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Application of the generalized Feynman-Vernon approach to a simple system:
The damped harmonic oscillator
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We apply a recently developed generalization of the Feynman-Vernon approach to the case of a
quantum-mechanical damped oscillator. We develop a variational method to treat the path integral
that controls the dynamics of the reduced density operator of the system once it is subject to an ar-

bitrary initial condition. The method is completely independent of the speci6c symmetries involved

in the problem. Although we have applied it particularly to the harmonic oscillator, we believe it
could be extended to more complex systems.

I. INTRODUCTION

During the past five years the Feynman-Vernon ap-
proach to the quantum dynamics of nonisolated sys-
tems' has proved to be a very powerful method in this
field. It can be applied to many different problems such
as quantum dynamics of a dissipative system in the classi-
cally accessible region of the phase space, quantum tun-
neling of a dissipative system (dynamical approach),
damping of quantum interference, or damping of quan-
tum coherence.

The method consists of coupling the system of interest
to a reservoir which is conveniently chosen as a set of X
noninteracting oscillators. The coupling between the two
systems is a bilinear function of the "coordinates" of the
system of interest and the reservoir oscillators.

If the system of interest is represented by a particle of
coordinate q, the Lagrangian of the total system is

L =
—,'mq —V(q)+ g Ct, qkq+ Q ,'mkq k

——g,'mkco2kq—k2

k k k

Ck
, q',

mk&k

where the last term on the right-hand side of this equa-
tion is a counter term which has exhaustively been dis-
cussed in the literature and V(q) is the external poten-
tial to which the particle is subject. The choice of the
model (1.1) is partially justified in Ref. 8.

The reduced density operator of the system, in the
coordinate representation, is written as

p(x, y, t)= fdR(xR~p(t)~yR)

=f f f f fdx'dy'dRdQ'dR'K(x, R, t;x', R', 0)K'(y, R, t;y', Q', 0)(x'R'~p(0)~y'Q'),

where R, R', and Q' are arbitrary configurations (N
dimensional vectors) of the environmental oscillators and
E is the propagator of the particle-plus-reservoir compos-
ite system.

As one can easily see, the reduced density operator of
the particle at time t depends on the total density opera-
tor at time zero. The choice made by Feynman and Ver-
non' was that the initial density operator of the compos-
ite system should factorize as

po(x 'R', y'Q') =po(x ',y')p, (R', Q'),

where po refers only to the system of interest while p,
refers to the environment. In particular, it is always as-
sumed that p, is the equilibrium density operator of the
environment. Once this is done we can write

J(x,y, t;x', y', 0)=f f fdRdQ'dR'K(x, R, t;x', R', 0)

XK '(y, R, t;y', Q', 0)p, (R', Q')

(1.5)
is a generalized "propagator" for the reduced density
operator of the system. Now, using the Feynman path-
integral representation for the propagator K, the function
J can be expressed as

J(x,y, t;x', y', 0)=f f Dx(t')Dy(t')exp —So[x(t')]
x' y'

Xexp ——So[y (t')]

p(x, y, t)= f fdx'dy'J(x, y, t;x', y', 0)po(x', y'),

where

(1.4)
X 7[x (t'),y (t')], (1.6)

where So[ ] is the action of the system of interest only,
while V[, ], the so-called influence functional, is given by

3103 OC 1990 The American Physical Society



3104 C. MORAIS SMITH AND A. O. CALDEIRA 41

V[x(t'),y(t')]= f f fdRdQ'dR'p, (R', Q') f f DR(t')DQ(t')exp —IS,[R(t')]+St[R(t'),x(t')])
R' Q'

Xexp ——[S,[Q(t')]+St[Q(t'), y (t'}]) (1.7)

where S,[ ] is the action of the environment and St[,] is the action of the coupling between the two systems.
This influence functional can be evaluated exactly because it is nothing but a product of propagators of harmonic os-

cillators subject to external forces (Ckq) averaged by the equilibrium distribution p, and traced over the final

configurations R. The result is

7[ x(t ), y('t )]=e'xp —f dte f dr f dtr[x (r) —y(e)]tie[re(e —tr )][x ( r)t+y( r)t]
o m o o

Xexp f de coth f dr f do [x(r) y(r)—]cos[a](r o)][—x(o )
—y(o )]

—1 ~ J (io} ]]tco

o m 2k& T o o

where the spectral function J(to) has been defined as

C&
5(co—to], ) .J(co)=—g2 I, m

(1.9)

In the case of Brownian motion J (co) is modeled by

YJN 1f COKED
J' '='0 f n, (1.10)

where 0 is a cutoff frequency, much larger than the natu-
ral frequencies of motion of the system of interest. How-
ever, the formulation is quite general and (1.9) can as-
sume forms other than (1.10).

Now we are ready to study the restricted dynamics of
the system of interest by solving the double path integral
(1.6) together with the double convolution (1.4). Al-
though the exact evaluation of these integrals is only pos-
sible for a restricted number of problems, there are many
approximation methods available in the literature
(saddle-point method, dilute gas approximation, etc.)

which allows us to invest in more complicated problems.
The first attempt (successful, we must say) to write a

more general form for the influence functional based on
nonfactorizable initial conditions was carried forward by
Hakim and Ambegaokar who made explicit use of the
translation invariance of (1.1) when V(q) =0. In this way
they were able to perform some unitary transformations
and, finally, diagonalize the problem exactly. Although
their formulation is extremely elegant, it cannot be ap-
plied to systems which do not present any symmetry.

