum Hall effect
in graphene in Sec. VI.

II. MODEL DESCRIPTION

Graphene is a monolayer honeycomb lattice of carbon
atoms with a lattice constant a = 2.46 Å. Its primitive unit cell
contains a pair of atoms that form two triangular sublattices,
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denoted by A and B. The tight-binding Hamiltonian model for
a graphene monolayer reads as

H =
∑
〈ij〉

(tij e
iφij c

†
i cj + H.c.), (1)

where the sum runs over nearest-neighbor sites. The external
magnetic field B, perpendicular to the graphene sheet, is in-
cluded by Peierls’ substitution, namely, φij = 2π (e/h)

∫ r i

rj
A·

d l . In the Landau gauge, A = (0,Bx) and considering a
brick wall lattice, which is topologically equivalent to the
hexagonal lattice,33 one has φij =0 along the x direction and
φij = ±π (x/a)�/�0 along the ∓y direction, with �/�0 =
Ba2

√
3e/(2h) per unit cell.

The random hopping disorder is implemented by randomly
choosing the hopping parameters tij from a uniform distri-
bution of width W around the average value t = 2.7 eV. In
addition, we impose here a spatial correlation to the hoppings
following a Gaussian profile of width λ. Figure 1 illustrates
typical realizations of the disordered hopping parameter tij for
two different correlation lengths (λ = 2a,4a). The color scale
refers to the hopping amplitude at the middle point between
the two nearest-neighbor sites i and j . As expected, Fig. 1
shows smoother (less abrupt) variations of the hopping values
with increasing correlation length.

We consider graphene lattices of M × N carbon atoms
(M zigzag chains, each containing N atoms) with periodic
boundary conditions. The linear sizes of the lattices are

Lx = (M − 1)

√
3

2
a, Ly = (N − 1)

a

2
. (2)

λ/a = 2.0

Lx = 21.1 nm

L y
= 

10
.9

 n
m

L y
= 

10
.9

 n
m

λ/a = 4.0

FIG. 1. (Color online) Typical spatial “landscapes” of the fluctu-
ation in the hopping matrix elements δtij /W = (tij − t)/W for two
different correlation lengths (λ = 2a,4a). The color scale represents
the magnitude of δtij /W . The lattices shown above have M × N =
100 × 90 atoms, which correspond to lateral dimensions Lx × Ly =
21.1 nm × 10.9 nm.

Most of the numerical results shown in this paper are calcu-
lated for lattices of M × N = 100 × 90 atoms, corresponding
to a size Lx × Ly = 21.1 nm × 10.9 nm, the same lattice
dimensions shown in Fig. 1.

III. DIRAC HAMILTONIAN: ANALYTICAL RESULTS

Near half-filling, the low-energy properties of the tight-
binding Hamiltonian in Eq. (1) are described by noninteracting
massless Dirac fermions in a uniform perpendicular magnetic
field, with an effective Hamiltonian given by34,35

H0 = vF

⎛
⎜⎜⎜⎝

0 πx − iπy 0 0

πx + iπy 0 0 0

0 0 0 πx + iπy

0 0 πx − iπy 0

⎞
⎟⎟⎟⎠ ,

(3)

where h̄vF = √
3at/2 is the Fermi velocity, π = p + eA/c,

and p stands for the electron momentum operator. The
Hamiltonian (3) operates on a four-component wave function
(	K

A ,	K
B ,	K ′

A ,	K ′
B ), where 	K

A and 	K
B represent the enve-

lope functions at A and B sites for the K point and 	K ′
A and

	K ′
B for K ′, respectively. In this paper, we do not consider

explicitly the electron spin degree of freedom, and all states
are assumed spin degenerate.

The eigenstates of the Hamiltonian (3) are labeled by
(j,n,k), with the valley index j = K,K ′, the Landau level
index n = 0, ± 1, . . ., and the wave vector k along the y

direction.34 The eigenenergy depends solely on n as εn =
h̄ωB sgn(n)

√|n|, where h̄ωB = √
2γ /B with the magnetic

length given by B = √
h̄/eB. For �/�0 < 0.05, which im-

plies B/a � 1, lattice size effects have a negligible influence
on the graphene LLs in this model.

