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The observation of quantum-confined optical transitions in multiple 6 doping in GaAs, grown by 
molecular beam epitaxy, is reported. Doping efficiency and carrier confinement are investigated 
by Hall and photoluminescence measurements. Hall measurement results for multiple S-doped 
samples show a dramatic enhancement of carrier concentrations compared to the uniform 
doping case. From photoluminescence spectra we observed that the cutoff energy is significantly 
affected by the spacing between the dopant sheets. The strong localization of confined 
photoexcited holes in the spacing layers of these structures plays a fundamental role in the 
interpretation of the optical data. 

Structures containing single and multiple &doped lay- 
ers have been intensively investigated in compound semi- 
conductors from both, experimental’-*0 and theoretical’O~” 
points of view. Photoluminescence (PL) has been widely 
used to investigate periodically Si &doped GaAsg and 
AlGaAsr2 and doping superlattices.’ Transitions below 
band gap have been observed and, in the first two cases, 
attributed to the recombination of electrons, confined by 
the conduction band potentials due to the S layers, with 
holes on the top of the valence band, in the spacing layers. 
In the case of doping superlattices, such transitions were 
assigned to interband recombination of both confined elec- 
trons and holes. On the other hand, transitions above 
GaAs band edge have also been observed and have been 
explained in terms of the rise of Fermi energy due to the 
increase of the electron concentration in heavily doped 
samples, with the confinement of holes being practically 
neglected.’ 

In this letter, we report that the multiple S-doping 
technique yields effective photogenerated hole confining 
structures. A systematic study of carriers confinement as a 
function of the layer spacing d, is carried out on Si multiple 
delta-doped (&f&O) GaAs layers. The PL spectra of MS- 
D structures indicate an increase in carriers confinement as 
d, decreases. From Hall measurements we have investi- 
gated the dependence of doping efficiency in these struc- 
tures, and compared the results to a corresponding uni- 
formly doped sample. 

The GaAs samples were grown on (100) GaAs un- 
doped semi-insulating substrates, in our laboratory, by us- 
ing a Varian Gen II molecular beam epitaxy system. The 
substrate temperature was 540 “C to reduce Si diffusion and 
segregation.’ A growth rate of 1.5 p/h was obtained from 
reflection high-energy electron diffraction (RHEED) os- 
cillations. M6 doping was performed by (a) interrupting 
growth, (b) opening the Si source to deposit the dopant, 
while keeping the As shutter open, and (c) closing the Si 
source and resuming the growth. The resulting structures 
consist of 100 S layers with the layer spacing varying from 

40 to 220 A. A GaAs sample with uniform (conventional) 
doping was also grown for comparison. In all samples, an 
undoped GaAs buffer layer was grown before doping. 

The samples were electrically characterized by Hall 
measurements at 300 K using the van der Pauw technique. 
The low temperature PL measurements were performed 
with the samples immersed in superfluid He (2 K). As 
excitation source we used the 580~nm line of a Spectra 
Physics ring dye laser pumped by an Argon ion laser. The 
excitation power density was 0.8 W/cm’. The emission of 
the samples were analyzed with a 0.75 m double mono- 
chromator (Spex) and detected by an RCA-GaAs Peltier 
cooled photomultiplier and a photoncounting system. 

The Hall measurements results displayed in Table I 
show a remarkable enhancement of electrical activity in 
the MS-D samples compared to the conventional doping 
case, as expected. 

In Fig. 1 the PL spectra of four MS-doped and the 
corresponding uniformly doped samples are shown. An 
emission band above GaAs band-gap energy is observed for 
all samples. For those with the 6 layers the linewidth of 
this band increases with decreasing layer spacing. The cut- 
off energy for each spectrum, defined as the termination 
point of the high energy tail of the emission band,r4 is 
indicated in Fig. 1. Its dependence on d, is shown in Table 
I. It can be noticed that the cutoff energy shifts up to 
approximately 100 meV above GaAs band-gap energy. The 
structure observed around 1.49 eV, which does not show a 
significant shift with the variation of d, has been assigned 
to acceptor-related recombinations from the GaAs cap 
layer. Although this structure is not seen in the spectrum 
of the sample with d,= 100 A, probably due to an uninten- 
tional high doping level of the cap layer, the value of the 
cutoff energy is consistent with the trend shown in Fig. 1. 

In our samples the M&D structures present the char- 
acteristics of super-lattices, ” in which energy minibands are 
originated, with their widths depending on dr This effect is 
due to the strong coupling between adjacent 6 layers which 
increases when d, decreases. In this regime the minibands 
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TABLE I. Electrical and optical measurement results for the uniform and 
M&doped samples. d, is the layer spacing; n is the electron concentration; 
and htFUtoff is the cutoff energy from PL spectra. 

46) n( 10” cmA3) hvC”‘“‘(eV) 

40 9.2 1.62 
100 2.7 1.58 
160 2.1 1.56 
220 1.1 1.54 
Uniform 0.8 1.53 

are extended into the spacing layer and, therefore, the elec- 
tronic density in this region must be taken into account 
when analyzing the PL spectra. 

The analysis of the experimental results are based on 
the discussion above and on the schematic band diagram 
for two S layers shown in Fig. 2. In the region between the 
two 6 layers we have minibands for both electrons and 
holes, with those for the electrons occupied up to the 
Fermi level Ep Due to low temperature and low excitation 
intensity, only the first valence miniband will be (partially) 
occupied by the photogenerated holes. In contrast to the 
case of an isolated S layer, in the M&D samples these holes 
will also be confined due to the valence band potential 
profile. We assigned the high energy band to the recombi- 
nation between electrons in the conduction minibands and 
photoexcited holes at the first valence miniband. Then, the 
cutoff energy can be estimated by (see Fig. 2) : 

hPtoff=$*‘- V+ EF+ Eh , (1) 

where V is the depth of the effective potential, EF is the 
Fermi energy for the electrons, and Eh is the confinement 
energy for the holes. Equation ( 1) indicates that both EF 
and Eh can contribute to the rise of the cutoff energy. 
When the spacing between the S layers is reduced these 
energies increase. The former due to the increase of elec- 
tron density and the latter as a result of the strong con- 
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FIG. 1. Photoluminescence spectra of MS-doped GaAs structures with 
different values of d, The cutoff energies, /rtiutoR, are indicated by the 
arrows. The spectrum for the uniformly doped sample is also shown. The 
GaAs band gap, J$?, is also indicated. 

FIG. 2. Schematic band diagram for a structure with two S layers show- 
ing the energies defined in Eq. (1). CB and VB refer to conduction and 
valence band edges, respectively. 

finement in the spacing layer. The broadening of the emis- 
sion band, clearly seen in Fig. 1, is consistent with the 
increase miniband width due to the coupling between ad- 
jacent S layers. 

In conclusion, we find that besides the high electron 
density, the strong localization of confined photogenerated 
holes in the spacing layer is determinant to establish the 
origin of the transitions in the photoluminescence from 
MS-doped structures. 
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