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An extended Hubbard model for a single band, including Coulomb repulsion and correlated hop-
ping between nearest neighbors, is studied using a generalized mean-field approach. Antiferromag-
netism and superconductivity are probed for arbitrary occupation number, near and away from half
filling. Binding of pairs in the superconducting state of this purely repulsive model is mediated
by the correlated hopping in the form of a covalent-bond configuration, with partial intrasite and
intersite pairings. A region of coexistence is conjectured, the superconductivity being suppressed by
the saturation of the staggered magnetic moment. Singlet superconducting nonmagnetic states are
obtained for the almost-empty- or full-band cases. On the other hand, antiferromagnetism induces
mixed s- and p-type superconductivities in the neighborhood of half filling.

I. INTRODUCTION

The presence of superconductivity in the copper oxides
has brought a convergence of several fields of interest in
condensed matter physics.! In particular, it has been sug-
gested that the mechanism may be of an electronic ori-
gin, and the existence of an insulating antiferromagnetic
phase in most reference compounds, hints at strong cor-
relation effects among carriers. The Hubbard model has
been pointed to as a natural candidate to describe the
above effects related to the metal-insulator transition.
It is not clear, at the present time, whether the two-
dimensional Hubbard model away from half filling may
be described by the usual Fermi-liquid concepts, with
the presence of a Fermi surface and long-lived quasipar-
ticles in its vicinity. Numerical methods have been ex-
tensively used to test superconductivity and Fermi-liquid
behavior. Quantum Monte Carlo simulations by Hirsch
and Lin? show that some pair correlations are enhanced
with the intrasite Coulomb repulsion U, but no tendency
of condensation of pairs into a superconducting state is
observed for this single-band repulsive Hubbard model.
Using a different algorithm, Sorella and co-workers® have
implemented Monte Carlo simulations for very large two-
dimensional systems (up to 256 sites) and arbitrary occu-
pation number. Their results show that the ground state
retains its insulating character even for large deviations
from half filling, and a Fermi surface only appears for
extremely large doping. However, the above simulations
are not free of finite-size effects, in spite of the large sizes
are difficult to attain without numerical instabilities.?

At this stage, several approaches are available. Some
authors argue that since holes in doped samples reside
on the oxygen sites, the physics is essentially different,
and two or more bands are necessary to describe the rel-
evant degrees of freedom.? On the other hand, other au-
thors claim that the two-band model can be mapped onto
an effective Hamiltonian for a strongly correlated single
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Hubbard band.® In this latter case, one recovers the pic-
ture proposed by Anderson.®

Other treatments, within the one-band picture, obtain
pairing of carriers with attractive-U parameters.” This
attractive on-site potential may be due to coupling with
a boson field (phonons or other electronic excitations), or
may be of chemical origin (disproportionation of valence
states). However, a neat physical justification of this
approach is still lacking.

Low density of carriers, in the copper oxides, produces
a substantial reduction of screening effects. One is then
forced to revise the validity of the approximations that
lead to the simple Hubbard Hamiltonian with only on-
site Coulomb repulsion. From the terms neglected,® the
first in importance is related to the repulsion V between
nearest neighbors. Next come off-diagonal terms of the
Coulomb interaction V(r —r’), i.e., the correlated hop-
ping I and the exchange J. Using Hubbard’s notation,®
they are written as

I= (m % zg) (1)
and
J= (u Hya) (2)

where (i,j) represents Wannier orbitals centered at
nearest-neighbor sites and % is the Coulomb potential.
Both terms (1) and (2) involve bond charge density, and
are a consequence of translational invariance. In fact, the
electron density operator is not diagonal in the Wannier
representation. For narrow-band materials, the above
terms may be important, as first noted by Hubbard,?
and also recently by several authors.®~!! In this contri-
bution we analyze the role of the correlated hopping I for
the single-band Hamiltonian, and the interplay of anti-
ferromagnetism and superconductivity for this extended
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Hubbard model. The term correlated hopping has been
coined to mean that hopping to a nearest-neighbor site
may be different, whether the site is occupied or not.
The importance of such a term in the copper oxides has
been recently put forward, since it can give rise to ex-
tended s-wave superconductivity.!? It appears as more
fundamental than the usual exchange interactions which
may lead to spurious d- or p-wave pairing, if not cor-
rectly handled. However, the superconducting solutions
suggested by Hirsch'? are limited to the almost-empty-
and almost-full-band cases, and were not identified with
the physics of the copper oxides. Micnas and co-workers
have extensively studied the extended Hubbard model,”
including the interaction V for nearest neighbors, and the
correlated hopping and exchange terms. However, most
of their solutions refer to attractive U or V parameters,
and the role of the I term is somehow hidden. In our work
we will show that the inclusion of the correlated hopping
in the extended model leads to surprising results. In con-
trast to Hirsch’s conjectures, pairing of carriers may be
obtained in the vicinity of the half-filled band case, if
partial antiferromagnetism is allowed. And finally, we do
not have to resort to attractive U or V, to get supercon-
ducting solutions. In our treatment, through a general-
ized Hartree-Fock approximation, symmetry broken and
correlated solutions are tested. Thus, our approach goes
beyond the standard Hartree-Fock one. Moreover, it is
found that the inclusion of the intersite Coulomb repul-
sion V (that makes the interactions less short ranged),
leads to a wider range of validity of the Hartree-Fock
approximation.'3

