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Lanczos calculation for the s = —' antiferromagnetic Heisenberg chain up to N =28 spins
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Highly precise numerical calculations using a variation of the Lanczos method devised by Paige
were performed for s =

2 antiferromagnetic Heisenberg finite chains up to sizes N=28. Several in-

teresting physical quantities, including the ground-state energy, the mass gap, and the spin-wave ve-

locity, were computed and fitted for logarithmic finite-size corrections, as suggested by conformal
invariance and Bethe ansatz calculations. A crossover size for a maximum of the spin-wave velocity
is predicted for N-50, well above the current available sizes in a typical Lanczos simulation. A list
of our numerical results is given along with extrapolated values using standard algorithms.

The antiferromagnetic Heisenberg chain for spin s =
—,',

in spite of being exactly solvable through the Bethe an-
satz, ' continues to be extensively studied by numerical
calculations, mainly due to the intricate character of the
exact solution. Concerning finite-size effects, even Bethe
ansatz methods must recur to numerical computations to
test analytic asymptotic behavior for large systems. '" In
the whole critical region of the anisotropic XXZ model,
finite-size corrections to the bulk behavior can be ob-
tained by using the predictions of the conformal
group. ' At the Heisenberg point (isotropic case) both
of the above methods yield logarithmic corrections to
power-law dependence with size. This logarithmic be-
havior has an extremely slow convergence, and numerical
finite-size scaling methods appear at first sight as hopeless
for extrapolating the thermodynamic limit.

In this paper we would like to present new numerical
exact results for finite chains for sizes not yet reported in
the literature, X =28 being the largest size available in
our calculation. In spite of the scenario described above,
we will also show that some logarithmic corrections can
be correctly accounted for in the cases treated here, in-
cluding the ground-state energy, the scaled mass gap, and
the spin-wave velocity. This latter case is the most in-
teresting, since previous reported data (up to 18 spins in
the chain) show a monotonic increase over the known ex-
act result for the infinite system. A crossover size to
yield the correct limit is expected well above the size
available in numerical simulations. In this contribution
we make predictions for the value of this characteristic
size. The Hamiltonian used in our calculation is

H =J g [S (m)S„(m +1)+S (m)S (m + 1)

+S,(m)S, (m + I)],
where J ) 0, and S,S, and S, are the usual spin opera-
tors for s = I/2. In (1) we have assumed periodic bound-
ary conditions. Only even values of N have been calculat-
ed to avoid frustration at the chain boundaries.

Our computer work was based on the Lanczos'
method, using a powerful variant introduced by Paige. "

This efficient algorithm does not require reorthogonaliza-
tion of vectors at every step of the computation. More-
over, since only two vectors are stored in the iteration
process, less memory is needed and larger sizes can be
reached. It has also been shown by Paige that numerical
accuracy is better when compared to standard Lanczos
calculations and good convergence can be achieved even
for very close eigenvalues.

Time inversion symmetry implies that the ground and
first excited states are, respectively, symmetric and an-
tisymmetric if X/2 is even and conversely if it is odd. '

This type of symmetry can be implemented in a computer
to save memory, since, for translational invariants, only
one representative state is stored for computation. The
hashing technique' has also been used to process a large
number of states. This type of consideration allows one
to calculate sizes of the order of N=28 in a VAX 11/785
with standard Fortran double precision for the ground
and first excited levels. Concerning the spin-wave veloci-
ty, we have used the Lanczos method to determine the
smallest energy for a state of momentum p =2~/N in the
manifold of S,=1 without specifying the full symmetry,
thus limiting our calculation to the maximum size of
%=22 for this case.

In Table I we display the exact numerical values ob-
tained through the Lanczos process with a convergence
precision of the order of 10 ' . Extrapolated values us-
ing the Vanden Broeck-Schwartz (VBS) algorithm' are
also shown, together with the known exact analytic re-
sults for the infinite system. ' ' It is worth mentioning
that the extrapolated value for the ground-state energy
coincides with the exact value within seven figures. The
other quantities, due to stronger logarithmic corrections,
extrapolate to values which differ within 5% from the ex-
act results. A different procedure must be adopted in this
case for efficient extrapolation. We have fitted our nu-
merical results for small systems requiring that the exact
value for the infinite system must be reached.