The eigenfunctions are written as

	K
nk = Cn√

L
exp(iky)

⎛
⎜⎜⎜⎝

sgn(n)(−i)φ|n|−1,k

φ|n|,k
0

0

⎞
⎟⎟⎟⎠ , (4)

	K ′
nk = Cn√

L
exp(iky)

⎛
⎜⎜⎜⎝

0

0

φ|n|,k
sgn(n)(−i)φ|n|−1,k

⎞
⎟⎟⎟⎠ . (5)

Here, Cn = 1 for n = 0, Cn = 1/
√

2 for n �= 0, and

φn,k(x) = (2nn!
√

πB)−1/2 e−z2/2Hn(z), (6)

with z = (x − k2
B)/B and Hn(z) denoting Hermite polyno-

mials.
It was realized early21 that the level with n = 0 is special

since its amplitude is nonzero only in one of the sublattices,
namely, at B sites for K and A sites for K ′. Consequently,
while a random on-site disorder potential gives only intravalley
mixing within either the K and K ′ valleys, random hopping
causes intervalley mixing. (Notice that this is quite the opposite
of what occurs at zero magnetic field when diagonal disorder
is present.) The wave function in LLs with n �= 0 has nonzero
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amplitudes on both A and B sites, so that intervalley mixing
is always possible.

In this study, we consider hopping disorder caused by
randomness in the hopping integral connecting neighboring
A and B sites. This disorder can be long ranged, when caused
by static ripples, or short ranged, when originated by scatterers
located at points in-between neighboring sites.

Assuming that t shifts to t + δt between neighboring sites
RA and RB , hopping disorder gives rise to a short-range
potential given by21

U (r) =

⎛
⎜⎜⎜⎝

0 z∗
AzB 0 z∗

Az′
B

z∗
BzA 0 z∗

Bz′
A 0

0 z′∗
AzB 0 z′∗

Az′
B

z′∗
BzA 0 z′

B
∗
z′
A 0

⎞
⎟⎟⎟⎠ uhδ(r − Ri), (7)

with uh = (
√

3a2/2)δt , zX = eiK·RX , and z′
X = eiK′ ·RX for

X = A and B. For a hopping disorder concentration nh,
the self-consistent Born approximation estimates the Landau
level broadening as �short = (2nh)1/2uh/(πB), independent of
Landau level index. Numerical simulations24 exhibit the same
scaling of �short with

√
B, but show that �short increases with

the index n.
Alternatively, when the randomness in the hopping integrals

shows long-range correlations, the disorder Hamiltonian can
be formulated in terms of an effective random magnetic
field.20,36 In this case, one assumes that lattice deformations
cause a smooth shift in the hopping integrals between the site
j and its three nearest neighbors i. At low energies, this effect
can be incorporated into Dirac Hamiltonian by introducing an
effective vector potential that reads as

Aeff
± (rj ) = c

e

3∑
i=1

δti(rj )e±iq0·êi . (8)

Here, Aeff
± = Aeff

x ∓ iAeff
y , ei are vectors connecting a lattice

site to its neighbors, and q ≈ ±q0, where q0 = 4π/(3
√

3a)ey

with the Cartesian coordinate x running along the armchair
direction. The subscript + (−) corresponds to the K (K ′)
valley. Random hopping is accounted for by adding the
effective vector potential Aeff to the momentum operator π

appearing in Eq. (3), namely,36

H± = vF

(
0 πx − iπy + e

c
Aeff

±
πx + iπy + e

c
Aeff∗

± 0

)
. (9)

Notice that the effect of Aeff
± is to locally shift the Dirac cones

K and K ′ in opposite directions and there is no valley mixing.
The structure of H± immediately reveals that the n = 0 states
are unique: Since 〈	K