Preliminary results of our calculation have already
been published.!* A general necessary condition to ob-
tain pairing of carriers can be given in the form

i’ > UV, (3)

where v is the coordination number. Condition (3) is
obtained independently of the existence of antiferromag-
netic ordering, and the dimensionality enters through the
number of nearest neighbors. From the overlap integrals
we expect the physical region for parameters to be re-
stricted to

Il <V <U. (4)

The above conditions (3) and (4) are more likely to be
fulfilled in two and three dimensions. They both restrict
pairing to a limited region of the parameter space, with
ranges that include realistic values of the different param-
eters. For instance, if we choose U = 6 eV (Ref. 15) in
two dimensions, we get a lower bound for V' equal to 0.375
eV. On the other hand, from energy-band calculations!®
one can estimate the value of V' to be of the order of or
less than 0.5 eV, allowing a variation of |I| that ranges
between the above values. We discuss this matter later
in this paper. Condition (3) also shows that attractive
values of U or V are not necessary for pairing of carriers,
as long as the correlated hopping I is finite.

A comment concerning antiferromagnetism is in order.
Pairing in the presence of antiferromagnetism is possible
near the half-filled band case, but the superconducting
critical temperature is drastically depressed by the pres-
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ence of a magnetic moment. This picture resembles the
one described by Anderson,® with an enhancement of the
effective mass of carriers due to spin fluctuations. In our
solution, superconductivity is suppressed close to satura-
tion of the magnetic moment.

Our paper is organized as follows: in Sec. IT we discuss
the extended Hamiltonian and the method of solution. In
Sec. III we present numerical results for several examples
calculated. The last section, Sec. IV, is devoted to the
final comments and discussion of our results.

II. MODEL HAMILTONIAN

We studied in detail the square lattice (two dimen-
sions), but our approach can be extended to hypercubic
d-dimensional lattices with lattice parameter a. The di-
mensionality enters in relation (3) through the coordi-
nation number. The above lattices are not frustrated to
antiferromagnetic ordering, and can be partitioned into
two equivalent magnetic sublattices. We model our sys-
tem with an extended Hubbard Hamiltonian for a single

band:
Z nianjs

(i3),0,8

A 14
H= OLN+U;’I7,¢1TL¢T+—2—

+ 3 I(ni—o + nj—a) + N elycio, (5)
(ij),0

where c;ra and c¢;, are the usual fermion operators for a

Wannier orbital with spin o, centered at the ith site, and
N is the total number operator. In writing (5) we have
proceeded in a way similar as in the original formulation
by Hubbard,® starting with a single Hartree-Fock band,
and writing the corrections over the Hartree-Fock mean
field. The parameters o and X used in (5) are given by

a=Fy—pu—n(U+2vV) —2vlT,
A=t—2In+Vr,

where Ey is the atomic energy, ¢ is the hopping integral
related to the bandwidth, 7 is the average number of elec-
trons per site and spin, 7 is the average of the electronic
transfer between nearest neighbors, v is the coordination
number, and p is the chemical potential. Hamiltonian (5)
shows that the I integral should be compared with the
hopping ¢ rather than with the Coulomb terms U and V,
since it represents a correction to the usual hopping due
to correlation effects.
The single-particle Green function

G%(2) = ((cio 5 €},))= (6)

allows one to calculate averages such as the site occu-
pation and the nearest-neighbor electronic transfer. The
anomalous Green function