Recently we extended the Feynman-Vernon formula-
tion so that it could cope with more general initial condi-
tions, and we were able to write down a generalized ex-
pression to replace the influence functional (1.7).' The
expression is more cumbersome than (1.7) and its applica-
tion to arbitrary potentials involves a great deal of
mathematical skill. Nevertheless, we think it is still quite
useful if we wish to obtain the reduced dynamics of the
particle under certain approximations.

In Sec. II we discuss the sort of initial conditions one
could use instead of (1.3) while we briefly review the way

we can achieve a generalized influence functional in Sec.
III.

In Sec. IV we apply the results of Sec. III to the case of
the damped harmonic oscillator. In the appropriate limit
of vanishing natural frequency (c(]0=0) we can recover
the influence functional that Hakim and Ambegaokar
wrote for the damped free particle. This is indeed a very
reliable check for our approach.

Section V is devoted to the calculation of the function
J(x,y, t;x', y', 0) for the quantum Brownian oscillator
while we compute the average values of observables in
Sec. VI. The conclusions are presented in Sec. VII.

II. GENERALIZED INITIAL CONDITION

In a recent report' the present authors generalized the
method of Feynman and Vernon in order to deal with ini-
tial conditions different from (1.3). On that occasion the
authors treated three new possibilities which are ex-
plained in the following.

Case (i). We have

po(x'R', y'Q') =pa(x', y')p', "'(x',y', R', Q') . (2.1)

Here po is an arbitrary function depending only on the
system variables while pzq stands for the equilibrium
density operator of the complete "universe" formed by
the system and its environment. This can be interpreted
as the result of a measurement of position on the system
only, once we know that the system and its environment
are together in thermal equilibrium before the measuring
process. To show that this physical picture really corre-
sponds to the mathematical expression in (2.1) is not a
hard rnatter.

Let us initially consider a pure state
~ g & of the whole

universe, then

lq&= fdx dR1((x R)lx &IR&, (2.2)

where ~R& =
~q] &(3) ~qz &s . .

~q]v &. A measurement of
the position of the particle only can be performed by the
application of the operator P defined as
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P—:f dx f(x)~x &&x~S(R), (2.3)

where f (x) is an arbitrary function and J(R) is the iden-

tity operator in the subspace of the environment. Let us

call P the measuring operator.
When we are referring to an ideal measurement, P is a

projection operator (P =P) (see Ref. 11). In this case,
for a measurement of position at xo with uncertainty b,x,
f (x}is

f (x)=8(x —x +b,x/2)8(x +Ex/2 —x), (2.4)

where e is the Heaviside function. The state after mea-
surement is then"

n, In,. j

(2.7)

where In; ) stands for the set of X quantum numbers
n ~, nz, . . . , ntv I for the reservoir oscillators, and

1(„(„}& is an eigenstate of the composite system. Equa-

tion (2.7}can further be written as

from here onwards.
All of what we have been saying can be generalized for

the case when the "universe" is no longer in a pure state
but is in a statistical mixture instead. Let us consider the
whole universe initially in thermal equilibrium. Then

(2.5)

p= pe
n, I n,. j

""' f f f f d xd x'dRdR Q
~

~(x R)

P~q&

( & q~P2 q &
)1/2

(2.6)

Since this is more general than (2.5) we shall only use it
1

In the case of nonideal measurement, f (x) can assume
any general form which is centered at xo with width hx;
for instance, a Gaussian. The difference now is that P is
no longer a projection operator. Therefore (2.5) must be
modified to

PP
trP p

(2.9)

which is a generalization of (2.6) for the case of mixtures.
Now using (2.3) for P we have

X Q„"(„)(x',R')

&& lx &&x'lIR&&R'[ . (2.8)

Now, just after measurement the density operator of
the universe can be written as"

pa= X
n, I n, j

"" f f f fdxdx'dRdR'f( )fx( x)P„~„~(x,R)1(„~„j(x'R')

Xlx &&x'lelR&&R'I
nIn, j

dx R x „I„j x R (2.10)

Now, comparing (2.11) with (2.1) allows us to identify

po(x ',y') =
f fdx dR f(x) p q (x R x R)

(2.12)

as a function of the system of variables which depends
only on the measuring (or preparation) procedure.

