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The magnetic moment solution to the solar neutrino problem is investigated in the context of a solar magnetic field with varying 
phase velocity on the transverse plane. This phase velocity is assumed to successively take values which are approximately pro- 
portional to the solar density, giving rise to the appearance of many resonances along the neutrino trajectory. We obtain a magnetic 
moment necessary for a neutrino reduction compatible with the experimental situation in the range (6-7) × 10 - t3#e, an improve- 
ment by a factor of 4-6 relative to the one resonance case under the same field conditions. 

The resonant spin-flavour conversion [ 1 ] of neu- 
trinos weakly interacting into sterile neutrinos has 
proven to be an effective mechanism [ 2 ] for explain- 
ing the solar neutrino deficit relative to the solar 
standard model prediction [ 3 ] observed by the four 
existing solar neutrino experiments [4 ]. It requires 
the existence of a neutrino magnetic moment [ 5 ] in 
the range #,~> 10-~2#B which is at least six orders of 
magnitude above the electroweak theory prediction 
[6] and is limited by the firm laboratory bound 
/~, ~< 4 X 1 0-  l°/~B [ 7 ]. The idea of the mechanism [ 1 ] 
is based on the possible existence of one resonance 
inside the Sun in the neutrino trajectory arising from 
the interplay of the solar density and the quantities 
A2m21/2E (fiavour mass square difference divided by 
the neutrino energy) and/~,B (the product of the 
neutrino magnetic moment by the intensity of the so- 
lar magnetic field). This operates in a way similar to 
the matter oscillation [ 8 ]. The resonance range is a 
privileged zone for neutrino conversion and in fact 
its existence can reduce by as much as two orders of 
magnitude the necessary magnetic moment for a sig- 
nificant reduction of active neutrinos. One question 
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that most naturally arises may therefore be whether 
the existence of multiple resonances can allow for a 
further reduction. 

The purpose of  this letter is to investigate this pos- 
sibility, by dividing conceptually the neutrino trajec- 
tory in intervals, each containing one resonance only. 
If  the conversion probability Pi in each resonance is 
admittedly small in connection with a magnetic mo- 
ment smaller than the usually required minimum 
value O ( 10- ~2/~B), the existence of a large number 
of resonances may lead to a sizeable overall probabil- 
ity satisfying P ~  O (Y?i). The possibility of a neu- 
trino crossing a large number of resonances along its 
trajectory can only be realized, as will be seen, for a 
solar field B with varying phase velocity. Our analy- 
sis will show that the multiple resonance mechanism 
can provide a large total probability with small val- 
ues of the individual probabilities Pi. Furthermore, 
assuming multiple resonances, the minimum mag- 
netic moment necessary for a suitable solution to the 
solar neutrino problem will be seen to lie almost one 
order of magnitude below the minimum for the con- 
ventional one resonance case. 

As neutrinos travel through the Sun, they will most 
likely experience a magnetic field with varying phase 
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velocity in the transverse plane. Such is the case of 
the twisting magnetic field introduced in the litera- 
ture some time ago [ 9 ]. Although this is the only ex- 
isting candidate for multiple resonances, such a pos- 
sibility was never considered. 

In order to evaluate the transition probability in a 
scenario with multiple resonances, let us take an elec- 
tron neutrino u~ produced in the core of the Sun which 
we will denote by ( 1, 0) on the basis (re, u~) where 
ux refers to a sterile neutrino flavour. After travelling 
through a region containing one resonance, this 
becomes 

( 1 p P , ) ,  (1, 

where PI is the probability for the v ,~  v~ transition 
in this region. Writing this state as the combination 

( l )  ( 0 )  (2, 
(1-P~)  0 +P~ 1 ' 

then, after a second resonance 

(I'~...~(1-P2"~ (~ )  ( Pu ) (3, 
O] \ P2 / '  - '  1 - / 2  ' 

where P2 is the probability for v~-, v~ in the region 
containing the second resonance. Thus the transition 
probability from an active to a sterile neutrino after 
two resonances is 

p~ot __ ( 1 -P~ )/2 +Pt  ( 1 -P2)  

--P~ + P 2 - 2 P ,  Pu. (4) 

Including a third resonance and repeating the argu- 
ment, it is straightforward to derive the total proba- 
bility for three resonances: 

p~ot = PI +/ '2  + P3 - 2P1/'2 - 2P1 P3 - 2/'2 P3 

+4P~P2P3 . (5) 