S%(2) = ((c] _q 5 el o))z (7)

is useful to compute pair correlations of electrons of op-
posite spins. These averages are most important to test
superconductivity. If the equations of motion are cal-
culated for both Green functions, using the formalism
developed by Zubarev'® we get the following:
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AN+ VS (nissscio 5 cy))

é 8,8

+ID ((ni—oCivs,e + (€] _ Civs—0 + He)eio 5 cly)), (8)

)

(z+ a)Sg —AZ PR

<<nzocz —o ) JO’>> - IZ <n2+5 UCI+6 —o }d)>

— V> ((nigsacl o5 cly))

8,8

I ((nigclis o + (clycivse + Hedel 5 cl,)), (9)

5

where H.c. denotes Hermitian conjugate and ¢ + 6 labels
the nearest neighbors of site 1.

At this step we encounter the problem of decoupling
the equations of motion. As in previous works,317
a generalized Hartree-Fock solution is probed. In our
treatment, symmetry broken and correlated solutions
are tested, thus our approach goes beyond the standard
Hartree-Fock one, allowing antiferromagnetic ordering
even in the presence of superconductivity. To solve (8)
and (9) we replace the product of three fermion operators
by

ABC = (AB)C — (AC)B + (BC)A. (10)

This decoupling is the simplest one that can be devised to
test simultaneously the presence of antiferromagnetism
and superconductivity. However, our results should be
extrapolated with caution to the highly correlated regime
(U > t), where one expects the Hartree-Fock approxima-
tion to fault. In this sense, our main result (3), should
be considered as an upper bound. Conditions obtained
through improved approximations in the highly corre-

1

[Z - — U’I-Zi,_a -V E ﬁi.;_&,‘g

— 2IVT_U:I GY.
B

240+ Ulig + V'Y Ritss + 211/70] Sg,
6 §

where
A = (cicr), (15)

is the average of the destruction of a pair of electrons at
the ith site,

Fie = (Ci+6,—acia>, (16)

is the same average for a pair of electrons at neighboring
sites,

UoAi+1Y (Tig + ri+5,a)} Se
)

UoAl + IZ(P + T, ‘,)}

r
lated limit, may be more restrictive. Nonetheless, recent
estimations of the relevant parameters for the copper ox-
ides, point to the intermediate rather than the strong-
correlation regime,'%1® with a bandwidth comparable in
magnitude with the intrasite correlation U. On the other
hand, as mentioned in the Introduction, including terms
that make the Coulomb potential less short ranged,!®
may widen the region of parameters where the Hartree-
Fock approximation is valid. In any case, our approach
yields no superconductivity in the limit U — oo, which
agrees with asymptotic exact expansions for that limit.2°

Using the above procedure, higher-order Green func-

tions can be expressed in terms of Gi and S7;, as, for
instance,

((ni,—oCio ; C o)) = <ni,*a>qu + (ci,_gcw)S{-’j, (11)
<<n10'cz -0 ) C >> = <n10> (cZacI,—a>GZy7 (12)

where averages that do not conserve the component S,
of the total spin are neglected. The proposed decou-
pling (10) yields the following equations for G and S:

- Z A =V7e + I(7i,—0 + Nit6,—0)] Gg—}-é,j
&

Er" (13)

- Z [VTie + Io(Ai + Dits)] Sihs5 =
5

=Y A= V1o + I(Rio + Niys,0)] Shs,;

Z [VFH—& o + IU(A: + A:+5)] G?+6,j = 07 (14)
&

[
Ty = (c;r+5’acw) (17)

is the average of the electronic transfer between nearest
neighbors. When considering antiferromagnetism with
two identical sublattices, it is useful to define the follow-
ing quantities:

= 3l{nie) = (ni—0)l, (18)
= 3((nie) + (n4i,—0))- (19)
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Symmetry-broken states are obtained when the average
(nqt) is prescribed as different from (nq ) for a given
sublattice. We write this in compact form

(Ng,0) = (Nb,—o) = T + 80, (20)

where a and b label the two sublattices.
In the presence of antiferromagnetism, the lattice pa-
rameter is doubled. Green functions in the reciprocal

space are then obtained as
J

z— FEg+ so —try —A —Bgoy
—ty z—FEy—soc —Bpsy —A
—A* —B}. v z+Eo+so ty
—BX. v —A* ty z+ Ey— so
where all energies are referred to x4 (with p = 0) and

normalized to U = 1, and
A=0A+Iv(Teo + o),
B,, =VI4s +2IcA,

v=>)_exp(ik-#),

with « being the structure factor.