Several least-squares fits were attempted for logarith-
mic corrections as functions of size. Some of these were
suggested by Bethe ansatz solutions and conformal-
invariance arguments. We would like to note that the
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0.500 000 0
0.467 129 3
0.456 386 7
0.451 544 6
0.448 949 2
0.447 396 4
0.446 393 5

0.445 708 3
0.445 219 3
0.444 858 2
0.444 583 9
0.444 370 7
0.444 201 7

4.000 000 0
4.108 449 6
4.181 395 2
4.232 390 0
4.270 161 6
4.299 475 6
4.323 020 8
4.342 507 2
4.358 920 0
4.372 988 4
4.385 260 8
4.396 095 6
4.405 766 4

1.273 239 5
1.453 402 4
1.518 153 7
1.547 251 2
1.562 295 5
1.570 829 8
1.575 987 8
1.579 251 9
1.581 377 9
1.582 796 6

TABLE I. Values for the ground-state energy per spin
E'o'(N), the scaled mass gap G(N)=N [E"'(N)—E' '(N)], and
the spin-wave velocity V(N) =N [E'I"(N)—E' '(N)]/2n for
various values of size N. High-precision calculations were done
up to 14 significant figures. For space reasons, we only display
our results with the first 7 figures (complete results will be given
by the authors upon request). Extrapolated values obtained us-

ing the VBS algorithm (Ref. 14) are compared with known
analytical results for the infinite limit, i.e., E' '( ~ ) = —ln2+ —„'

(Ref. 1), G( ~ )=~ /2 (Ref. 15), and V( ~ )=~/2 (Ref. 9).

G(N)

TABLE II. Different coefficients used for the least-squares
fits of simulation results after formulas (2).

0.109 51
—0.423 40

0.505 70

0.321 64
0.220 73

—1.340 40

broad region, as can be seen in the inset of Fig. 1. This
size marks the beginning of the regime, also of slow con-
vergence, of decreasing values in direction to the thermo-
dynamic limit. We believe that this predicted crossover
size is a good approximation, since our fits work up to
sizes N =200. This conclusion has been obtained from
comparisons with isolated values for the ground-state en-
ergy and the mass gap calculated via Bethe ansatz. '

For very large sizes our fits will deviate from the asymp-
totic behavior due to contribution of small-size values.

For the ground-state energy, the specific scaling law
with corrections proportional to (lnN) yields excellent
convergence even for small sizes. This illustrates a typi-
cal case where common extrapolation algorithms work
properly. On the other hand, the dominant (lnN)

Ext.
Exact

0.443 147 2
0.443 147 2

4.745 376 4
4.934 802 2

1.585 582 8
1.570 796 3 1.011

1.04

above theories differ slightly in their predictions for
higher-order terms. Best fits were obtained for the ex-
pressions shown below:

—12N (E&o' E)/7r =1+ai(—lnN) +a&(lnN)

1.00

0.96

1.009-

1.007'
256 54 22

0/N

0.92

2N (E~ —E~ )/ir2= 1+bi(inN) +b2(inN)

N (Eg' Ez ')/~ =1+ci(l—nN) +cz(lnN) (2c)

0.88

where E is the Hulthen value for the ground-state ener-

gy per spin for the infinite system, E& ' is the ground-state
energy of the finite system (size N), Ez" is the energy for
the first excited state, and Eg' is the minimum energy for
states of momentum p =2~/N. Functional forms for size
corrections in (2a) and (2b) are the same as those obtained
by Cardy. ' The energy difference in expression (2c)
determines the spin-wave velocity in the limit of large N
(the infinite-size limit yields the value n/2 for the spin-
wave velocity ). To the authors' knowledge, no analytic
derivation of the logarithmic corrections of (2c) is avail-
able in the literature.

In Table II we display the various coefficients which
optimize our fits through expressions (2). Both fits and
simulation results are shown in the Fig. 1. The most re-
markable result is the size dependence of the quantity
given by (2c), related to the spin-wave velocity behavior.
A maximum appears for sizes of the order N-54, but
slow logarithmic behavior develops a plateau in a rather

0.84

256 28. l4 l2 40 8

FICs. 1. Plot of the finite-size correction for the ground-state
energy, the scaled mass gap, and the spin-wave velocity as func-
tion of the inverse of size. Solid circles refer to exact numerical
values for corrections to the ground-state energy, open squares
are for the scaled mass gap, and crosses are for the spin-wave
velocity. All three quantities are normalized to their dominant
asymptotic behavior, i.e., they assume the value 1 at the
infinite-size limit. Continuous lines are used for depicting our
least-squares fits according to formulas (2) with the coefficients
given in Table II. Simulation values are calculated within high
precision and error bars are much smaller than the symbols
which we are using for visual purposes. In the inset we show, in
a different scale, a magnified view of the spin-wave velocity be-
havior close to the maximum, which happens around the value
N=54. The values plotted are 1/N, where X is indicated on the
scale.
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correction for the scaled mass gap makes any extrapola-
tion based on small system values extremely difficult.
This latter behavior contrasts with the one observed in
the anisotropic Heisenberg-Ising system (XXZ mod-
el), ' ' where a dominant exponential dependence with
size for the mass gap is obtained.

We finally conclude that an unambiguous analysis of
finite-size scaling must usually be complemented by
theoretical arguments, especially when only small sizes
are available for numerical computations. This fact

should be taken into account in calculations for higher
values of spin, as well as in higher dimensions. Naive ex-
trapolation procedures may lead to wrong conclusions for
the thermodynamic limit, particularly when we are close
to an essential singularity.
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