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 ABSTRACT 
 We discuss the dynamics of a silicon surface after incidence of a short, high energy pulse in the soft X-ray 
range.   We focus on time-delays long enough after pulse incidence, so that the absorbed energy can be seen as a non-
uniform time-dependent heat distribution in the solid.   A model is developed using techniques of non-equilibrium 
hydro-thermodynamics, considering just the longitudinal and transverse acoustic phonon systems in the excited solid.   
 The general theory leads to Maxwell-Cattaneo partial differential equations for the material medium n(r,t) and 
the energy h(r,t) volume densities; these reduce to the diffusion equation for the temperature T(r,t) and the usual 
thermo-mechanical elastic equation for the strain u(r,t) on further simplification.    Here we solve the Maxwell-Cattaneo 
equation for T(r,t) and compare to previous results where the diffusion equation was used instead;  the Maxwell-
Cattaneo equation predicts faster cooling at short (dozens of fs, say) time delays.   Previously obtained results for the 
strain field are briefly recalled.  
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 1. INTRODUCTION 
 The heat flow in optical surfaces subjected to intense VUV and X-ray pulses determines the surface quality and 
hence the performance of mirrors gratings and Bragg crystals in FEL facilities. 
 A detailed time-dependent calculation of surface distortion for a silicon substrate, on absorption of a VUV 
Gaussian pulse (wavelength 12 nm, energy 40 μJ, radius 2.0 mm, duration 1.0 fsec) has been recently reported 1,2 .   The 
originally flat surface bulges sharply out after a delay of 200 nsec, then goes slowly back to the equilibrium flat 
condition.    If one considers using successive pulses of a pulse train, the distortion created by the first few may 
unfavorably impact the focusing or spectral resolution of the succeeding pulses. 
 
 It should be realized that this is an entirely different problem from steady-state situations, where the thermal 
distortion of optical substrates can be discussed in terms of a space-dependent (but time-independent) temperature 
distribution.   In fact, the complex dielectric function ε(k,ω) may change and very fast relaxation processes may take 
place already as the FEL pulse begins to penetrate the surface layer of the substrate; the problem falls thereby in the 
realm of non-equilibrium processes. 
 
 A solid under conditions of near thermodynamic equilibrium can be satisfactorily described in terms of phonon 
(lattice vibration) distributions, hence one hopes that suitable generalizations of this concept might also shed light on the 
evolution of strongly excited material systems. 
 
 We outline here how the basic concepts of non-equilibrium statistical physics can be exploited to build a “non-
equilibrium phonon hydrodynamics”.   Within reasonable approximations, valid for times sufficiently long after 
excitation with a FEL pulse, the general evolution equations for the silicon substrate state-variables (temperature T(r,t) 
and local displacement u(r,t)) reduce to time- and space-dependent damped wave-equations (telegraphers equation, also 
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called Maxwell-Cattaneo equation).   With further simplifying assumptions, one gets the usual heat diffusion equation 
driven by the external energy source, and the elasticity equation driven by the gradient of the temperature. 
 
 As illustration, we solve the Maxwell-Cattaneo equation for the heat flow in silicon and compare to the 
previous solution of the simpler heat diffusion equation. 
 
 The result is that, at short time-delays after the incidence of the FEL pulse, the Maxwell-Cattaneo predicts 
faster heat flow than the heat diffusion equation.   This result is physically understandable, as one can think of the 
Maxwell-Cattaneo equation as admitting a transient “wave-like” solution that propagates away with the speed of sound, 
in addition to the “diffusive” solution. 
 
 The authors are not aware of experimental measurements for heat flow or thermal distortion in the pico-second 
regime; it is not clear at present which one is the correct evolution equation at very short times, although the diffusion 
equation is known to describe slow processes quite accurately. 
 
 
 2. NON-EQUILIBRIUM PHONON HYDRODYNAMICS 
 Generalized thermo-hydrodynamics of phonons involves the description of the motion of these quasi-particles 
and of their energy density.   The hydrodynamic equations, which couple both types of movements via thermo-striction 
processes, can be derived starting with a generalized Peirls-Boltzmann kinetic equation obtained in the framework of a 
Non-Equilibrium-Statistical-Ensemble-Formalism (NESEF), details of which will be given in a future paper. 
 
 Here we consider a system of Longitudinal Acoustic (LA) phonons in anharmonic interaction with the 
accompanying Transverse Acoustic (TA) phonons.   The system is in contact with a thermal reservoir; an external 
source drives the phonon system out of equilibrium. 
 