The index z in (23) may be a or b, and one gets four
independent Green functions for each value of the spin
0. The symmetry condition (ng.,) = (ny_,) implies
that the order parameter A; does not depend on the site
index 1.

III. CRITICAL TEMPERATURE AND
NUMERICAL EXAMPLES

The Néel temperature Ty for the normal phase is
obtained through the standard Hartree-Fock approxi-
mation, and it is only band dependent. Concerning
superconductivity, we have solved our equations just
at the critical point T¢ (asymptotically from the low-
temperature phase), where they are linear in relation to
the order parameters (15) and (16). The presence of
a magnetic moment at the superconducting transition
temperature has been tested in a self-consistent way, but
no information has been obtained at lower temperatures,
where the equations are highly nonlinear. Consequently,
our phase diagram is not complete, since we cannot rule
out a reentrant antiferromagnetic phase. Coexistence re-
gions for superconductivity and antiferromagnetism are
then extrapolated through the magnetic state at T¢.

Keeping only linear terms in A and I', one can solve
Eq. (23) for all the Green functions involved, yielding

z— Eg — so
oGl = 0 %7 24

o _ ty
2rGg, = Goee=c) (25)
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GZs(k,z) = Z G (z)e e (Ri~Ry), (21)
G5(2) = Krg > G2p(k, 2)e (RumRa), (22)

k

where o and ( refer to different sublattices, Ng is the
total number of sites, and 1,5 belong, respectively, to
sublattices a, b.

Equations (13) and (14) are actually four noting that
site ¢ may belong to any of both sublattices a or b. In
matrix notation we get

g é

axT 1 6-’311
QZ _ zb
Sg, 0

1
28, = aa{aA ([z— s0)? — E2 — t24?)

+ty* (Eo[B;, + By,]
—[z — s0][Bss — By, }s (26)
2m ab ~ de t{Bba(z [EO - 30]2) - B:at272
+20A*t[Ey — sol}, (27)

where

e1=FEy—R, R=+/s2+1t242,

= Ep+ R, det = (22 —£2)(2? — £2).

To calculate statistical mechanics averages one must
compute residues of the above Green functions. In this
process, one has to evaluate sums over the Brillouin zone
(two dimensional in our examples), and reliable numer-
ical methods were necessary, specially when the critical
temperature is small.2® Typical summations encountered
are in the form

— 2_17; S " (tanh Bes/2 + tanh Be1/2),  (28)
k

1
_%zk:

1 Z " (tanh,@sl/2 B tanhﬁ62/2) . (30)

2_71: R &1 €2

% (tanh Bep/2 — tanh Be1/2),  (29)

n =

where 8 = 1/kT,.

The three order parameters A, I'y,, and 'y, are lin-
early related through a homogeneous system of equa-
tions. A nontrivial solution is only obtained when all
of them are simultaneously nonvanishing, and when the
determinant of the system is zero. This latter condition
yields

S2 VN, 2 2 2 a
& (r %) (s op [ e 5 (12

1+ﬁ—+‘—/-‘é—DnJ2}{1+

V(N2 + 5252)

o } =0 (31)
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where D = 41> — ¥ and 7' = 1/2 — A. To fulfill rela-
tion (31) one gets the condition D > 0 for the existence
of superconductivity, i.e., one recovers (3) when the pa-
rameter U is rewritten

4I? > UV.

The above condition is obtained independently of the
value of the magnetic moment s. Estimation of the single-
band Hubbard parameters to make connection with the
high-T, oxides is a difficult task. Energy-band calcu-
lations have been devised to account for correlation ef-
fects and spectroscopic data simultaneously. Projections
of the above calculations onto the Hubbard model (one
or several bands) are however sensible to the method
used, yielding a dispersion in the values quoted in the
literature.!® The situation is even worse when dealing
with the extended model. The intrasite U at the copper
site is estimated to be in the range 5-10 eV and the in-
tersite repulsion Vj, g between copper and oxygen sites is
in the interval 0.6-2 eV. From the above data we crudely
estimate our single-band V to be at most of the order of
0.5 eV. No estimation is available in the literature for the
correlated hopping I, but some conclusions can be drawn
from the above-estimated values for the other parame-
ters. For example, to satisfy the pairing condition (3)
and the inequality (4) with U = 6 eV in two dimensions,
one gets as the lower bound the value [I| =V = 0.375eV.
One then sees that the pairing condition can be met in
a finite region of parameter space, with reasonable val-
ues of the Hubbard parameters. Thus, our mechanism
is not ruled out by recent elaborate calculations of the
Coulomb-interaction parameters in the cuprate materi-
als.