0k|H − H0|	K ′
0k′ 〉 = 0, in lowest order,

long-range hopping disorder does not affect the n = 0 states.
Unfortunately, there is no such simple picture for treating

the crossover regime between short- and long-range hopping
disorder. In the following, we interpret the results of our numer-
ical simulations by invoking the pure long-range description
provided by Eq. (9), what is known about short-range hopping
disorder, and by building a plausible interpolation between
these two limits.
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FIG. 2. (Color online) Density of states (in arbitrary units) for
a magnetic flux �/�0 = 0.02 for three different correlation lengths
λ/a of the random hopping potential (in all cases W/t = 0.3 and the
lattice size is M × N = 100 × 90 sites). (a) DOS showing the n = 0,
1, 2, and 3 Landau bands. (b) Zoom of the n = 0 LL states. (c) Zoom
of the n = 1 LL states.

IV. SPECTRAL PROPERTIES

In this section, we analyze the spectral properties of
graphene obtained from the tight-binding model with corre-
lated random hopping presented in Sec. II. We will focus our
attention on the width of the disorder-broadened Landau levels
and its dependence on the disorder correlation length λ, on the
disorder amplitude W , on the magnetic flux �, and on the LL
index n.

Figure 2(a) shows the density of states (DOS) correspond-
ing to the four lowest LLs (n = 0,1,2, and 3) broadened by a
correlated random hopping disorder of amplitude W/t = 0.3
for different correlation lengths, namely, λ/a = 1, 2, and 4.
Since particle-hole symmetry is preserved by the nearest-
neighbor hopping disorder model, we only show the n �
0 LLs. The magnetic flux considered is �/�0 = 0.02. The
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results typically correspond to averages over 600 disorder
realizations.

Figures 2(b) and 2(c) are zooms of the DOS around the
n = 0 and the n = 1 LLs, respectively, indicating that the
broadening shrinks for increasing values of λ. An inspection
of Fig. 2(c) shows that, for the n = 1 LL, an increase in
the correlation length causes only small modifications on
the shape of this Landau band, plus an overall reduction of
the width �1. Higher Landau levels n > 1 show the same
qualitative behavior as n = 1. In contrast, for the n = 0 LL
[Fig. 2(b)], one observes a much stronger suppression of
the level broadening upon increasing λ, in agreement with
numerical results obtained in Ref. 25. However, the inset of
Fig. 2(b) shows that, despite the large reduction of �0 with
increasing λ, the width never goes to zero within the range of
λ we used. This is at odds with the results reported in Ref. 25,
where an abrupt transition to zero width was observed. It is
worth mentioning that, when λ increases, making the width of
the n = 0 LL much smaller than the width of the higher levels,
it is important to use DOS histograms with a much finer energy
resolution around the n = 0 LL than for the higher LLs. Not
doing so can lead to an erroneous impression that the n = LL
width vanishes sharply as the correlation length increases.

In the following, we describe how we define and
quantify the width �n of the disordered-broadened LLs.
For the n > 0 LLs, which display a Gaussian-type shape,
�n is taken as the full width at half-height. Fig-
ure 2 clearly shows that the DOS shape of the n =
0 LL is very different from the higher LLs. As pointed out
in Ref. 24, an off-diagonal disorder model induces a splitting
of the n = 0 LL into two degeneracy-broken n = 0 Landau
bands, causing the observed DOS shape for the n = 0 LL,
namely, not fully split levels. This is so because the energy
splitting always has the same order of magnitude of the LL
broadening. Here, the n = 0 LL shapes observed in Fig. 2(b)
can be reasonably well fitted by a superposition of two equal
Gaussian curves. Therefore, the n = 0 LL width is considered
as the width at half-height of one of these superposed bands
(which is approximately half the width at half-height of the
entire band).

Figure 3 shows how the LL widths decrease as the hopping
disorder correlation length grows. In Fig. 3(a), one observes
that not only �0 decreases with λ, but all other LLs do so. When
examining the same data in a log-linear graph [Fig. 3(b)],
one observes that the n = 0 LL behaves quite differently
from the others. For n > 0, the widths �n decrease slowly
with increasing λ/a. Figure 3 shows an apparent tendency
to saturation at a value �n/t ≈ 0.01. We computed �n>0

for larger values of λ/a (not shown here) and concluded
that this is not quite correct. Instead, we observe that the
rate by which all �n>0 decrease becomes smaller as λ/a

becomes larger. The behavior is very different for the n =
0 LL, the width of which decays exponentially with λ. This
decay is sustained down to the numerical precision of our
simulations.