 In order to describe the system we introduce the single-phonon dynamical operator    νq,Q = aq+Q/2

+aq-Q/2    in the 
second-quantization representation, in reciprocal space.    The average over the non-equilibrium ensemble of the 
quantum-mechanical Heisenberg equation of motion for the microdynamic variable νq,Q is  
 
 ∂νqQ(t)/∂t = Tr{(ih)-1[νqQ;H]ρε(t)}        (eq. 2.1) 
 
where, for simplicity, we wrote νqQ(t) for the quantum-mechanical ensemble average <νqQ(t)>,  H is the Hamiltonian of 
the system and ρε(t) is the non-equilibrium statistical operator 3.   Omitting all details, suffice it to say that going over to 
direct space, and conserving just linear terms, a generalization of the classical Peierls-Boltzmann equation is obtained, 
namely, 
 
 ∂νq(r,t)/∂t = – divr[νq(r,t) ∇qϖq] – Γq[νq(r,t) – νq

0] + Gq(r,t)      (eq. 2.2) 
 
where ϖq = ωq + (π/h2) Πq  is a renormalized frequency dispersion relation, and Πq, usually referred to as “self-energy 
correction”, depends on the populations of TA phonons and the matrix element of the LA-TA phonon interaction; Gq(r,t) 
accounts for external sources. 
 
 By multiplying the phonon distribution νq(r,t), obeying eq. 2.2, into various suitable coefficients one gets the 
matter and energy densities and tensor fluxes of all orders. 
 Fluxes of high order decay in time much faster than the low order ones 4 ;  after a suitable delay we can use a 
“contracted description”.   Let us take as the set of basic variables only   {n(r,t), In(r,t), h(r,t), Ih(r,t)},   namely, the local 
number of LA phonons, its flux (or current density), the local density of energy and its flux.   In reciprocal space they 
are given by 
 
 n(Q,t) = ∑q νq(Q,t)         (eq. 2.3a) 
 In(Q,t) = ∑q νq(Q,t) u(q)          (eq. 2.3b) 
 h(Q,t) = ∑q νq(Q,t) hωq           (eq. 2.3c) 
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 Ih(Q,t) = ∑q νq(Q,t) u(q) hωq          (eq. 2.3d) 
 
where u(q) =  ∇qωq  is the “bare” group velocity of the phonon with wave-vector q. 
 
 The equations of motion for these four quantities are 
 
 ∂n(Q,t)/∂t =    iQ•In(Q,t) + Gn

qQ  – (1/2)∑q νq(Q,t)[i(Πq+Q/2 – Πq-Q/2) – (Γq+Q/2 + Γq-Q/2)]      (eq. 2.4a) 
 ∂In(Q,t)/∂t = iQ•In

[2](Q,t) + Gn
qQ  – (1/2)∑q u(q) νq(Q,t)[i (Πq+Q/2 – Πq-Q/2) – (Γq+Q/2 + Γq-Q/2)]     (eq. 2.4b) 

 ∂h(Q,t)/∂t =    iQ•Ih(Q,t) + Gh
qQ  – (1/2)∑q hω(q) νq(Q,t)[i(Πq+Q/2 – Πq-Q/2) – (Γq+Q/2 + Γq-Q/2)]     (eq. 2.4c) 

 ∂Ih(Q,t)/∂t = iQ•Ih
[2](Q,t) + Gh

Qq  – (1/2)∑q u(q) hω(q) νq(Q,t)[i (Πq+Q/2 – Πq-Q/2) – (Γq+Q/2 + Γq-Q/2)] (eq. 2.4d) 
 
 Using perturbation expansion we can handle eq. 2.4, expressing νq(Q,t) in terms of the basic variables defined 
by eq. 2.3; redefining coefficients and going back to direct r space, we get two pairs of equations, one involving just  
n(r,t)  In(r,t)  In

[2](r,t) the other just  h(r,t)  Ih(r,t)  Ih
[2](r,t), where In,h

[2](r,t) are tensor fluxes of second order. 
 
 Invoking perturbation linear expansions, the second order tensor fluxes can also be expressed in terms of our 
basic set. 
 Combining the two equations in the “n pair”, one gets for n(r,t) the following inhomogeneous second-order 
partial differential equation: 
 
 divr[Λn

[2]:gradrn] – ∂2n/∂t2 – (Γn1+Γn2)∂n/∂t – Γn1Γn2n = divr[GIn+F n] – [Γn2+∂/∂t]Gn    (eq. 2.5) 
 
where Fn is a thermodynamic force due to external fields or density gradients.   In our case, there are no external LA 
phonon sources, so Gn and GIn vanish.   Fn = C gradrh does not vanish because the energy density h is not uniform. 
 