For an arbitrary number of resonances, one therefore 
obtains the general formula for the classical transi- 
tion probability 

Pfn°t = ~ ~ (-2)m-lpilPi2...Pi,.. (6) 
m ~ l i l  ,i2 , . . . , im ~ l 

i l  < i 2  < . . . < i m  

The simplifying assumption of taking approxi- 
mately equal probabilities at each resonance is par- 

ticularly useful to provide an insight on the behav- 
iour of this expression. It may also be not too distant 
from a realistic realization of the multiple resonant 
scenario as will be seen. Instead of eq. (6) we can 
write for equal probabilities P~ =P2 . . . . .  P; . . . . .  
P,,=P 

~ ( 2  " - l ( n ) P  " ,  ptot= - ) (7) 
m~l m 

which, for instance, taking n=100, P=0.01 gives 
Pt~to =0.43. The first term in eq. (7) is the sum of all 
probabilities n.P while the following ones provide al- 
ternatively negative and positive contributions which 
converge to zero. The net result is thus a reduction to 
a number within the same order of magnitude of the 
quantity n.P. 

The implementation of the multiple resonance sce- 
nario is most naturally done, as referred to above, in 
the case of the so called twisting magnetic field or, 
more generally, a field with varying phase velocity on 
the transverse plane. The neutrino evolution equa- 
tion is in such cases [ 10-11 ] 

d : Bo (8) 
'~ux/]=~16,B,e i" --Bo "" J]\vx/" 

Here ~ is the field phase, B(t) = (B~cos ~0, Blsin ~, 0), 
B~ its modulus, Bo = GF (Are -- N.) / x//-2 and, along the 
neutrino trajectory, the neutron density N. = ~N. with 
the electron density Are decreasing exponentially [ 3 ]. 
Applying the unitary transformation 

0 
vx] \ 0 e-i*/2J\vx] ' (9) 

one can eliminate the imaginary part of the evolution 
Hamiltonian, so eq. (8) becomes 

. d ( v , ) ' = ( B o - ½ ~  I~,,B1 ~(v,~ '  (10) 
1~\Vx/ \ #,.B~ -Bo+½~/kvx] " 

It is therefore seen that a non-vanishing phase veloc- 
ity ~ opens the possibility for one or more resonances 
to occur through the condition of equal diagonal 
elements: 

~=2Bo. (ll) 
For a field whose direction changes permanently 

and irregularly on a plane perpendicular to the direc- 
tion of motion, as is possibly the case, this condition 
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may be verified a large number of times along the 
neutrino trajectory. We note that the effect of  the 
phase velocity would be a direct increase in the tran- 
sition probability if instead it appeared in the off-di- 
agonal elements of eq. (10). It therefore plays a sim- 
ilar role to the mass square difference in the MSW 
mechanism [ 8 ] or the spin flip with only one reso- 
nance [ 1 ]. Thus it may only indirectly provide an 
increase in the transition probability through the 
multiple use of the resonance condition ( 11 ). 

Using the system of  equations (10), it is straight- 
forward to get the second order differential equation 
for the evolution of Ax, the amplitude for re--* vx. It is 
well known that the quantity Bo introduced in eq. (8) 
decreases exponentially along the neutrino trajectory 
[ 3]. Since however we divide this trajectory in rela- 
tively short intervals we will assume, within limits, a 
constant Bo in each interval as well as a constant phase 
velocity ~ and field magnitude BI. In this way we ob- 
tain a simple Laplace equation for Ax~ 

d2Axi + [ ( B 0 i -  " 2 2 2 ½¢i) + Iz,Bli]Axi =0 (12) 
dt 2 

This is the equation of motion describing the propa- 
gation of neutrinos within the ith region, each being 
characterized by a fixed value of Boi, Bu and ~.  It is 
also assumed, as we have seen, that the resonance 
condition ( 11 ) is satisfied once and only once in each 
of these sections of the trajectory. Hence, on the basis 
of these assumptions, the transition probability for 
veo v~ in one interval calculated from the solution of 
eq. (12) is the more accurate, the closer one stays to 
the resonance condition within the interval. In other 
words the expression 

ei( u ~  Ux) = [axe[ 2 

2 2 

- ½ ¢ i )  + ~ B .  (Bo;  • 2 2 2 

xsin2([(Bo~-½~,)2+lt2B~d~/2At,) (13) 

(where Att is the length of the interval ) gives a better 
approximation of the actual probability, the stronger 
the inequality 