Case (ii) We have.
po(x'R', y'Q') = ',"'(x',y';R', Q') . (2.13)

Here, peq is the equilibrium density operator of the
universe when the particle is subject to a potential V(q)
which is abruptly modified to V(q) at t =0. When this
modification takes place p,'"' is no longer an equilibrium
state of the "universe. " Consequently, it relaxes to a new
equilibrium state p,'"'(x,y; R, Q) which is the equilibrium
state of the universe when the particle of interest is sub-
ject to V(q). We shall call V(q) the preparation poten-
tial.

which finally implies that

f (x')f (y')p,'"'(x', R',y', Q')
po(x', R',y', Q') =

f f dx dR f (x) p,'q'(x, R;x,R)

(2.11)

Case (iii) We ha. ve

po(x'R', y'Q') =po(x', y')p,'q'(x', y';R', Q') . (2.14)

This case is a combination of the previous ones. At t =0
the particle of interest is subject to a preparation poten-
tial V(q). Then we perform a measurement on the posi-
tion of the particle only and simultaneously change the
preparation potential to V(q). This new state is not even
an equilibrium state of the universe when the particle is
subject to V(q). If we trace back all the steps that led us
to (2.12) one can easily convince oneself that now

(
r r )— f(x')f( ')

(2.15}
f f dx dR f (x) p',"'(x,R;x,R)

Since this last case includes cases (i) and (ii) we shall
develop the new infiuence functional only for case (iii)
and particularize it to (i) or (ii) whenever necessary.

Finally we wish to mention that f (x } could be the re-
sult of a succession of measurements. For instance, it
could represent the result of the measurement of position
with uncertainty bx and a later measurement of momen-
tum with uncertainty bp. In this case f (x) is a complex
function (for example, a Gaussian of width b,x centered
at xo multiplied by a plane wave with wave vector po /fi).
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III. THK NKW INFLUKNCK FUNCTIONAL (NIF)

In this section it is our intention to briefly review the
obtainment of the influence functional once we have
avoided the factorizable initial condition. Although this
has already been done in a separate report' we think the
general idea should be repeated here for the sake of com-

l

pleteness. However, we shall try to make it quite brief in
order to avoid unnecessary overlap with our previous
work.

In this new situation the reduced density operator of
the particle can still be written in the form (1.4). The
difference is that Jmust now be written as

J(x,y, t;x', y', 0)=f f Dx(t')Dy(t')exp —So[x(t')] exp ——So[y(t')] F([x],[y],x',y'),
x' y'

(3.1)

where

F=f f fdRdQ'dR'p', "'(x', R',y', Q')G([x], [y],R, R', Q')

and

(3.2)

G = f f DR(t') DQ(t')exp —[S,[R(t')]+S,[R(t'),x (t')]I exp ——IS,[Q(t')]+St[Q(t'),y(t')]I . (3.3)

In our notation, variables within brackets are paths connecting the appropriate end points (variables without brackets)
and D (variable) is the properly normalized variation of those paths. The tilde upon the action So means that the coun-
terterm is included therein.

The path integral (3.3) is a standard one, ' since it is the product of propagators of forced harmonic oscillators. On
the other hand, the equilibrium density operator p,'"' has the path-integral representation

p q
(x' R';y' Q')= f Dz(t')exp( So [z]IA')G (R', Q' [z]) (3.&)

where

R
G' I(R', Q', [z])= ff f, DR exp — (Sti '[z, R—]+S,' [R ])

a a
(3.5)

and S' ' is the Euclidean version of the corresponding action which means that we must replace all the potentials (in-
cluding the interaction) by minus its value. The bar on top of So ' means that the potential on the particle is the
preparation potential V(q). Here too, (3.5) is a product of integrals of forced harmonic oscillators. Therefore, combin-
ing the results of (3.3) and (3.5) (see Ref. 10) one can show that the NIF can be written as

I

F([x],[y],x',y') = 7[x,y] f Dz(u')exp ——S Oi~I[z]
V

Xexp f du f du' f dco J(co)exp( —co~u —u'~ )
47TR 0 —oo 0

X[z(u) —z(u')] exp f z(u)f(u) du (3.6)

where

oof (u)= f dt'[x (t') y(t')] f dco J(co)s—incot'[coth(coU/2)sinh(cou) —cosh(cou)]
0 0

f dt'[x (t') —y(t')] f dco J(co)coscot'[coth(coU/2)cosh(cou) —sinh(cou)] .
7T 0 0

(3.7)

7[x,y] is the FV influence functional as obtained in (1.8) and U =AP.
We can now define another functional PT as

VT[xy, z]=V[x,y]exp f du f du' f dco J(co)exp( —co~u —u'~ )[z(u) —z(u')] exp f z(u)f(u) du
47TA 0 —oo 0 o

(3.8)

in such a way that
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J( x, yt; x'y', , ())= J J J D x(t )'Dy(t )'Dz( «')y [tx y, z]e pz—Se[x(t )]'
x' y' y'

e

Xexp ——So[y(t')] exp ——So '[z] (3.9)

Once again we emphasize that in So the potential is
V(q) plus the counterterm, while in So ' the potential is

V(q) and the counterterm has already been eliminated.
For the particular case of the initial condition (i) we must
replace S 0

' by So ' and apply (3.9) in (1.4). For case (ii),
(3.9) must be used in (1.4) without Po(x', y').

It is worth noting that together with 9[x,y] (which
carries a sort of retarded and advanced coupling between
paths running forward and backward in time) there ap-
pears in (3.8) two new terms —one which represents a
self-interaction of a thermal path and another which cou-
ples the thermal path z(u) to the dynamical paths x (t')
and y (t').

IV. THE NIF FOR THE HARMONIC OSCILLATOR

we shall take case (i) ( V= V). Then we need to evaluate a
triple path integral and this we shall do in steps.

