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In substitution for Dirac monopoles with string (and for topological monopoles), "monopoles 
without string" have recently been introduced on the basis of a generalized potential, the sum 
of a vector A, and a pseudovector rs B potential. By making recourse to the Clifford bundle 
'6'(rM,g) [(TxM,g) = R I

•
3

; '6'(TxM,g) = RI.3]' which just allows adding together for each 
xEM tensors of different ranks, in a previous paper a Lagrangian and Hamiltonian formalism 
was constructed for interacting monopoles and charges that can be regarded as satisfactory 
from various points of view. In the present article, after having "completed" the formalism, a 
purely geometrical interpretation of it is put forth within the Kahler-Clifford bundle 
%( r* M,g) of differential forms, essential ingredients being a generalized curvature and the 
Hodge decomposition theorem. Thus the way is paved for the extension of our "monopoles 
without string" to non-Abelian gauge groups. The analogy with supersymmetric theories is 
apparent. 

I. INTRODUCTION 

It is well known that, when describing the electromag­
netic field F"v produced by a Dirac monopole I in terms of 
one single potential A" only, such a potential has to be singu­
lar along an arbitrary line starting from the monopole and 
going to infinity. This "string" has been considered-for a 
long time2-as unphysical, because the singularity in A" 
does not correspond to any singularity in F"v' 

It is also well known that, in the U ( 1) gauge theory of 
electromagnetism, which has as a mathematical model a 
Principal Fiber Bundle (PFB) 1T:P --+ M with group U (1 ), 
monopoles appear only if we consider a nontrivial bundle. 
Here, M is, in general, a four-dimensional Lorentzian mani­
fold modeling the space time. The standard model is ob­
tained by taking M = R 1.3 and deleting from R 1.3 the world 
line of the monopole. We then have as a model the PFB 
1T:P--+R2 xS 2 with group U(1) and the monopole charges 
appear as the Chern-numbers characterizing the PFB. These 
observations show that the topological theory does not put 
on equal footing the electric charge and the monopole, since 
the former is introduced through the electric current and the 
latter is a hole moving in space-time.3

.4 Notice that the topol­
ogy of space-time becomes even more exotic when general­
ized monopoles are present. s 

A way out has been looked for by many authors2
•
6 via 

the introduction of a second potential B". They did not com­
pletely succeed in dispensing with an exotic space-time 
whenever they wanted to stick to ordinary vector-tensor al­
gebra. However, just on the basis of both a vector potential 
AEsec AlrMcsec'if (rM,g) [where Ctj (rM,g) is the Clif-

ford bundle constructed in the tangent bundle rM of the 
Lorentz manifold M equipped with the Lorentz metric g, 
and sec means a section of the bundle] and a pseudovector 
potential rsBE sec'if (rM,g) , we recently constructed7 a 
rather satisfactory formalism for magnetic monopoles with­
out strings (i.e., living in the ordinary Minkowski space­
time, R I

•
3
), by making recourse to the Clifford algebra R I•3 

or more precisely to the Clifford bundle 'if (rM,g) 
[where (TxM,g) = JRI.3]. Here, RI,3 is an algebra suffi­
ciently powerful to allow adding together tensors of different 
ranks (grades). In Ref. 8, for example, both the electric and 
the magnetic current are vectorial, while in our approach 
they are represented by a vectorial and a pseudovectorial 
current, respectively (and nevertheless we can add them to­
gether 7 ). Our formalism can be considered satisfactory for 
the reasons we shall see below. See also Ref. 9. Some analo­
gous, but nonequivalent, results have been obtained in Refs. 
10,11. 

II. FROM CLIFFORD TO KAHLER 

In this paper we want, first of all, to pass from the 
'if (rM,g) language, used in Ref. 7, to the %(r*M,g) lan­
guage, i.e., to the language of the differential forms in r*M, 
the cotangent bundle with metric g (equipped with the 
Kahler algebra). 12-14 This paves the way, incidentally, for a 
generalization of our "monopoles without string" to non­
Abelian gauge groups. 