Further insight about the effect of long-range correlated
hopping disorder on the level widths �n can be gained from a
perturbation theory analysis. Let us denote the disorder gauge
potential by V = H± − H0, where both H and H0 are defined
in Sec. III.

(a)

(b)

n=0 LL
n=1 LL
n=2 LL
n=3 LL
n=4 LL

n=0 LL
n=1 LL
n=2 LL
n=3 LL
n=4 LL

FIG. 3. (Color online) Width of the nth Landau level �n/t , n =
0,1,2,3,4, as a function of the disorder correlation length λ/a for
�/�0 = 0.02 and W/t = 0.3. (a) Linear scale. (b) Log-linear scale.

In first order, the matrix elements required to calculate the
energy corrections for the degenerate states that belong to the
nth Landau level at the K valley are

V
(1)
nK,kk′ = 〈

	K
n′k′

∣∣V ∣∣	K
nk

〉
. (10)

Since long-range hopping disorder does not mix valleys,
K is a good quantum number in this model. As discussed
in Sec. II, E

(1)
0 = 0. For n > 0, the situation is different.

Exact diagonalization in a (n > 0,K) subspace involves matrix
elements of the kind V

(1)
n�=0,K;kk′ . Due to the spinor structure of

	K
nk , the evaluation of such matrix elements amounts to the spa-

tial integration of the product exp[i(k − k′)y]φnk′(x)φn−1,k(x)
times the Gaussian fluctuating gauge potential. This results in
nonzero matrix elements, but they are very quickly suppressed
as λ/B becomes large.

Let us define

V
(2)
nK,kk′ =

∑
n′ �=n

∣∣〈	K
n′k′

∣∣V ∣∣	K
nk

〉∣∣2

h̄ωB(
√

n′ − √
n)

(11)

to help us to discuss second-order effects. The evaluation
of V

(2)
n=0,K;kk′ involves matrix elements where products of

φ1,k′ and φ0,k appear. For long-range disorder, such matrix
elements vanish with increasing λ/B . In summary, the
perturbation fails to mix states within the n = 0 multiplet
and also with n′ �= 0. Hence, we expect the same behavior
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at all orders of perturbation theory. This is consistent with
the statement that �0 = 0 for long-range hopping disorder.30

Using the reasoning presented above, matrix elements of
the kind V

(2)
n�=0,K;kk′ involve, among other components, the

integration of product wave-function amplitudes such as
exp[i(k − k′)y]φnk′(x)φn,k(x). These become small for k �= k′
in the limit of λ/B � 1 and, for k = k′, are quite independent
of λ/B � 1.

This analysis rules out long-range hopping disorder as the
mechanism behind the exponential suppression of �0 with
increasing λ. We speculate that this behavior is caused by
matrix elements that admix valleys, a remnant of the crossover
regime. As a consequence, we expect �0 to scale linearly
with the disorder strength W and the eigenstates to be a
superposition of a wave functions with probability amplitudes
in both sublattices. Our simulations are in line with the latter
statement, as we discuss below.

When a magnetic field is present, there is an important
length scale to be considered, namely, the magnetic length; for
convenience, let us write it in the form B/a = 0.371/

√
�/�0.

For the magnetic flux used in our simulations (�/�0 = 0.02),
we obtain B/a = 2.62, which is close to the values of λ/a

used as well. Therefore, we expect the magnetic length to play
a role in any interpretation of our results. Indeed, Fig. 3(a)
suggests that the LL widths change their dependence with
λ for λ � B . However, Fig. 3(b) makes clear that a slow
dependence on λ only occurs for the n > 0 LL. This is in line
with our perturbative analysis. Unfortunately, the picture is
not entirely consistent: We expect the second-order terms to
be dominant in the calculation of the broadening of �n>0 for
λ/B , which is not observed in the simulations (see discussion
below). This remains to be understood.