First we will evaluate the path integral in z(u) and
then the resulting integral (3.1) following the same pro-
cedure as in (3.9). In other words, we must first evaluate
the path integral that appears multiplying V[x,y] in (3.6)
(with So ' replaced by So '). Another point we want to
mention is that we shall deal explicitly with Ohmic dissi-
pation that means J(co)=atro.

In this way, we want to evaluate

I([x],[y],x',y') —= f Dz (u')exp S,]t[z (u')]

In order to apply (3.9) to a specific example let us
choose one of the initial conditions proposed in Sec. II;

I

where

(4. 1)

S,]t[z]=—So[z]+ f du' f du f dc(]tt][z(u) —z(u')] exp( —co~u —u'~)+ —f du f (u)z(u)
4m. — 0 o 77 0

(4.2)

F([x],[y],x',y')=9[x,y]I([x],[y],x',y') . (4.3)

The eff'ective action in (4.2) is a functional of z(u)
which has a quadratic and a linear term in this variable.
Therefore (4.1) is the kind of functional integral that can
(at least, in principle) be solved exactly by a simple
method. All we must do is to take the first functional
derivative of S,& and find out the path z, that extremizes
the effective action. This means

5S,]t =0.
5z(u) z=z, (u]

(4.4)

Once this has been done we must evaluate the second
functional derivative of S,]r at z, (u) and solve the result-
ing eigenvalue problem

5 S,~f, 5z(u') du'=A, 5z(u) .
5z(u) 5z(u') (4.5)

The final result for (4.1) is then

I ([x],[y],x',y') =A' 1

a

]. /2 —1
exp S,[t[z, ]

and f (u) has previously been defined in (3.7). By (3.6) we
obviously have

I([q],[g],q', g') =I (t)exp( —S,]th]t), (4.7)

where Ã is a norinalization constant and [A, ) is the set
of eigenvalues of (4.5).

Although these steps seem really simple this is not
what happens in practice. The difficulty starts with the
solution of (4.4). This is an inhomogeneous linear
integro-differential equation which is not simple to solve.
Therefore, we shall try to evaluate (4.1) by a slightly
different method.

In the following we shall apply to this problem the
same method that was developed in Ref. 8 (Appendix B)
for dealing with a very similar path integral [actually the
same, except for the absence of the forcing term f (u)].

The method consists of making a periodic extension of
any function g(u) defined within the interval (O, U).
Then we can write the periodic extension of z(u) or f (u)
as a Fourier series and express S,]r[z] as a function of the
Fourier coefficients of z (u ) and f ( u ).

The next step is to extremize S,]t[z] subject to the
boundary conditions on z ( u ), namely, z (0)=y' and
z(U)=x'. These two equations can also be written in
terms of the above-mentioned Fourier coefficients and,
consequently, be regarded as constraints for our varia-
tional problem. This is a standard problem of Lagrange
multipliers. Therefore, following the results of Appendix
A we can write [see (4.6)]

(4 6) where
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2 2

S, = a
2 22 2 2

' —' t' &' sjn~t' — cos~t
co coth(coU/2), 2 t 2(co coo}

2K 0 (co co ) +41 co Q N

+ q'+ dt' dco
2 2

g(t') (coo —co )coscot' —cosincot'
2~ y t, n co coth(co U/2), 2

2K m' o o ( coo2 —co2 )2+4y 2co2 M

2

i—gq'g' (4.8)

with the new paths g(t'} and q (t') defined as

g(t') —=x(t') —y(t'), q(t') = x(t')+y(t'}
2

(4.9)

Notice that S,s is a functional of g(t'} and a function
of g' and q'. The new influence functional can now be
written as

F([x],[y],x',y') =Io(t)7[x,y]exp( S,ttlfi), —(4.10)

where Io(t) is the result of the Gaussian path integral one
has to solve with the second functional derivative of S,z.
Nevertheless, we shall not evaluate this integral explicitly
and leave Io(t) to be computed by the normalization of
the final form of the reduced density operator.

Before we write a final expression for F([x],[y],x',y')
let us brieAy analyze S,&. This action contains a real and
an imaginary part. If we take the limit F0~0 we easily
recover the result of Ref. 9. In this limit, K (which is
equal to (q ) in equilibrium) tends to infinity and we end

L

Im lnP= f ((t')q(t') dt' —rtq'g'2gQ
7T 0

7) f g(—t')q(t')dt', (4.1 1)

and then

up with the same correction Hakim and Ambegaokar
found to the old influence functional.

Another interesting limit is when we neglect the time
dependence in (4.8) [g(t') =0]. That expression then be-
comes, as it should, the exponent of the reduced density
operator of the oscillator in equilibrium with its environ-
ment (see Appendix B of Ref. 8).

In order to close this section let us write the new
influence functional in terms of the newly defined paths
g(t') and q(t'). Using (4.9) in (1.8) and evaluating the
frequency integrals for the imaginary part of the ex-
ponent of V [for J(co) given by (1.10)] we get (see Ref. 3
for details)

T

F([q],[g],q', g')=Io(t)exp —' " f 'g(t')q(t')dt' rtq'g' r—tf g(t'—)q(t')dt
fi n. o 0

exp S,tt([g], g'q') (4.12)

Finally, we see that the second term inside the brackets in
(4.12) identically cancels the last term on the right-hand
side of (4.8). This term in (4.12) had been neglected in
Ref. 3 by a wrong argument. Now, it is clear that after
changing the initial conditions, this term naturally disap-
pears.