The new language will allow us to approach the question 
of a suitable formalism for interacting charges and mono-
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poles without string from a geometrical point of view in the 
space-time manifold. 15 

We recall that %(T~M,g) = 9t (TxM,g) = R I,3' the 
so-called space-time algebra. 16 Now % ( T ~ M,g) , as a linear 
space over the real field, can be written 

AO(T~M) + AI(T~M) + A2(T~M) 
+ A3(T~M) + A4(T~M), (1) 

where Ak(T-:M) is the (k)-dimensional space of the k­
forms. Here, A(T~M) = ~Ak(T~M) is called the Cartan 
algebra, and the pair [A( T~M),gx] is called the Hodge 
algebra. An analogous terminology exists for the vector bun­
dles associated with these algebras.9 

In % ( 1'* M,g) there is a particular differential operator 
a odd in the Z2-gradation of the algebra. 17 To introduce a, 
consider first, for any t *E sec 1'* M C sec % ( 1'* M,g) and any 
tESec 1'M, the bilinear tensorial map of type (1,1) given by 

'I'-t *V, '1', (2) 

where 'I' is any element of sec % ( 1'* M,g) and V, is the co­
variant derivative of 'I' (considered as an element of the ten­
sor bundle). Then a is defined as the tensorial trace of the 
map: 

a = TrCt *V,). (3) 

In terms of a local basis {r p} of one-form fields and its 
dual basis {e p} of vector fields, we can write 

a=rPV . (3') e" 
In particular, taking any local neighborhood UCM 

with a local basis {dxP}, so that a = rPV p' we can show9,13 
that for any 'l'E sec (A 1'* M,g) C sec % ( 1'* M,g): 

(4) 

where J is the usual contraction operator of the theory of 
differential forms. We have 

dxP A (VI-' '1') = d'I', 

ap J (Vp'l') = -15'1', 

(5) 

(6) 

where d is the usual differential, and 15 is the Hodge coderiva­
tive operator, here defined as 

(7) 

where * is the Hodge star operator and 'I' k E sec % ( 1'* M,g). 
The power of the Kahler bundle formalism appears clearly, 
once we add to the fundamental formula 

a'I' = (d -15)'1' 

the result9,13,18,19 
(8) 

(9) 

where r = rPrl yy3 is the volume element,20 and where 
t = 1 for k = 1,2,3 and t = 2 for k = 0,4 in the particular 
case of the space time algebra R I,3 and with our conventions. 
We also have that a 2 = (d - 8)2 is the D' Alambertian oper­
ator. 
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III. GENERALIZED POTENTIAL AND FIELD: 

A SATISFACTORY FORMALISM 

Before going on, observe that the "completed" Maxwell 
equations, I5F= - Je , dF= - *Jm , where F 
Esec (A 21'* M,g) C sec% ( 1'* M,g) is the electromagnetic 
field and Je , Jm Esec(A I1'*M,g)Csec%(1'*M,g) are, re­
spectively, the electric and magnetic currents, can be written 
as21 

( to) 

With the introduction of the generalized potential21 

A=A + rB, whereA,BE sec(A I 1'*M,g) Csec %(1'*M,g), 
wegetF= a/i = aAA + a'(rB),onceweimposetheLor­
entz gauge aoA = 0. 22 Then we can write Eq. (to) as: 

a2A = Je , a2B = Jm · (11) 

In our previous work 7 we wrote Eqs. (10) and (11) in 
9t ( 1'M,g) instead of % ( 1'* M,g). There we succeeded in in­
troducing a noncoventional Lagrangian that yields the cor­
rect field equations when varied with respect to the general­
ized potential. Our approach, however, cannot overcome the 
"no-go theorems" by Rosenbaum et 01. 8

; for instance Rohr­
lich8 showed that a single Lagrangian can yield both the field 
equations and the charge and pole motion equations only in 
the trivial case when J m = kJe , where k is a constant. Neuer­
theless in our approach we need to apply the variational prin­
ciple just once, since our Lagrangian 7 implies even the cor­
rect coupling of the currents to the field. In fact, as shown in 
detail in Refs. 9 and 23, the "completed" Maxwell equations 
[Eq. (to)] imply, if SP= - !FrpF, that 

apsp = F'Je + (rF) 'Jm , (12) 

where S PrY = E pv is the symmetric energy-momentum of 
the electromagnetic field. Calling Ke = F' Jo and 
K m = - (r F) . J m' and by projecting on the Pauli algebra 
R3•0, one does consequently find the expected expressions for 
the forces (in particular the Lorentz forces) acting on a 
charge and a monopole: 

Ke =PeE+JeXH, 

Km = -PmE+JmXE. 