We call attention to the fact that the authors of Ref. 25 used
the same flux value we considered here, as well as a similar
range for the correlation length λ. However, in our calculations,
a finite width of the n = 0 LL can be seen even for λ/a = 4
within the numerical precision we use. We checked (not shown
here) that these results are not influenced by varying the system
sizes, i.e., there are no finite-lattice-size effects in the parameter
region we investigated.

We have also investigated the dependence of the n = 0
and n = 1 LLs widths on the disorder and magnetic field
amplitudes (Fig. 4). For both parameters, there is a clear linear
increase.

Since the LL widths depend linearly on W and on �/�0,
we conclude that there is universality in the behavior of
the Landau level widths, namely, the ratio between different
Landau level widths �n/�n′ depends solely on λ/a. This is
illustrated in Fig. 5(a), where one can see the ratio �1/�0

growing rapidly with λ/a (notice the logarithmic scale), while
�2/�1 remains essentially constant. This result allows our
simulations to make contact with the experiments. Notice that,
due to computational limitations, our lattice sizes constrain
us to consider unrealistically large values of magnetic field
magnitudes. However, since the ratios of LL widths are rather
insensitive to the values of W and �/�0, as illustrated by
Figs. 5(b) and 5(c), we expect this result to apply for realistic
settings as well.

The dependence of the width on the LL index is shown in
Fig. 6. In this case as well, �n increases with n when λ, W ,

(a)

(b)

FIG. 4. (Color online) (a) Landau level width �n/t as a function
of the hopping disorder strength W/t for the n = 0 and n = 1 LLs
(magnetic flux fixed at �/�0 = 0.02 and λ/a = 1.5). (b) �n as a
function of magnetic flux �/�0 for the same LLs (now for a fixed
disorder strength W/t = 0.3 and λ/a = 2.0).

and � are fixed (notice that the values for these parameters
are the same considered in Fig. 3). We find that, for λ/a = 2,
the �n versus n curve is perfectly fitted by the functional
form y = A

√
x, with A = 0.0107 (dashed line in Fig. 6). For

other values of λ, including the cases λ/a = 1 and 4, the
numerical data do not show a square-root dependence on LL
index n. At this point, it is worth comparing these results to
the effect of a diagonal disorder on the DOS in graphene at
the quantum Hall regime. The Landau level broadening �n

for a diagonal white-noise disorder is quite independent of
the LL index n,22,23 while for the correlated diagonal disorder,
�n is observed to slightly decrease with increasing n.22 These
effects for the diagonal disorder in graphene are similar to
those observed for conventional quantum Hall systems with
diagonal disorder models,37 but are in clear contrast to the
increase of �n with n observed here.

V. LOCALIZATION PROPERTIES

While in Sec. IV we considered the DOS and analyzed
the LL widths as a function of several parameters, we now
investigate the localization properties of states within the LLs.
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(a)

(b) (c)

FIG. 5. (Color online) (a) Ratio between different Landau level
widths �n/�n−1 as a function of λ/a. The ratio between higher LLs
widths, such as �2/�1, is quite independent of the correlation length
λ. In contrast, the ratio �1/�0 grows rapidly with λ/a (notice the
logarithmic scale). (b) Ratio �1/�0 as a function of the disorder
strength W/t for λ/a = 1.5. (c) Ratio �1/�0 as a function of the
magnetic flux �/�0 for λ/a = 2.0. The panels (b) and (c) show that
�1/�0 is almost independent of W/t and �/�0. In the log-linear
plot of panel (a), the results corresponding to different values of W/t

and �/�0 collapse under the same dot.

To infer the degree of localization of the states, we use the
participation ratio (PR), which is defined as38

PR = 1

N ′ ∑N ′
i=1 |ψi |4

, (12)

where ψi is the amplitude of the normalized wave function
on site i and N ′ = M × N is the total number of lattice sites.
The PR is therefore directly related to the proportion of the
lattice sites over which the wave function is spread: the PR
for a localized state vanishes in the thermodynamic limit,
while peaks in the PR indicate the presence of extended states
(critical energies).