J(q, g, t;q', g', 0)

=Io(t}f f Dq(t') Dg(t')exp
iS& —S2 —S3

I

tion J (q, g, t; q', g', 0). Substituting (4.10) in (3.1) and
changing variables to q (t'), g(t') we have

V. THE FUNCTION J(q, f, t;q', f', 0}

Once we have computed F([q],[g],q', g') we can write
directly the double path integral representing the func- where

(5.1)

S, = f dt'[Mq{ t')g(t') Mcooq(t')g(t') —2)q(t')g(t')], — (5.2)

S,= " f dcococoth(coU/2) f dt' f dt"g(t')g(t") cosco(t' t")—
277 0 0 0

3 2( co coo )co coth(coUI2) (gf)2 gp d /g( I) o I Q I

(
2 2)2+4 2 2

O
(5.3)

S3 q'+ dt' dco -- g( t') (coo —co )coscot' — co sincot'
MU, 2iy t, & cocoth(coU/2)
2' vr o o (coo2 —co2)2+4y2co2

2

(5.4)
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Mf, (t') —rig, (t')+Mc0Q, (t') =0 (5.7)

with boundary conditions g(0) =g' and (( t) =g.
Let us particularize our application to the under-

damped harmonic oscillator (c00 & y ). Then

1
g, (t') = . [ge ~'sinvt'+g'sinv(t —t')]er'

sinvt
(5.8)

S1 =Mqg Mq—'g' riq—(+rtq'g'

—f dt'q(t')[Mg(t') rig(—t')+Mc0Q(I')] '. (5 5) where

Notice that the first term inside the brackets in (4.12)
identically canceled the counterterm pieces in S0[x] and

So[3 ].
A quick look at the expressions above will show us that

the only functional of q(t') is the action Sl in (5.2).
Moreover, integration by parts of the first and last terms
of S, leads us to

Dq t' exp t'q t' (5.6)

which allows us to trivially integrate on Dg(t'). The re-
sult of (5.1) is simply the integrand evaluated at g, (t')
given by

Therefore, the path integration on q (t') can be done by
using the integral form of the 5 function

v
—(~2 y2)1/2 (5.9)

When y&co0 we must replace v~i(y —c00)'i (over
damped harmonic oscillator) while when c00=0 (free par-
ticle) one respaces v~iy

The procedure is now straightforward. We just evalu-
ate the integrand at g, and collect the resulting tertns in
an appropriate form. The result after this simple (but
tedious) job is

J(q, g, t;q', g', 0)=I0exp —[K(t) My]q—g+ K(t)+My—2 MUE(t) q'f N(t)qg—'
K

MUD(t) +g( )
MU (,)2+ ~( )

MUD(t)
2K 2K

MUD ( t)E (t )

MUE t'
+ C(t) (g'—)

2K
(5.10)

where

K ( t ):—M v cotanvt, (5.11)

Mve~N(t)=
sinvt

(5.12)

Mve
sinvt

(5.13)

and A (t), B (t), C(t), D (t), and E(t) are of the form

f (t)= y f dcococoth(coU/2)f (t),My
0

(5.14)

with

2+1
(t) =

2 f dt' f dt "sinvt'cosco(t' t")sinvt "er"+'"I—
,

sin vt
(5.15)

~ ~ ~ ~ (t'+ f") 4/co e
—yt'

B (t)= dt' dt "sinvt'cosco(t' t")sinv(t t")e~" +' '+ — — . dt' in st'cvs ot'ceo

sin vt (c00—c0 ) +4y c0 slIlvt 0

2'( c0 —c00 )
dt sinvt sincot'e~

(c00—c0 ) +4y c0 s111Vt 0
(5.16)
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C„(t)= 2 Jt dt f dt sinv(t —t )coscQ(t t—)sinv(t t—)e~
sin vt

+
2 2 2 . dt sinv(t —t )coscot er

(cQQ
—

cQ ) +4y cQ sinvt Q

2co( ci) ci)Q )

(~2 ~2)2+4y2~2

2

dt sincot sinv(t —t )er +
sin vt o (cQQ

—co ) +4y co
(5.17)

2e 1 '/COD„(t)= dt sinvt'er (coQ cQ
—)coscQt' — sincot'

M sinvt (co —
cQ ) +4y cQ Q M

(5.18)

E„(t)= . dt'sinv(t t')er—'
(cQQ co )—coscot' — sincot'

M slilvt (coQ
—

cQ ) +4y cQ Q M
(5.19)

At this point it is interesting to compare our results
with the previous ones obtained in the case of factoriz-
able initial conditions. Expression (5.10) is of the same
form as before; the difference lies in the functions from
B(t) to E(t). Our new K(t), L(t), N(t), and A (t) are
exactly the same as in Ref. 3. For the case of factorizable
initial conditions, B (t) and C„(t) contain only the first
integrals in (5.16) and (5.17) while D (t) and E (t) do not
exist.