 Next 5, let    n(r,t)=n0[1–divru(r,t)];     the equation for u becomes 
 
 divr[Λn

[2]:gradrdivru] – ∂2u/∂t2 – (Γn1+Γn2)∂u/∂t – Γn1Γn2u + C gradrh/n0] = 0   (eq. 2.6)  
 
 The “h pair” leads to an equation for h(r,t) of same form as eq. 2.5 (with subscripts h instead of n).   Now, for 
the situation discussed in this paper, Fh is negligible because n never significantly departs from n0;  GIh vanishes 
identically;  Gh is non-zero because there is a transfer of energy from the “external” radiant field into the LA phonon 
system (mediated by the electron system).   Furthermore, one finds that h(r,t)=CVT(r,t), where CV is the specific heat per 
unit volume and T(r,t) the temperature field.   The constant tensor Λh

[2]   is diagonal and eq. 2.5 reduces to the following 
equation for T(r,t): 
 
 Λh divrgradrT – ∂2T/∂t2 – (Γh1+Γh2)∂T/∂t – Γh1Γh2T = – Γh2Gh/CV      (eq. 2.7) 
 
 Pending a detailed justification to be given elsewhere, let us point out that the terms Γn1Γn2u  and  Γh1Γh2T  are 
associated with damping of the fields u T.   Depending on the physical situation, these effects can be neglected or can be 
treated by lumping them together with other related terms.   Then, the resulting equations are of Maxwell-Cattaneo form. 
 
 
 3. ILLUSTRATION: MAXWELL-CATTANEO TEMPERATURE DISTRIBUTION 
 We consider the same conditions as in 1, reproduced in Table 1.   At the moment t=0, a short Gaussian-shaped 
pulse is completely absorbed on normal incidence in an infinitely thick silicon slab occupying the half-space z>0.   For 
t<0, z>0, the silicon temperature is T(t,r)=0.   For t>0, z>0, there is EM radiant energy transfer into the material 
medium, which heats it up locally.   This heat will flow to the cooler parts of the silicon slab and the temperature T(t,r) 
will follow the differential equation 
 
 (1/vh

2)∂2T(t,r)/∂t2 + (1/Dh)∂T(t,r)/∂t – ∇2T(t,r) = Wh(t,r) /(CvDh)    (eq. 3.1) 
 

Proc. of SPIE Vol. 8077  80770A-3

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/30/2015 Terms of Use: http://spiedl.org/terms



 

 

where vh is a velocity, Dh is a diffusion constant, Cv is the specific heat per unit volume and Wh(t,r) is the local power 
density given to the material medium.   The diffusion equation is formally obtained taking the limit vh→∞.     In 
practice, if  Dht << (vht)2, one considers the regime “diffusive”. 
 
 This non-homogeneous equation has a particular solution of form 
 
 T(t,r) = ∫∫∫∫dt´d3r´ G(t,r,t´,r´) Wh(t´,r´)/(CvDh)      (eq. 3.2) 
 
where G is the causal Green´s function (identically zero if t-t´<0) which vanishes at infinity (z→∞, t→∞, |x|→∞, 
|y|→∞), given in the literature 6 as 
 
 G(t,r,t´,r´) = (vh/4πR) exp(-vh

2τ/2Dh){ δ(vhτ-R) + u(vhτ-R)(vh
2R/4Dh

2)J1(w)/w}   (eq. 3.3) 
    τ    = t-t´ > 0; 
    R2  = (x-x´)2+(y-y´)2+(z-z´)2; 
    w   = (R2-vh

2τ2)1/2 vh/2Dh     
 
and where u(s)=1 if s>0, u(s)=0 if s<0;  δ(s) is the Dirac delta-function;  Jn(w) is the cylindrical Bessel function of order 
n, regular at the origin.    It was checked analytically that this reduces to the well known Green function of the wave 
equation in the limit Dh→∞, and to the Green function of the diffusion equation in the limit vh→∞. 
 