The physical situation, where the three order parame-
ters A and I', are simultaneously nonvanishing, may be
pictured as a covalent bond formed by holes or by elec-
trons of opposite spins. Instead of being localized, either
in one site or in nearest-neighbor sites, where the kinetic
energy is high, the pair reduces the effective Coulomb
repulsion and minimizes its kinetic energy by resonating
between both configurations. This picture is reminiscent
of Anderson’s RVB idea,® except that in our case double
occupancy is allowed. Our approach also illustrates the
interplay of antiferromagnetism and superconductivity.
On-site pairing is favored by the absence of antiferromag-
netism. When an antiferromagnetic moment develops,
intersite pairing between majority spins gets enhanced
over the minority one. For a covalent bond we get an
intermediate situation, where pairing coexists with itin-
erant antiferromagnetism. When projected using a Wan-
nier basis, the covalent bonding yields partial on-site and
intersite pairings. This picture also shows that saturation
of the magnetic moment will suppress superconductivity,
since no states will be available for pairing minority spin
carriers. We remark that the above effects are all medi-
ated by the correlated hopping I, and that no pairing is
obtained for I = 0, when U and V are both repulsive.

Superconducting solutions without magnetic ordering
are obtained setting s = 0 in (23). In this case, all sites
are equivalent and (cpjcat) = —(cp1cqay). In the same
way, magnetic solutions are obtained self-consistently for
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FIG. 1. Critical temperatures (upper figure) and the stag-
gered magnetic moment (lower figure) as functions of the oc-
cupation number per spin, for % = 0.001 and various values
of % and % In the upper figure the Néel temperature for

the normal phase is shown with a dashed line, and the su-
perconducting critical temperatures for the different values
of parameters are displayed with continuous lines. Note that
the scale of temperatures is logarithmic and that T¢ and Tn
go to zero for i — 0 and 7 — 1 (which is not apparent in
the figure). Nonmagnetic and magnetic superconducting so-
lutions are matched at the Néel temperature, but the slope is
not continuous. Note also that superconductivity disappears
close to saturation for electron and holelike carriers. In the
lower figure the dashed line displays the saturated value of
the moment as a function of the occupation number.

t

FIG. 2. Same as Fig. 1, but for = 0.01. Supercon-
ducting solutions get closer to the half-filled band, 7 = 0.5.



14 422

s > 0, but spin symmetry is now broken for the two
sublattices.

In Figs. 1-4 we show the phase diagrams obtained in
the space critical temperature vs concentration of car-
riers per spin, for various values of parameters. Strin-
gent values of parameters have been adopted to test
the effects described here. The Néel temperature for
the normal phase is also shown as a reference, separat-
ing nonmagnetic from magnetic solutions of the super-
conducting critical temperature T. Several phases are
present, namely, normal nonmagnetic, normal antifer-
romagnetic, superconducting nonmagnetic, and possible
coexistence regions of superconductivity and antiferro-
magnetism. The value 7 = 0.5 labels the half-filled band
case. In the lower part of all figures we show the corre-
sponding magnetic moment per site as a function of the
concentration of carriers.

Some features are common to all cases.

(i) A nonmagnetic superconducting state is present,
but restricted to the almost-empty or to the almost-full
band. This result agrees with Hirsch.!? With antiferro-
magnetism, the superconducting region extends itself in
direction to the half-filled band, but the transition tem-
perature is strongly depressed with the enhancement of
the magnetic moment. We note that the superconducting
nonmagnetic solution also exists around 7 = 0.5, but cal-
culation of the corresponding free energies shows that the
latter is not the stable phase.2? The eventual saturation
of the magnetic moment, i.e., when s = # for electrons
and s = 1—7 for holes, suppresses superconductivity. As
discussed before, this latter fact is a consequence of the
covalent nature of the pairing.