Finally, let us compute the term IQ(t) to complete the
evaluation of J(q, g, t;q', g', 0). This can be easily done by
normalizing the reduced density operator p(q, g, t) of the
oscillator, as we show in Appendix B. We find

Xexp
I 2

+&(t)((')2
2A,

with the newly defined functions

a(t) =K(t)+M—y MUE(t—)/tc,

A, =tc/MU,

b,(t) =C(t) —E(t)2/2A, .

J(q, 0, t; q', g', 0)=exp [a—(t)q'g' N( t)q —g'

(6.3)

(6.4)

(6.5)

(6.6)

IQ(t) = N(t)
(5.20)

VI. THE AVERAGE VALUES OF OBSERVABLES

Noticing that the only dependence on q comes from
the second term in the first exponential of (6.3) we can
readily evaluate the integral over q which results in

For a generic function of position, say F(q), we have

(F(q)), =f dq F(q)p(q, g=O, t) . (6.1)

On the other hand, we have shown that P(q, g=O, t) can
be written as

f dq F(q)exp N(t)qg'

=f dqF, exp N(t)qg'
i' c) L

Nt c)'

p(q, O, t)= f f dq'dg'pQ(q', g')J(q, O, t;q', g', 0),N(t)

(6.2)

i R c) 2iri)t'fi
N(t) c)g' N(t)

(6.7)

where J can be identified as [see (5.10)] Substituting this result in (6.1) we get

r

I 2

(F(q)), = fdq'f dg' F, 5(g') exp —a(t)q'g' exp +b(t)(g') pQ(q', g') .
N(t)d)' fi fi 2A.

(6.8)

For the particular cases F(q)=q and F(q)=q we can
integrate (6.8) by parts and the final result is

(q), = [[K(t)+My E(t)/A, ](q ),+ (p )—, I (6.9)
1

N(t)

( 2) a(t)
( )

2irtb(t)

. .. qI+Iq Q+

+ '
( ')+"'(

&N(t)' N(t)'
(6.10)

and
Now, comparing (6.9) with the solution of the classical

underdamped harmonic oscillator when q(0)=qQ and
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p (0)=pa that reads VII. CONCLUSIONS

q (t) =qocosvte r'+ (qoy /v)sinvte

+ (po/M v)sinvte (6.11)

( F(p) ), = 1 dq F — p( qg, t )
s a
t ag

(6.12)

Then, using (6.2) and (6.3) one will be able to compute
average values such as (p), and (p ), . For example,
(p ), is given by

we find that the only difference between these two expres-
sions is a term proportional to [E(t)/AN(t)](q )o.

At first sight this term looks wrong but it can be under-
stood as the influence of the specific preparation of the
system at t =0 on its subsequent motion. Actually, one
could think of it as a peculiarity of the model we have
employed for the reservoir. We shall return to this point
in Sec. VII.

Another important result is that (q ), in (6.10) obeys
the fluctuation-dissipation theorem when t~ ~ exactly
as it happened in Ref. 3 for the case of the factorizable in-
itial condition. However, one should notice that its time
dependence is also influenced by terms dependent on the
preparation procedure.

The average values of arbitrary functions of the
momentum operator F(p) can also be computed in a way
similar to what has been done for F(q}. The starting
point is now

lim J(x,y, t;x', y', 0)=5(x —x')5(y —y') .
t~O

(7.1)

Another advantage of dealing with the generalized ini-
tial state is that there is no more slowly decaying terms in
the dynamics of the Brownian particle which depend on
the cutoff Q. An example of this is the time dependence
of the width of the wave packet of a damped free particle.
When we use the factorizable initial condition the long-
time behavior of (q (t) ) is given by (at T =0)

There are two main points we would like to emphasize
in this section. The first one shows why it is advanta-
geous to consider a nonfactorizable initial condition
while the second deals with the long-time decay of the in-
itial preparation when the generalized initial condition is
used.

Using the nonfactorizable initial condition we have ex-
plicitly shown that some spurious terms which have been
neglected in Ref. 3 naturally disappear [see the argument
just below (4.12)]. In Ref. 3 this sort of term has been
neglected but the reason why this has been done is not
correct. Actually, one could argue that terms like (A11)
should be neglected but the reasoning would be entirely
different. Since they involve integrals of a 5 function at
t =0 and we are interested in time scales longer than Q
we should interpret those integrals as being evaluated
from t'=0+ to t'= t. On the other hand, for times short-
er than 0 ' the expression (A9) is continuous and in the
limit t ~0 we can recover the boundary condition

(q (t)) =1n&yQ/2t (7.2)

( )
a(t)[K(t) —My] D(t)

( )N() while it can be shown that for the nonfactorizable case
(q (t)) behaves as

+ [K(t) My] ( )—
N(t)

(6.13) (q'(t)) =lnyt . (7.3)

Here, too, the solution differs from its classical equivalent
by terms proportional to D(t)(q)0 and E(t)(q)o. Once
again this is a trace of the influence of the preparation
process on the dynamics of the Brownian particle. In the
case of the factorizable initial condition the functions
D(t) and E(t) simply do not show up and consequently
(q ), and (p ), obviously coincide with their classical
equivalents.

Although the evaluation of (p ), is not difficult, the
final result is quite lengthy to be explicitly written down
here. The important point is that the physics contained
therein is in agreement with our conclusions for the be-
havior of ( q ), .