 Let the “energy source” Wh(t´,r´) be 
 
 Wh(t´,r´) = 0        z´<0,  all t´  (eq. 3.4) 
  = (π)1/2U0(z0/tFEL) exp[-(x´2+y´2)/r0

2] exp(-μz´) δ(z´-ct´)  z´>0,  all t´ 
           
 In this expression, z0 is the spatial extent of the well localized radiant pulse while tFEL is its time duration, with 
(z0/tFEL) = c, while (π)1/2U0z0πr0

2 is the total energy in the pulse. 
  
 Integrate first in t´, then change variables x-x´→x´´, y-y´→y´´;  x´´,y´´→ρ´´,ϕ´´ and taking advantage of the 
circular symmetry, integrate in ϕ´´.  Let T1(t,r,z) be the contribution from the δ-function and T2(t,r,z) the contribution 
from the unit-step-function;  we get 
 
 T1(t,r,z) = ½(π)1/2(U0/Cv)(vh/Dh) exp(-μz-r2/r0

2) exp{-u[(vh/2Dh)α – μα2]/(1-α2)}… 
    …∫ρ´´dρ´´Δ-1/2 exp{-ρ´´2/r0

2+Δ1/2[(vh/2Dh)α – μ]/(1-α2)} I0(2rρ´´/r0
2) (eq. 3.5a) 

 
 T2(t,r,z) = ¼(π)1/2(U0/Cv)(vh/Dh)3 exp[-αctvh/2Dh-r2/r0

2]  ∫ρ´´dρ´´ exp(-ρ´´2/r0
2)… 

    … I0(2rρ´´/r0
2) ∫dz´ exp[-μz´+α(vh/2Dh)z´]I1[|w´]/|w´|   (eq. 3.5b) 

 
   α = vh/c;         (eq. 3.5c) 
   u = ct-z > 0; 
   Δ = α2u2 – (1-α2)ρ´´2 
   w´= (vh/2Dh)[vh

2(t-z´/c)2-R2]1/2 = (vh/2Dh)[α2(ct-z´)2-ρ´´2-(z-z´)]1/2 
  
 The limits of integration, for the usual case α<1, are:   0 <ρ´´ < ρM;    z1 < z´ < z2, with   zp = z-[α2u+√Δ]/(1-α2);   
zm = z-[α2u– √Δ]/(1-α2);   z1 = Largest{zp,0};    z2 = Smallest{ct,zm};    ρM=αu. 
 These limits follow from a discussion of the roots of g(ξ,ρ) = α(u-ξ) – [ρ2+ξ2]1/2, with ξ=z-z´ and from a 
consideration of the causality conditions z<ct, z´<ct´ and t´<t, which entail   -ct < ξ < ct.     The function g(ξ,ρ)  occurs 
as the argument of both the δ-function and u-function in the Green function, (eq. 3.3), after integration in t´. 
 
 For 0<α<1 g(ξ,ρ) has two real roots ξ1< ξ2 if Δ = α2u2 – (1-α2)ρ 2 > 0.    The roots are [α2u±√Δ]/(1-α2).   The 
smaller root ξ1 will be negative only if ρ < αu.   Were both roots positive, z´ would be always negative, and the integral 
in z´ identically null because the heat source Wh is also null for z´<0, see (eq. 3.4); hence the definition of ρM. 
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 Figure 1 shows the time-dependence of the Si surface temperature, at the center of the FEL spot, predicted by 
the Maxwell-Cattaneo equation for various choices of vh.   The salient feature is a continuous growth of the temperature 
starting from T=0 at t=0, going thru a maximum, then dropping to zero as t→∞.    The dash curve shows the surface 
temperature according to the diffusion equation, which predicts T→∞ as t→0, with monotonic exponential decrease as 
t→∞.   For large times, the results from both equations agree. 
 
 Regarding the value of vh, one might argue that the sound velocity vSi is the appropriate one, but the non-
equilibrium theory makes vh a function of the time-dependent variables of state hence vh can have other values besides 
vSi.  On the other hand it is clear that the diffusion equation needs a correction at very short delay times. 
 
 Figure 2 shows T(z,r=0), the temperature depth-profile, at the center of the FEL spot, for time-delays of 102 104 
… 1014 fsec, according to the Maxwell-Cattaneo equation (full lines) and diffusion equation (dash lines).   For times 106 
fsec or longer, the profiles predicted by both equations coincide, but for t=100 fsec, the results are significantly different. 
 
