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Abstract

Tropical spastic paraparesis/human T-cell leukemia type I-associated
myelopathy (TSP/HAM) is caused by a human T-cell leukemia virus
type I (HTLV-I) after a long incubation period. TSP/HAM is charac-
terized by a chronic progressive paraparesis with sphincter distur-
bances, no/mild sensory loss, the absence of spinal cord compression
and seropositivity for HTLV-I antibodies. The pathogenesis of this
entity is not completely known and involves a multivariable phenom-
enon of immune system activation against the presence of HTLV-I
antigens, leading to an inflammatory process and demyelination,
mainly in the thoracic spinal cord. The current hypothesis about the
pathogenesis of TSP/HAM is: 1) presence of HTLV-I antigens in the
lumbar spinal cord, noted by an increased DNA HTLV-I load; 2) CTL
either with their lytic functions or release/production of soluble fac-
tors, such as CC-chemokines, cytokines, and adhesion molecules; 3)
the presence of Tax gene expression that activates T-cell proliferation
or induces an inflammatory process in the spinal cord; 4) the presence
of B cells with neutralizing antibody production, or complement
activation by an immune complex phenomenon, and 5) lower IL-2 and
IFN-g production and increased IL-10, indicating drive to a cytokine
type 2 pattern in the TSP/HAM subjects and the existence of a genetic
background such as some HLA haplotypes. All of these factors should
be implicated in TSP/HAM and further studies are necessary to
investigate their role in the development of TSP/HAM.
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Introduction

Human T-cell leukemia virus type I
(HTLV-I) is essentially a persistent slow vi-
rus with low virulence. However, a few indi-
viduals who have expressed disease related
to this virus may show some immunopatho-
logical features such as T lymphocyte cell

proliferation. This is mainly due to high in-
terleukin (IL)-2 production found in some of
these HTLV-I-infected subjects. In fact, IL-2
and its receptor (IL-2R) have the strongest
capacity to cause activation, proliferation,
and differentiation of T cells (1). Two path-
ways are possible: 1) the T cells are normal
and 2) the T cells present with genetic de-
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fects with a possible neoplastic outcome.
The latter condition correlates with the ap-
pearance of adult T-cell leukemia (ATL), a
highly pathogenic process often leading to
death within a few months, regardless of
therapy (2).

Tropical spastic paraparesis/HTLV-I-as-
sociated myelopathy (TSP/HAM) is a neuro-
logic disease that, as reported in a survey
conducted in Japan, developed in 14 of 1464
HTLV-I-infected individuals after a long in-
cubation period, with an average age at onset
of 43 years (3). The major neurological fea-
tures of TSP/HAM consist of spasticity of
the lower extremities, urinary bladder distur-
bances, lower extremity muscle weakness,
and sensory disturbances with poorly de-
fined thoracic sensory levels (4,5). The ma-
jor findings are mainly an inflammatory and
demyelinating process located in the tho-
racic spinal cord (6,7). A high concentration
of T cells and monocytes is found in this
area, but no evidence of malignancy has
been described in these cells (8-10). Since
the histopathologic process in TSP/HAM is
essentially inflammatory, the pathway of
HTLV-I in causing this disease differs from
that of ATL.

Mechanisms for TSP/HAM
pathogenesis

The possible mechanism by which HTLV-
I infection contributes to the pathogenesis of
TSP/HAM is unknown. It has been proposed
that HTLV-I disease may result from the
expression of a unique sequence called pX
within the proviral genome (11). pX encodes
a transcriptional activator known as Tax,
which has been shown to induce a variety of
host cellular genes including IL-2 and its
receptor in vitro. This altered regulation of
cellular genes by the pX transactivating ele-
ment may begin a process of T-cell activa-
tion and proliferation with subsequent events
leading to inflammatory nervous system dam-
age in TSP/HAM or malignant transforma-

tion in ATL (11).
In addition, recent findings suggest that

immune activation may contribute to the
histopathological changes in TSP/HAM.
Mononuclear inflammatory lesions have been
observed in the central nervous system
(CNS), accompanied by lymphocytic perivas-
cular cuffing (12,13). It has been demon-
strated that the activated cellular immune
state in TSP/HAM is virally driven by the
concomitant expression of HTLV-I pX
mRNA and the upregulation of IL-2 and IL-
2Ra in these patients. Thus, TSP/HAM and
seropositive carriers may represent an auto-
crine phase of HTLV-I infection, where pX
gene activity induces the production of IL-2
and its receptor leading to polyclonal T-cell
proliferation. In contrast, there was no evi-
dence of pX or IL-2 transcription or sponta-
neous proliferation in ATL peripheral blood
mononuclear cells (PBMC) despite very high
levels of IL-2Ra expression and soluble IL-
2R in these patients (12).