Just before we leave this section we should say some-
thing about the free-particle dynamics. Taking the limit
coo~D we can reproduce exactly all the results of Ref. 9.
The reason for this is very simple. If we look at our ex-
pression (5.4) we will notice that S3 depends on v. How-
ever, since x is proportional to (q ), it blows up when
coo vanishes and we easily recover the influence functional
of Hakim and Ambegaokar. Consequently, all the aver-
age values computed in Ref. 9 are the same we could
compute here for ct)O=O.

J e+im q„(0) sqz(0)+ dss+~ s+
(7.4)

where the term on the right-hand side plays the role of an
external force f (t) to the Brownian particle.

When we consider that (qz(0)) = (qz(0) ) =0 it is ob-
vious that (f (t)) =0. Moreover, with the choice (1.10)
for the spectral function J(co) and the use of the equipar-
tition theorem we can show that (f(t)f(t'))
=2gk~ T5(t t')—

On the other hand, if we assume that the reservoir is in

Nevertheless, there is something that worries the
reader when the generalized FV is applied, namely, the
presence of terms that make (q(t}) or (p(t)) deviate
from their classical equivalents. It is our intention now
to show that these terms are really expected if we consid-
er a model Lagrangian as (1.1) even in the classical limit.

If we write down the equations of motion for q and q&

in (1.1), take the Laplace transform of all of them, and
use (1.9) and (1.10) we can show that the effective equa-
tion of motion for q (t) is

Mq+ gq+ V'(q)
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thermal equilibrium with the particle at the position q0,
the fact that (f (t) ) =0 is no longer true. This is due to
the form of (1.1) which can be rewritten as

Conselho Nacional de Desenvolvimento Cientifico e Tec-
nologico.

L = ,'m—q —V(q) —g ,'m—„co„(q„—q) + g —,'m„q „,
k k

APPENDIX A: EVAI.UATION OF I([x],[y],x',y')

where

(7.5)
Let us start by defining the new variables

x =u —U/2, x' —=u' —U/2 (Al)

2

9'k = Vk~
Ck 4

Plk COk

(7.6)

ACKNOWLEDGMENTS

Therefore, it is the Lagrangian of a set of oscillators with
their equilibrium positions right at the position q of the
particle subject to a potential V(q). Consequently
(f(t)) ~(q&(0))=qo is now finite. This is a forcing
term to (7.4) and will generate another contribution to
the time evolution of q(t). As we can easily see, both
(q(t)) and (p(t)) given by (6.9) and (6.13), respectively,
have extra contributions depending on (q )0.

An important point is that these terms do not appear
in the case of a free damped particle (V =0). In this case
the system is translation invariant and there is no pre-
ferred origin to the position q(t). The initial condition is
always expressed in terms of (qk(0)) which implies in

(f(t)) =0.
In order to remedy this situation it is necessary to

modify our model (1.1) in such a way that the particle
only feels its environment locally. In our present model
the particle interacts with the same set of oscillators no
matter what its position is. Actually, there are more real-
istic models for the environment where this local charac-
ter naturally shows up. '

As far as this issue is concerned it is more advanta-
geous to work with the factorizable initial condition since
it assumes the bath in thermal equilibrium regardless of
the position of the particle at t =0. Consequently,
(f (t})=0.

Notice that this qualitative analysis only applies to the
classical limit. In order to rigorously study this effect one
should carefully analyze Eqs. (6.9) and (6.13) in the limit
of low and high temperatures.

Finally, we wish to call the attention of the reader to
the fact that dealing with generalized initial conditions
implies that for each problem there is a completely new
propagation kernel J(x,y, t;x', y', 0). In the case of fac-
torizable initial conditions the only modification from
one problem to the other was the external potential V(q).
Although we have treated an exactly soluble model we
believe that the techniques used herein can be applied to
more complex models within suitable approximations.

Note. Soon after we finished this work, we became
aware of Refs. 14 and 15, in which the authors address
very similar problems.

in such a way that

z(u) =z(X+ U/2)=z(x ),
z(u')=z(X'+ U/2)=z(x'),

f (u) =f(X+ U/2)= f(2t),

(A2)

+f(u)z(u)+ z(u)

+ cooz(u)
M
2

(A3)

where the frequency integration in (3.6) has already been
evaluated for the case in question [J (co)= rico and
V(q}=Mcooq /2]. The shifted function f(u) is

f(u)= f dcoco f dt'[x (t') y(t')—]cosech(coU/2)
0 0

X (i coscot'coshcou

+sincot'sinhcou) .