 
 The strain u(r,t) is related to the material density n(r,t) thru  n(r,t) = n0(1-∇•u) where n0 is the equilibrium 
density of the material medium (Silicon).   The equation of motion obtained from the non-equilibrium theory reduces to 
the usual macroscopic thermo-elastic mechanical equation 5  
 
 ∂2u(r,t)/∂t2 – cn

2∇2u(r,t) = – (αVK/n0)∇T(r,t)      (eq. 3.6) 
 
where the constants are defined in Table 2. 
 
 Once the temperature T(r,t) has been obtained, it can be inserted in the equation above and u(r,t) can be 
evaluated.   So far, this has been done only for the temperature field calculated using the diffusion equation.   The details 
are given in 1,2  here we show only the results. 
 
 The boundary and initial conditions are as follows: at t=0 and t=∞, the Silicon slab is supposed to be strain-free.   
At all times t>0, the surface z=0 is supposed to be “free”, which means all stress components normal to the surface must 
vanish.   In order to meet these conditions it is necessary to mix the particular solution of (eq. 3.6) obtained with the 
appropriate Green´s function vanishing at infinity, and a solution of the associated homogeneous equation.   The 
coefficients depend on coupled integral equations, which we have solved approximately using numerical methods.   Of 
interest here, in connection with optical elements, is the surface normal displacement uz(t,z=0,r).  
 
 Figure 3 shows the contribution of the particular solution for the surface displacement, at the center of the FEL 
spot, as a function of time.   A sharp maximum appears after a delay of 200 nsec, then decays in roughly exponential 
fashion.     Figure 4 shows the radial profile of the particular solution, at the surface, for three different time delays after 
excitation. 
 

Figure 5 shows the complete solution (“particular”, plus “free” tailored to make the complete solution satisfy 
the boundary conditions at the Silicon surface) at t=200 nsec.     We note that it is very laborious to obtain uz

Free (t,r) and 
this is the reason why we did it just for t=200 nsec.   We believe this is illustrative of the behavior at other times, 
because the expression for uz

Free (t,r) depends on the particular solutions uz
Part(t,r) and uρPart(t,r) linearly.    Figure 5 shows 

that the maximum displacement, for the parameters of this calculation, is not large.   The corresponding maximum 
surface figure error can be gleaned from the figure, and is about 0.02 μrad, which would be negligible considering the 
present status of the art in optical polishing. 

 
However, if the experiment considers using a sequence of N pulses, equally spaced by a time interval τ, then 

each successive surface-bulge rides on the wake of the previous one.   Say that the surface excursion changes by a factor 
f during the interval τ whatever the excitation history; then the excursion after the Nth FEL pulse is uz(Nτ) = uz(τ) ∑j=0

N-1 
f j.   One can contrive situations where f∼1, for instance if we use Figure 3 at a spacing τ∼150 nsec.      In this case, the 
surface excursion increases linearly with time.    At N>50 pulses the surface figure error exceeds the value 1μrad, the 
current status of the art in polishing.   Let us point out that this rather sharp surface bulge at t=200 nsec was  evidenced 
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also in a previous calculation 7  where we solved the same equations for T and u, with similar sources, but using entirely 
different procedures.   It was conjectured that this behavior was related to the propagation of some shock wave, but to 
investigate this question one has to look at  uTotal(t,z,r),  0<z<∞,  0<t<∞,  which has not been done due to numerical 
difficulties and excessive requirements of computer time. 

 
We can compare the maximum surface figure error in the present calculation and in 7 .   Considering that the 

surface bulging is a very slow process (time-scale of hundreds of nsec) compared to the FEL pulse length 
(femtoseconds), one expects that the incident pulse energy per unit area is the  relevant quantity. 

The energy per unit area in the present calculation is 180 μJ/cm2 and the maximum surface displacement is 
0.023 nm;   the “specific displacement” is 1.28x10-4 nm/(μJ/cm2). 

In 7 , the incident energy was 40 μJ/cm2, the displacement was 60x10-5 nm and the “specific displacement” 
1.5x10-5 nm/(μJ/cm2), which is about 8 times smaller than in the present calculation. 

The source in 7  had a J0(kρ) radial dependence which implies alternate heating and cooling as the argument kρ 
crosses each root of the Bessel function.   In fact, the total cooling roughly balances out the total heating.    In the 
present calculation, the heat source is positive-definite, and therefore expected to be more efficient. 

 
 
4. CONCLUSION 
Our non-equilibrium phonon hydrodynamics, even though several linear approximations were introduced, 

reduces to the expected macroscopic equations for heat flow and thermo-elastic behavior under suitable conditions and 
points the way for corrections in these equations, which may be important at short times of order tens or hundreds of fs. 