In fact, it has been estimated that HTLV-
I integration is present in 3 to 15% of TSP/
HAM PBMC. An elevated CD4/CD8 ratio
associated with the presence of activated T
cells with a high level of DR expression was
observed in most patients. Recently, it has
been shown that HTLV-I proviral DNA and
a high frequency of viral-positive PBMC are
higher in individuals with TSP/HAM or their
relatives than in HTLV-I carriers. These data
agree with the idea that HTLV-I viral load is
important for the appearance of the neuro-
logical symptoms (14-16). This hypothesis
may be tested with the use of highly active
antiretroviral therapy against human immu-
nodeficiency virus type 1 (HIV-1), which
has led to improvement of some patients
with TSP who were coinfected with HIV-1/
HTLV-I (Casseb J and Penalva-de-Oliveira
AC, unpublished data).

An autoimmunity phenomenon may con-
tribute to the pathogenesis of TSP/HAM. It
has been observed that HTLV-I proviral DNA
was detected only in the nucleus of lympho-
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cytes that infiltrated into the spinal cord.
However, no proviral DNA was amplified in
any neuronal cells, including neurons and
glial cells. This indicates that demyelination
of the spinal cord by HTLV-I is unlikely to
be the result of viral infection of oligoden-
drocytes or neuronal cells. These findings
suggest an autoimmune mechanism in TSP/
HAM (17) and that this neuronal process
may be associated with an activated cellular
and antibody-mediated immune response in
these patients.

In one study, IgG isolated from TSP/
HAM patients was immunoreactive with
uninfected neurons and this reactivity was
HTLV-I specific. It has been shown that
staining of CNS tissue with a monoclonal
antibody to HTLV-I Tax, an immunodomi-
nant HTLV-I antigen, mimicked TSP/HAM
IgG immunoreactivity. Absorption of TSP/
HAM IgG with recombinant HTLV-I Tax
protein or preincubation of CNS tissue with
the monoclonal antibody to HTLV-I Tax
abolished the immunocytochemical and
Western blot reactivity of TSP/HAM IgG.
These data indicate that TSP/HAM patients
develop an antibody response that targets
uninfected neurons, yet reactivity is blocked
by HTLV-I, suggesting viral-specific autoim-
mune reactivity to the CNS (18).

More recently, it has been shown that
HIV-1, a lentivirus belonging to the same
family as HTLV-I, possesses the capacity to
induce high production of some chemokines,
such as RANTES (regulated on activation,
normal T cell expressed and secreted), mac-
rophage inflammatory protein (MIP)-1a,
MIP-1ß and others, which are the natural
ligands of the CC-chemokine receptors CCR-
5 (19). These are inflammatory proteins
which seem to have antiviral capacity and
are produced by monocytes, CD8+ T cells,
and also by natural killer cells during TSP/
HAM process (20-22). Therefore, it has been
hypothesized that an additional mechanism
for TSP/HAM might be the presence of a
similar stimulus, with cellular infiltration in

the spinal cord in some HTLV-I carriers.
Furthermore, adhesion molecules such as
lymphocyte function-associated antigen-1
(LFA-1), Mac-1, very late antigen (VLA-4),
intercellular adhesion molecule 1 (ICAM-
1), and vascular cell adhesion molecule 1
(VCAM-1) also have been strongly expressed
in mononuclear cells infiltrating the spinal
cords of TSP/HAM patients (23).

However, this does not explain why cel-
lular infiltration is specifically located in the
thoracic spinal cord, or why HIV-1-infected
individuals have not shown a similar pattern
of myelopathy. One possible explanation is
that TSP/HAM usually occurs after a long
incubation period and HIV-1-infected carri-
ers may have a shorter life span than HTLV-
I-infected carriers. Another explanation may
be that HIV-1 or its proteins do not have cell
tropism for this region of the spinal cord.

In addition to the role of adhesion mol-
ecules, it has been published that matrix
metalloproteinases (MMPs) and their inhibi-
tors (TIMPs) known to be fundamental for
normal physiological processes also contri-
bute to several pathologies associated with
uncontrolled tissue degradation. It has been
reported that cytokines secreted by infected
glial cells are responsible for the increased
expression of MMP-3, MMP-9 and TIMP-3,
while MMP-2, TIMP-1 and TIMP-2 remained
stable in human and rat glial cells infected
with HTLV-I. The role of dysregulated
MMPs/TIMPs in the pathogenesis of TSP/
HAM may be related to various functions of
these proteases, namely degradation of the
blood-brain barrier, myelin constituent cleav-
age and conversion of the inactive TNF-
precursor to the active form (24).