( B o ; -  " 2  2 2 ½¢,) << #,B~; (14) 

is fulfilled throughout the whole interval. In this way 
a "quasi-resonance" condition remains valid within 
this length. For short intervals this condition is of  

course likelier to be ensured than for comparatively 
larger ones. Let us therefore assume that eq. (14) 
holds in each section of the trajectory and thus the 
probability Pi is accurately given by its maximum 
value 

Pi=sin2(lt~BliAti) . (15) 

In order to get a rough but safe estimate of  the 
maximum allowed value of  At~ for the approximation 
to be accurate, let us consider a linearly decreasing 
density extending to both sides within the vicinity of  
the resonance. Thus 

Bo = Bo~exp ( - f i t )  ~Bo~( 1 - f i t ) .  (16) 

Here fl= 1/0.09Rs with Rs being the solar radius 
(Rs=696000 km) and t = 0  at the ith resonance 
point. Applying the resonance condition (11 ), we 
obtain from the inequality (14) 

max At~ ~ 1.28X 101SeV - l  ltvBu ~, (17) 

The phase velocity ~ entering eq. (17) is therefore 
fixed by the density at resonance: 

q), = 2Bo, = x/~GF" ~Ne, (18) 

which, using [1] Ne~=2.4×lO26exp(-x~/O.09) 
cm -a, becomes 

, , = 2 . 5 ×  1 0 - ' l e x p ( ~ ) e V ,  (19) 

where x; is the fraction of  the solar radius at the res- 
onance point, x~=r~/Rs. In other words, we are as- 
suming the phase velocity of the field successively to 
reach along the neutrino trajectory a value given by 
eq. (19), so that at each such point the ith resonance 
occurs. 

We now investigate under what conditions the to- 
tal transition probability can be maximized for a given 
field and magnetic moment. A maximum probability 
must obviously result from a balance between the 
maximization of the intervals size and the number of 
intervals: the large one is, the smaller the other. If  the 
regions are too long we approach the well known one 
resonance situation [2 ], whereas if they become too 
small, the probabilities P,., eq. (15) become negligi- 
ble. For the solar field we take one of the Akhmedov 
model distributions [ 12 ] 
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BI(x)=IO'×(  0.2 ~2 G 
\ x + 0 . 2 ]  

for 0~<x~<0.65, 
2 

= 1 0 5 × [ 1 - ( ~ )  ] G 

for 0.65 <x~< 1 . (20) 

Using eqs. ( 15 ) and ( 17 ) -  ( 20 ) we first calculated 
P~ (max Ate) at each given interval. The min imum of  
these quantities was chosen as a common  value for 
the probabilities so that the simplified formula, eq. 
(7),  for the total probability could be applied. In this 
way the corresponding interval length At~ is often 
much smaller than max At`.. In table 1 we list the val- 
ues of  max At,, eq. ( 17 ), the value At`. obtained in this 
way at several points o f  the trajectory, the corre- 
sponding values ~(x~), eq. (19) and the magnetic 
field, eq. (20).  In this way we are in the most  favour- 
able case for applying eq. (7).  For  # ~ = 7 ×  10-13/za, 
we have PI~P2,,~...~Pn~P~2×IO -3, while for 
/z~=6× 10-~3/~B, P ~  10 -3. The results ofeq .  (7)  for 

these two values of/z~ are listed in table 2, together 
with the approximate number  o f  resonances encoun- 
tered by the neutrinos, for these being produced at 
0.05, 0.06 and 0.1 o f  the solar radius. This approxi- 
mate number  o f  resonances refers o f  course to the 
whole neutrino trajectory, from their production 
point up to the surface o f  the Sun. 

A comparison of  the results for the total suppres- 
sion probability in the multiple resonance case with 
the one resonance case [2 ] shows that, under the same 
field conditions, an analogous probability is obtained 
for a neutrino magnetic moment  4-6  times smaller. 
In fact a magnetic moment  o f  order (6 -7 )  × 10-13/z a 
can give the necessary suppression of  active neutri- 
nos compatible with the experimental situation, to be 
compared w i t h / z ~  ( 2 - 4 ) ×  10-12//B in the one res- 
onance case. A different feature o f  the multiple reso- 
nance framework with respect to both MSW and one 
resonance mechanisms is that all neutrinos are equally 
suppressed, regardless o f  their energy, and the loca- 
tion of  the resonances is also energy independent. This 
is a consequence of  the fact that the present scenario 
works independently of  mass differences between 