(13a) 

(13b) 

IV. GENERALIZED CONNECTION AND CURVATURE 

As is well known, in a gauge theory24 the potentials are 
pullbacks of connections in the PFB 1T:P-Mwith group G, 
and the associated field is the pullback of the connection 
curvature. In the case of standard electromagnetism, the 
field FE sec(A21'*M,g) is derived from a potential 
A Esec(A I1'*M,g), i.e., 

F=dA. (14) 

However the Hodge decomposition theorem25 (valid 
for compact spaces) assures us that more generally, 
if FE sec (A21'*M,g) , then there always exist 
A E sec(A 11'*M,g) , *B E sec (A31'*M,g) and 
CEsec(A21'*M,g), with dC= 15 C= 0, such that Fcan be 
uniquely decomposed into 

(15) 
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The Hodge decomposition naturally suggests naming 
generalized connection the quantity 

A = A - *B E sec(Air*M,g) + sec (A3r*M,g) (16) 

and generalized curvature26 the quantity 

F=aA=(d-o)A=dA+o*B-d*B-oA. (17) 

Then 

FE sec(Aor*M,g) + sec(A2r*M,g) + sec(A4r*M,g). 

If we want F to be still a two-form, then the last two addenda 
in Eq. (17) have to vanish, and we automatically end up 
with the Lorentz gauge condition 

d*B=oA =0, 

and are left with 

F=dA +o*B. 

(18) 

(17') 

The field equations are obtained by evaluating aF, with 
a=d-o: 

(d-o)(dA +o*B-d*B-oA) =a 2A -a 2*B, 
(19) 

which writes 

aF=Je - *Jm (20) 

once we identify a 2A =Je ; a 2B=Jm • Equations (19) are of 
course the "completed" Maxwell equations, now deduced 
within a geometrical context via a natural generalization of 
the definitions of connection and curvature: a generalization 
inspired by the "correspondences" a = d - 0 and 
* = ( - 1) 'r, and by the Hodge decomposition theorem. 

v. FURTHER REMARKS 

(i) A rather interesting consequence of the geometrical 
interpretation just presented is that Eq. (17) can be assumed 
as a new definition of F, without imposing any longer the 
Lorentz gauge, since even in this case we get the right "com­
pleted" Maxwell equations [as it is clear from Eqs. (18) and 
(19)]. 

(ii) The introduction of our "monopoles without 
string" for the more general case of non-Abelian groups is 
discussed in Refs. 27 and 28. Here we want to emphasize 
once more that, for our aims, the ordinary tensoriallanguage 
is too poor, since-among the others-it does not satisfacto­
rily distinguish between scalar and pseudoscalar quantities, 
as on the contrary it is strictly required by physics. For in­
stance, it is an essential character of the Lagrangian density 
of Ref. 7 to be the sum of a scalar and a pseudoscalar part. 7,29 

(iii) At last, let us take advantage of the present oppor­
tunity for pointing out some misprints that appeared in the 
previous paper,7 that might make it difficult for the interest­
ed reader to rederive those results of ours: (1) at page 234, 
column 2, line 18: the two expressions a·] ought rather to 
read ao]; (2) at page 235, Eqs. (14) and (15): all three 

expressions should be written IoA; (3) at page 235: the last­
term in the rhs of Eq. (17) ought to be eliminated; (4) at 
page 236, column 1, line 22: "pseudoscalars" should be cor­
rected into "pseudovectors." Let us stress that the "ball 
product" 0 is not a new fundamental product since in terms 
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of the Clifford product we have, for A, BE sec ~ (rM,g) , 
that AOB=!(AB + BA). 
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