Specific cytotoxic T lymphocytes (CTL)
play an important role in viral infections,
especially retroviral infections, and HTLV-I
Tax11-19-specific cytotoxic T cells have been
isolated from HLA (histocompatibility leu-
kocyte antigen) A2-positive patients. It has
been found that TSP/HAM patients carried a
significant number (14%) of CD8+ lympho-
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cytes specific for the HTLV-I Tax11-19 pep-
tide in their peripheral blood. Simultaneous
comparison of peripheral blood and cere-
brospinal fluid (CSF) from one patient re-
vealed 2.5-fold more Tax11-19-specific T
cells in the CSF (24 vs 9% in peripheral
blood lymphocytes). Further analysis of
HTLV-I Tax11-19-CTL in TSP/HAM pa-
tients showed different expression patterns
of the activation markers intracellular TNF-
a and IFN-g depending on the severity of the
disease. Thus, visualization of antigen-spe-
cific T cells demonstrates that HTLV-I
Tax11-19-specific CD8+ T cells are acti-
vated, persist during the chronic phase of the
disease, and accumulate in CSF (25).

In addition to having lytic characteris-
tics, CTL or other mononuclear cells also are
an important source of proinflammatory
soluble mediators that may significantly con-
tribute to the pathogenesis of TSP/HAM
(26). In one study, infection with HTLV-I
enhanced the secretion of IL-6 in human
microglial cell-enriched cultures but did not
stimulate the release of IL-1 from monocytes
or microglial cells. Since both TNF-a and
IL-6 have been implicated in inflammatory
demyelination and gliosis, it has been sug-
gested that human microglial cells and mono-
cytes infected with and activated by HTLV-
I could play a role in the pathogenesis of
TSP/HAM (27,28).

Another soluble factor like transforming
growth factor-beta (TGF-ß) is responsible
for regeneration of damaged tissues in the
spinal cord and may attract more HTLV-I
antigens to the CSF. In fact, it has been
shown that the proliferative response of
CD8+ cells against cultured and irradiated
autologous CD4+ cells possessing HTLV-I
antigens was significantly inhibited by TGF-
ß1. However, the in vitro activation of HTLV-
I, which was evaluated by spontaneous pro-
liferation of CD4+ cells, was unaffected by
TGF-ß1. The induction of intracytoplasmic
HTLV-I antigens in cultured CD4+ cells was
facilitated by TGF-ß1 in a dose-dependent

manner. Therefore, TGF-ß may have a criti-
cal role in localized viral activation within
the CNS in patients with TSP/HAM (29).

The humoral system also plays an impor-
tant role in TSP/HAM pathogenesis and
complement via the classical pathway acti-
vation cascade may contribute to the inflam-
matory process seen in this disease (30). The
presence of IgM and high titers of IgG and
IgA antibodies to HTLV-I proteins, mainly
to Tax protein, together with an increased
HTLV-I proviral DNA load, seems to be
related to the pathogenesis of TSP/HAM
(31). However, higher antibody levels may
be related to the higher viral load seen in
TSP/HAM patients, without necessarily be-
ing harmful or causing the disease.

In addition to the induction of IL-2 and
its receptor in TSP/HAM, there are genetic
factors that may confer a heightened im-
mune response against HTLV-I on these pa-
tients. For example, TSP/HAM-associated
haplotypes were found in 70% of Japanese
patients with TSP/HAM but not in individu-
als with ATL (30). Also, peripheral blood
lymphocytes bearing these haplotypes ex-
hibited a higher immune response to HTLV-
I antigen whereas the ATL-associated hap-
lotypes had a lower response (32).

It was observed that 32% of the TSP/
HAM patients produced allolymphocytotoxic
antibodies reactive with peripheral blood
lymphocytes (mainly T cells) as well as B
cells, which belonged to the IgM class, re-
acted under warm and cold conditions, and
showed specificity for multiple HLA anti-
gens, especially HLA A2, A26, A33, B7,
B27, B35, B48, B61 and Cw3. Therefore, it
may be suggested that either anti-HLA class
I antibodies or antibodies cross-reactive with
HLA were present. Weak cytotoxic antibod-
ies were detectable in 14% of the sera from
carriers. The production of allolymphocyto-
toxic antibodies in TSP/HAM patients may
therefore be explained by the presence of
allogeneic-like stimuli in this disease. HTLV-
I-infected cells expressing altered HLA anti-
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gens could possibly account for this stimula-
tion (33,34). However, in another study (35),
individuals expressing the class I HLA allele
HLA-A*02+ may prevent 28% of potential
cases of TSP/HAM, and HTLV-I-sympto-
matic carriers have a proviral load one-third
that of HLA-A*02- HTLV-I carriers. These
findings imply that a strong persistent class-
I-restricted CTL response to HTLV-I ben-
efits the host by reducing the viral load.