As regards time-relaxation of highly excited silicon substrates, we believe it is important to include in the 
analysis the electron system.   This is because (i) the electrons mediate the process of light absorption and creation of the 
phonon populations and (ii) they control directly the optical functions of the medium which can change during the pulse 
and introduce wave-front aberrations even though surface figure errors as such appear only much later. 

On the practical side, for absorbed energy of 40 μJ on a spot with Gaussian radius r0=2.0 mm, considering 1 
μrad as the current state of the art in optical polishing, the surface figure error is negligible after a single pulse, but due 
to resonant behavior can become of concern after about 50 incident pulses, depending on the spacing in the pulse train. 
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 Table 1 – FEL characteristics 

Quantity Symbol Value Unit 
Photon energy hν=∇ω 100 eV 
Photon wavelength λ 124 Å 
Pulse duration ΔtFEL 1 fsec 
Pulse total energy WFEL 40 μJ 
Peak power PFEL 40 GW 
# photons per FEL pulse NFEL 2.5x1012  
Pulse Gaussian radius rFEL 2.0x106 nm 

 
 
 Table 2 – Thermo-elastic constants for silicon 

Quantity symbol value unit 
Specific heat (per unit mass) 
Idem (per unit volume) 

Cm  
CV = n0Cm  

0.702 
1.635 

Joule/(g oC) 
Joule/(cm3 oC) 

Thermal conductivity κ 1.68 W/(cm oC) 
Heat diffusion coefficient Dh 0.102 

1.02 
nm2/fsec 
cm2/sec 

Coefficient of thermal expansion (linear) 
Idem (volumetric) 

αl 

αv = 3αl  
3x10-6 
9x10-6   

1/oC 
1/oC 

Elastic (bulk) modulus K 1.06x1012 g/(cm sec2) 
Shear modulus ξ 2.19x1011  g/(cm sec2) 
Poisson´s ratio η 0.45  
Speed of sound cn 7.21x10-3 

7.21x105 
nm/fsec 
cm/sec 

 
 
Figure captions: 
Figure 1:  Temperature increase (0C) at the surface of a silicon semi-infinite slab versus time elapsed after absorption of 40 μJ from a 
short FEL pulse in the soft X-ray range.   The full lines are the result of the present calculation (Maxwell-Cattaneo equation) for three 
distinct values of the velocity of propagation; vsi is the speed of sound in silicon.   The dash line is the result of our previously 
published calculation, using just the heat diffusion equation. 
Figure 2:  Temperature increase (0C) at the surface of a silicon semi-infinite slab versus depth z, at various elapsed times after 
absorption of 40 μJ from a short FEL pulse in the soft X-ray range.   We used for the speed of propagation the speed of sound in Si.   
The full line is the result of the present calculation (Maxwell-Cattaneo equation).   The dash line is the result of our previously 
published calculation, using just the heat diffusion equation.   For time-delay 106 fs and larger, the two equations give the same result, 
but at shorter times the Maxwell-Cattaneo equation  predicts significantly faster cooling. 
Figure 3:  Contribution of the particular solution (of the thermo-elastic equation) for the surface bulge in silicon, using the 
temperature field predicted by the heat diffusion equation, versus elapsed time, at the center of the Gaussian light spot. 
Figure 4:  Contribution of the particular solution (of the thermo-elastic equation) for the surface bulge in silicon, using the 
temperature field predicted by the heat diffusion equation, versus radial distance, for selected elapsed times. 
Figure 5:  Complete solution (of the thermo-elastic equation) for the surface bulge in silicon, using the temperature field predicted by 
the heat diffusion equation, versus radial distance, for elapsed time 200 ns. 
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Figure 4 
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Figure 5 

0 1 2 3 4 5 6 7
-0,010

-0,005

0,000

0,005

0,010

0,015

0,020

0,025

0,030

0,035

 

 

z=
0 

su
rfa

ce
 n

or
m

al
 d

is
pl

ac
em

en
t  

(n
m

)

radial distance r  (mm)

Surface bulge in Silicon
Gaussian FEL pulse:

W
FEL

   40 μJ

Δt
FEL

   1.0 fsec

r
FEL

      2 mm

T=200 nsec

Prague2011FigsU    ARBC   02Sept09  28Feb11

 -Uz
Part

-Uz
Free

-Uz
Total

 
 
 
 
 
 

Proc. of SPIE Vol. 8077  80770A-10

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/30/2015 Terms of Use: http://spiedl.org/terms