Table 1 
The values of the magnetic field, eq. (20), at a fraction x of the solar radius, the phase velocity ( 19 ), the maximum interval length ( 17 ) 
and the value of Ati used in the calculation of the probability P~ in the corresponding interval. 

x= r/Rs B1 (x) ( X 106G) ~(x) (eV) max Att(eV-l ) Atl(eV- 1 ) 

0.04 6.9 1.61 X 10 -ll 2.22X 1012 1.70X 1012 
0.05 6.4 1.44X 10 -11 2.29X 1012 1.84X 1012 
0.06 5.9 1.28X 10 -11 2.37X 1012 1.99X 1012 
0.1 4.4 8.26X 10 -12 2.75X 1012 2.75X 1012 
0.2 2.5 2.72X 10 -12 4.74X 1012 4.74X 1012 
0.3 1.6 8.95X 10 -13 9.21 X 1012 7.37X 1012 
0.4 1.1 2.93X 10 -13 1.97X 1013 1.05X 1013 
0.5 0.82 9.69X 10 -14 4.34X 1013 1.44X 1013 
0.6 0.62 3.19X 10 -14 1.01X l014 1.90X 1013 

Table 2 
The number of resonances encountered by neutrinos produced at 0.05, 0.06 and 0.1 of the solar radius and their total expected transition 
probability into sterile ones for two values of the magnetic moment. The solar magnetic field is taken from eq. (20). 

x =  r / R s  Approximate number ptot 
of resonances 

/~v= 7 X IO-13#B #,--6X I0-13~js 

0.05 400 0.41 0.28 
0.06 380 0.39 0.27 
0. I 320 0.36 0.24 

128 



Volume 317, number 1,2 PHYSICS LETTERS B 4 November 1993 

neutr ino flavours and does not  require neutr ino mass. 
F r o m  eq. (15)  it  is clear that  there is the possibi l i ty  

o f  an ant i -corre la t ion o f  the neutr ino flux with the 
sunspot  act ivi ty  in the convect ive zone o f  the Sun. 
This  t ime dependence  has been c la imed by  the 
Homestake  experiment  [4 ] but  the Kamiokande  data  
do not  seem to conf i rm it. In  the one resonance case, 
such a strong effect in one exper iment  and  its absence 
in the other  can be explained by the assumpt ion  of  a 
resonance located in the convect ive zone for the ber- 
i l l ium neutr ino sector only. This  would lead us to ex- 
pect  an even stronger t ime dependence  in gall ium ex- 
per iments  [4,13] ,  as the Be fract ion is more  
impor tan t  there. In  the mul t ip le  resonance ease, 
however,  where the locat ion o f  the resonances is de- 
t e rmined  by  the field phase veloci ty and  not  by the 
mass  difference, a possible rel iable explanat ion  lies 
in the compar i son  o f  the neutr ino scattering effects 
in Homes take  and  Kamiokande .  Whi le  Homes take  
observes a purely weak process, the neu t r ino-e lec-  
t ron scattering observed by Kamiokande  has an elec- 
t romagnet ic  cont r ibut ion  f rom the magnet ic  mo-  
ment  which does not  f lutuate in t ime. So the 
Kamiokande  effect is expected to be smoother .  How- 
ever, this smoothening  is only apparen t  i f  
#~ i> 10-  t°/tB [ 14 ]. Although this range possibly leads 
in the present  scenario to probabi l i t ies  that  are far 
too large, the large exper imenta l  uncer tant ies  in- 
volved allow us to invoke this explanat ion.  

The phase of  solar magnet ic  field probably  rotates 
in space and in t ime along the neutr ino t ra jectory but  
in an unknown fashion. It is therefore possible that  it  
may  successively reach values on the way o f  the neu- 
t r inos which are p ropor t iona l  to the local solar den- 
sity. Such a coincidence is not  unl ikely to be real ized 
in pract ice but  it  requires some fine tuning to ensure 
that  the phase velocity,  whose range o f  var ia t ion  is 
unknown,  goes through the required values at  the ap- 
propr ia te  locations.  Thus this mechanism,  al though 
possible in practice,  is not  necessari ly impl ied  by the 
existence o f  a var iable  magnet ic  field phase.  This  sce- 
nar io  thus offers a v iable  a l ternat ive for a solut ion to 
the solar neutr ino p rob lem within the assumpt ion  of  
a non-zero neutr ino magnet ic  moment .  
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