(ii) Electron-hole symmetry is broken by the inclu-

o 1
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1074
. 0.8 1.0
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w
FIG. 3. Same as Figs. 1 and 2, for & = 0.05. In this

case the asymmetry between electrons and holes is more per-
ceptible. Note also that superconductivity disappears slightly
before the saturation of the magnetic moment.
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FIG. 4. We plot the same quantities as in the previous

figures, but now the parameters % and é are fixed, while

£ is varied. This figure is interesting, for it clearly shows
superconductivity close to half filling and the breakdown of

the electron-hole symmetry.

sion of the correlated hopping I. This is more evi-
dent in Fig. 4, when we vary % for I and V fixed,
and for the biggest values of % Neither the supercon-
ducting solutions nor the process of saturation of the
magnetic moment are invariant under the transformation
i —» (1 — ). However, our solutions still present some
symmetry which can be expressed in the relation below
for the critical temperature:

TC(t7I7ﬁ)=TC(ta—I71 —ﬁ)
=Tc(—t,I,1—n).

Thus, we conclude that antiferromagnetism is not a nec-
essary condition for the onset of superconductivity in the
whole parameter space. Actually, the critical tempera-
ture decreases with the appearance of a magnetic mo-
ment, but antiferromagnetism is essential in the present
formulation, to stabilize pairing in a region of the phase
diagram close to half filling.

IV. CONCLUSIONS

To apply the present theory to the physics of the
copper oxide superconductors, the essential point to be
answered is whether the magnetic moment of the in-
sulating antiferromagnetic phase survive the action of
doping that leads to the superconducting state. Some
experiments22? indicate that, though the 3-d antifer-
romagnetism is lost in the process, a two-dimensional
phase without long-range order is always present with
antiferromagnetic correlations lengths ranging from 18 to
200 A depending on the temperature and doping. These
lengths are large when compared with the small super-
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conducting coherence lengths that are usually measured
for the copper oxide samples.?! In formulating our the-
ory we have assumed this to be the case, and a local
pairing with a small spatial extent have been adopted,
while antiferromagnetism, when present, develops long-
range order.

Next, we discuss the symmetry of the order parame-
ters (15) and (16). Pairing in a singlet state is obtained
for

A = (ciicir), (32)
Lot —Tay = (cpiCar) — (Cb7Cal); (33)

while triplet symmetry appears when the combination
below is not vanishing:

Lar +Tay = (coiCat) + {cprcay)- (34)

Only singlets are present for the nonmagnetic solutions
when all sites are equivalents. In contrast, with anti-
ferromagnetism, the order parameter acquires a triplet
admixture (34), whose magnitude in relation to the inter-
site singlet component (33), increases with the magnetic
moment up to a maximum at saturation. Close to this
point, the superconducting state extinguishes.

The inclusion of the correlated hopping breaks the
electron-hole symmetry. In fact, when the sign of I is
opposite to that of t, hopping to a neighboring site is
inhibited when this latter is occupied. This argument
is inverted for holes. Double occupancy is not forbid-
den completely, and depends on the delicate balance of
the Coulomb parameters. This fact is essential in our
approach for producing a pair binding, and also shows
intuitively that the limit U — oo displays no supercon-
ductivity.

A comment concerning the generalized Hartree-Fock
approximation is in order. As it is usual in any mean-
field theory, the effective fields that induce the different
phase transitions, and the corresponding transition tem-
peratures, are overestimated. Our results should be con-
sidered as upper bounds, and the phase diagram of an
improved approximation may be more restrictive.

In summary, we note that an effective Hamiltonian
like (5), including the correlated hopping and the inter-
site Coulomb repulsion, is a natural extension to account
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for the Coulomb interactions even for the one-band case.
Translational invariance implies that the electron density
operator is not diagonal in the Wannier representation.
In this sense, the inclusion of off-diagonal terms tends
to restore a fundamental symmetry. Within the present
generalized mean-field approach, the role of the corre-
lated hopping I appears as essential for binding of pairs
when diagonal terms of the Coulomb potential, like U
and V, are repulsive. This assertion will be tested in nu-
merical simulations or in exact analytic studies for finite-
size systems. The extension of the present calculation, to
obtain the temperature dependence of the order param-
eters, is currently under study. Other symmetry-broken
solutions, like noncommensurate charge and spin-density
waves, will also be tested in the future.

As a concluding remark we mention that our pairing
mechanism is of a covalent nature, as discussed in Sec. III,
obviously of a different nature when compared, for in-
stance, to the usual BCS pairing mechanism. The ef-
fective attractive interaction among any two particles, in
an assembly of particles interacting solely via repulsive
forces, can only have a dynamical origin. The former in-
teraction occurs for short-time intervals, and the pairing
mechanism synchronizes this attractive interaction with
the appropriate resonance state, enabled by the several
repulsive terms (intrasite, intersite, and correlated hop-
pings), the band term and a suitable relation between
the magnitude of such terms.
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