Table 1 shows some characteristics of
TSP/HAM and ATL and Figure 1 illustrates
the possible mechanisms for the TSP/HAM
process. The CTL-activated and HTLV-I-
infected T cells migrate to the CNS and
infect resident cells and these cytotoxic CD8
T cells may then recognize viral antigens on
HTLV-I-infected CNS cells causing cell-
mediated cytotoxic demyelination. However,
there may not be a CTL-specific action
against CNS cells. Thus, the presence of
IFN-g-secreting HTLV-I-infected T cells and
their recognition by virally specific CD8 T
cells in the CNS induce microglia to secrete
cytokines, such as TNF-a and IL-6, which
may be toxic for myelin (35,36). Also, au-
toimmune mechanisms may exist, with the
occurrence of a) virally reactive T cell cross-
reaction with a CNS antigen, or b) random
infection of T cells eventually resulting in
the infection of CNS-autoreactive T cells.
These, in turn, by virtue of the productive
HTLV-I infection, become activated, expand

Table 1 - Characteristics of tropical spastic paraparesis/human T-cell leukemia type I-associated myelopathy
(TSP/HAM) and adult T-cell leukemia (ATL).

Characteristic TSP/HAM ATL Reference

Underlying lesion Inflammatory process, demyelination Neoplastic 2,6,7
Characteristic in host High viremia PBMC/CNS Low viral load 12,14
Genetic background HLA A2, A26, A33, B7, B27, DRB1*1101-DRB1*0301, 31-33

B35, B48, B61, Cw3 DRB1*1501-DQB1*0602
Frequency of disease 14/1464 1/10,000 3,6
Activation IL-2, IL-2R, IL-6, TNF-a, IL-2, IL-2R soluble 11,18-20,27

CC-chemokines, TGF-ß
Apoptosis Not altered Decreased 17
Treatment Anti-inflammatory, myorelaxant Antiretroviral 17
Prognosis Fair Poor 2,6

and migrate to the CNS, where they encoun-
ter their antigen, with the consequent occur-
rence of a specific immune response and
demyelination. The existence of a genetic
background, such as the presence of some
HLA haplotypes (31-35), may have some
implication for host susceptibility.

Finally, low CTL responders to HTLV-I
develop a high proviral load which results in
widespread chronic infection activation of T
cells (36). Thus, an immune dysregulation
with overproduction of IL-2 by T cells, which

HTLV-I
Tax antigen

IL-10

IgG, IgM, IgA anti-Tax
antibodies and
complement

activation

CC-Chemokine
(MIP-1a, 1ß, RANTES)
Adhesion molecules

(LFA-1, Mac-1, VLA-4,
ICAM-1, VCAM-1)

TGF-ß1

IFN-g
TNFIFN-g

IL-2

T CD4+

B

MF

NK

CTL

Figure 1 - Model for the
pathogenesis of tropical spas-
tic paraparesis/HTLV-I-associ-
ated myelopathy. CTL, Cyto-
toxic T lymphocyte; NK, natu-
ral killer cell; MF, macro-
phage.

Inflammatory lesion in the spinal cord
Demyelination
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can attract even more cells, stimulating pro-
duction of other cytokines such as IFN-a or
overexpression of some adhesion molecules
may play an important role in TSP/HAM
(37,38). In contrast, our preliminary obser-
vations have shown that PBMC obtained
from 2 TSP and HIV-1/HTLV-I-infected pa-
tients showed higher IL-10, lower IL-2 and
IFN-g levels compared to asymptomatic
HTLV-I carriers. These findings may indi-
cate that a switch to a predominant cytokine
type 2 pattern is observed in TSP/HAM with
HIV-1 and HTLV-I infection (39,40, and
Casseb J, Abadalla L, Montanheiro P and

Duarte AJS, unpublished data). Indeed, these
data need further studies.

In conclusion, TSP/HAM pathogenesis
is a multivariable phenomenon of immune
system activation against the presence of
HTLV-I antigens, leading to an inflamma-
tory process and demyelination in the spinal
cord of some HTLV-I-infected carriers.
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