Figure 7(a) shows the calculated PR in an energy window
comprising the Landau levels n = 0, 1, 2, and 3. While the
PR for the n > 0 LLs indicates the presence of localized
states at Landau band tails and extended states at the band
middle, as expected, the PR of the states from the n = 0
LL shows a double-hump structure, i.e., a splitting into
two peaks. The splitting for the n = 0 LL is more clearly
observed in the energy scale zooms of Figs. 7(b) and 7(c).
The evidence that this double-peak structure in the PR of
the n = 0 LL corresponds to a splitting of critical energies is
obtained through an analysis of the system-size dependence,
as shown in Fig. 8. In this figure, one observes how the PR
for states within the n = 0 and the n = 1 LLs is modified

FIG. 6. (Color online) Landau level width �n/t as a function of
LL index n for three different values of λ/a, considering �/�0 =
0.02 and W/t = 0.3 (same magnetic flux, disorder amplitude, and
lattice sizes considered in Fig. 3). The dashed line corresponds to a
fitting with square-root dependence, which fits well only the λ/a = 2
case (see text).

with increasing system size, namely, for M × N = 100 × 30,
100 × 50, and 100 × 90 atoms in the disordered graphene
lattice. For localized states, the PR decreases with increasing
system size. This behavior is clearly seen at the Landau band
tails and also in the region between the two peaks in Fig. 8(a). In
contrast, the PR peaks are almost independent of system size,
provided the lattice dimensions exceed both the magnetic and
correlation lengths, indicating that the states in these energy
regions are extended (critical).38

This splitting of critical energies in the lowest LL was
previously observed and discussed for uncorrelated random
hopping disorder21,24 (and for the similar case of uncorrelated
random magnetic flux disorder31,32). The novel and interesting
aspect we observe here is that the splitting is rather robust
and survives even the sharp width reduction of the n = 0 LL
due to the increasing correlation length. While previous works
considered correlated random hopping disorder,25,26 they did
not calculate the localization properties of the states within LLs
and therefore missed this splitting of critical states at n = 0.

Although experiments9 have observed this splitting energy
in the n = 0 LL, it is hard to make a quantitative comparison
due to the lattice-size compromises we need to make in our
simulations. Moreover, we believe that a full explanation of the
experimentally observed splitting requires taking into account
the Zeeman term and possibly electron-electron interactions,
which calls for further theoretical investigation.

Due to particle-hole symmetry, the probability densities
|	(E)|2 and the PR of states at energies −E and +E are
identical (see, for instance, Ref. 16 and references therein).
However, when looking directly at the wave-function am-
plitudes 	(E), one can see a difference between the split
states at −E and +E: In one of the sublattices (sublattice
A, for example), the amplitudes are exactly the same, while
in the other sublattice (B), they have the same magnitude but
opposite signs, that is, 	A(−E) = 	A(+E) and 	B(−E) =
−	B(+E). This guarantees that conjugated particle-hole
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(a)

(b)

(c)

FIG. 7. (Color online) Participation ratio as a function of E/t

for different random hopping correlation lengths λ/a. Here, �/�0 =
0.02, W/t = 0.3, and M × N = 100 × 90 (namely, the same magnetic
flux, disorder amplitude, and lattice sizes considered in Fig. 3).
(a) Energy window containing the four lowest LLs, n = 0, 1, 2, and
3. (b) Zoom on the n = 0 Landau level. (c) Amplified zoom on the
n = 0 states.

states are orthogonal and have the same probability densities
|	(E)|2. It is noteworthy that orthogonality imposes that the
probability weight at both sublattices is the same. The split
states are therefore similar to bonding-antibonding states. The
table in Fig. 9 summarizes these features.

Another feature observed in Fig. 7 is the effect of increasing
correlation length. The effect on the n = 0 LL is completely
different (opposite) to what is observed in higher levels. In
higher levels, the increase in λ causes an overall reduction
of PR values, while in the n = 0 LL, despite the suppression
of broadening (see Sec. IV), one observes an overall increase
in the PR. This difference in behavior is probably related to
the fact that the states from the higher levels have much longer

FIG. 8. (Color online) Participation ratio calculated for three
different system sizes (M × N ) for the states within (a) the n = 0 LL
and (b) the n = 1 LL. The peaks identify the critical energies, as they
become sharper when the system size increases. The results shown
here are for a correlation length λ/a = 2.0, and the other parameters
are the same considered in Fig. 7: �/�0 = 0.02 and W/t = 0.3.

localization lengths than those from the states with n = 0.37 To
investigate possible finite-size effects on the n = 0 LL when
λ/a is large, we ran simulations with larger lattice sizes (not
shown). We found no change in the position of the identified
critical states, as well as no change in the LL widths.

FIG. 9. (Color online) Properties of the wave functions 	 for
n = 0 LL states at energies +E and −E. While the PR and the
probability densities of the wave functions |	(E)|2 are identical for
states at energies −E and +E, the wave-function amplitudes 	(E)
show differences in only one of the sublattices, in analogy to bonding-
antibonding states (see text).
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VI. CONCLUSIONS

We have investigated the effects of spatially correlated
random hopping disorder on the structure of Landau levels
in graphene. We quantified the behavior of the nth Landau
level width �n as a function of the correlation length, as well
as other relevant parameters of the system: disorder amplitude,
magnetic field, and Landau level index n. We found that �n

gets narrower with increasing correlation length for all Landau
levels, and not only for the n = 0 level. However, a logarithmic
plot of �n as a function of λ [Fig. 3(b)] clearly showed that,
while for n > 0 the widths decrease slowly, for n = 0 they
decay exponentially with increasing λ. We found no sign
of any abrupt vanishing of the n = 0 Landau level width at
finite λ. This suggests that a different physical mechanism
is behind the narrowing of the n = 0 LL when compared to
all the other levels (especially when the correlation length
λ becomes of the same order of magnitude or higher than
the magnetic length B). We speculate that the underlying
mechanism is due to valley mixing, a remnant of the crossover
regime.

�n increases linearly with both magnetic field and disorder
amplitude. Another interesting observation is that, for any
fixed correlation length, �n always increases with increasing
LL index n, which is completely different to the dependence
observed for diagonal (on-site) disorder models. More im-
portantly, we observe that the ratio between the n = 1 and 0
Landau level widths �1/�0 depends only on the correlation
length λ and is rather insensitive to the disorder strength and
to the magnitude of the applied magnetic field. This allows a
closer contact of our results with experiments. In Ref. 11, for
instance, the authors experimentally observe a n = 0 LL width
of about 20 K, while the width of higher levels is observed to be
about 400 K , resulting in �1/�0 = 20. Using this information
and the results of our Fig. 5, we infer that λ/a = 2.2. This

estimate gives a lower bound for the corrugation length of
graphene in the experiment of Ref. 11 since it neglects all
disorder broadening sources but hopping disorder.

We also considered the role played by changing the hopping
disorder correlation length on the localization properties of the
states within the different Landau levels. The splitting of two
critical energies for the n = 0 level, previously reported for
uncorrelated random hoppings,24 is still clearly defined for
correlated hopping disorder. It is a robust effect even with
the sharp width reduction of the n = 0 level that occurs for
large values of λ. The n = 0 level can therefore be considered
as a superposition of two levels with broken degeneracy,
symmetrically split around E = 0. In addition, after analyzing
the wave functions of states belonging to the n = 0 level, we
were able to identify a symmetric structure of these states.
We found that although any two states at −E and +E have
the same probability density and also the same participation
ratio, in one sublattice, the wave-function amplitudes of states
with energies ±E are exactly the same, while in the other
sublattice, these states have the same magnitude but opposite
signs. Therefore, the origin for this n = 0 level splitting is
clearly related to the breaking of the sublattice degeneracy
induced by the hopping disorder, a further manifestation of
the influence of valley mixing disorder.
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