Expanding z( u } and f( u ) in Fourier series we have

(A4)

z(u)= g z e ", f(u)= g f e (A5)

with co„=2nn/U — N.otic.e that since z(u) =z "(u)
+iz (u) and f(u)=f "(u)+if (u) the coefficients z„
and f„can be decomposed as

Z~ —Z n +lZ n

(A6)

where z „,z „,f "„,and f „are all coinplex.
Now, inserting expansions (A5) in (A3) and (A4) and

evaluating the integrals on u we can write the effective
action as

S,ff[z]= g (co„+2yico„~+coo)z„z
2

n = —oo

where z and f are now defined within (
—U/2, U/2). Re-

placing x —+u and X'~u' we can write S,& as

Un
d q d, [z(u) —z(u')]'

eff[Z du du—U/2 417 —~ (u —u ')

+U g fz (A7)
C.M.S. has been partially supported by the Fundaqao

de Amparo a Pesquisa do Estado de Sao Paulo and by
Conselho Nacional de Desenvolvimento Cientifico e Tec-
nologico. A.O.C. has been partially supported by the

where y=g/2M and fo and f„can be obtained from
(A4) and (A5) as
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2 —1"f„= I da)ruf dt [x'(r ( 'y(—t'(]
Um o o (co +co„)

X (co coscot' co„—sincot') . (A8)

(A9)

Evaluating the frequency integration when n =0 we
get

while for n %0 we can integrate the first term within
brackets by parts and rewrite (A8} as

Qf„= J dt'[x (t') —y(t')]
ll

2
sinQt' g 2a)nN singlet ~ sincot'

dco
2 2 2 dcoco„

t 0 I (CO +COn ) 0 (CO +CO„)
(A 10)

Since we are interested in the long-time behavior of the
system we must take the limit Q~ ~ in all our expres-
sions. In this way we have

f0= J dt'[x(t') —y(t')]5(t')
U o

I

Here we notice that for n &0, f„=(—1)"f0.
Due to the fact that z"(u) and z (u) are real quantities

we must have z "„*=z „and z „~=z „. Therefore, we
can write

[x (0)—y (0)],
and if n%0,

2i —1
"

f„=(—1)"f,+ f dt'[x (I') y(t')—]
Um o

(Al 1) R+ .bR

a„+ib„
fJ

R jbR
—1l

a —ib
(A13)

I

m /co„/e
X

—ia)„ it'
mmn e

where a„",b„,a„, and b„E- IR and finally rewrite (A17) as

S =SR,+iS', ,

(A 12) where

U (]agR — g [(gR )2 (
I )2]

U 00 MU1' (bR gl }+ y g [(g R)2+(bR)2 (g l)2 (bl)2]
n=l n=1

' y ( 1)"(b„"+a—„'),
n=1

(A14)

MU U oo

gl g gRgl + + g f (gR+bl)+ y g (gRgl+bRbl)+ g ( 1)n(aR bl)
n=1 n=1 n=1

(A15)

with

3„:—co„+2y I co„ I
+co0, (A16)

z, (u)= z(u) —z( —u)
(A20)

(A17}

The boundary conditions z(0) =z( —U/2) =y' and
z( U) =z( U/2}=x' can also be expressed in terms of a„'s
and b„'s. In order to do this we first split the trajectory
z(u) in two parts: A symmetric part z, (u) defined as

with boundary conditions

z, ( —U/2)=
I I

2
' ' 2

z, ( U/2) = (A21)

where j—=x' —y'. This last boundary condition can still
be written as

z(u)+z( —u)z uS (A18)
U —e

lim z
e~o

—(U —e)
(A22)

such that

z, ( —U/2) =z, ( U/2) = =—q',x'+y'

and an antisymmetric part z, (u), given by

(A19}

showing that there is a jump in the antisymmetric part of
z(u) exactly at u =+U/2. We shall perform all our cal-
culations with finite e and only at the end take the limit
when @~0. In terms of a„'s and b„'s it turns out that
(A19) and (A22) become
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aR
q'= + g a„"(—1)",

2

I
0= + g a„(—1)",

2

(A23a)

(A23b)

Sea =

where

MU(g')
4Q (e)

UZ(E)N' MU

Q (e) 2~

+'U 'f +
Q(e)

2

iP

(A31)

g'= —2 g b„(—I)"sin(co„e/2),
n=1

0= —2 g b„(—I)"sin(co„e/2) .
n=1

(A23c)

(A23d)

Z(e) =R(e)—foT(e)
N

co„e " sinco„e/2
dt'[x (t') —y(t')]

U o A„
The next step in our approach is to extremize either

S,tt or S,a in (A14) and (A15) subject to the constraints
(A23). Then, using the method of Lagrange multipliers,
one can show that the wanted values for the a„'s and b„'s
are

BK=
Ao

I/A„,

(A32)

(A33)

2q'Ao( —1)"

BA„
(A24a) n=1

„(—1)"

A„
(A34)

aR 2g
B

(A24b)
and

f.:f.—
(
——I)"fo (A35)

a„= (fo/2+ AOP)—

I 2
at = (P J'OV), —

(A24c)

(A24d)

The last step to obtain the final value of S,z is to take
the limit e~O in (A31). This is done exactly in the same
way as in Appendix B of Ref. 8. It is not a hard matter
to show that

(
—1)"sin(co„e/2)

b„= (4R(e) 4foT(e) —2M/')—
M eA„

and

Q(e) =—[e—Q, e'+O(e')]U
(A36)

bi 0,

0f (
—1)"

MA„
(A24e)

(A24f)

Z(e) = [Z,e+O(e')], (A37)

bR =0

bo 0

where

(A24g)

(A24h)

where

oc

Q~= —gU„

2
~n1—
A„

(A38)

V—= g 1/A„,
n=1

(A25) and

n=1

(
—1)"

(A26)

Q7 t2 tt

Z, = f dt'[x(t') y(t')]—
0 A„

(A39)

B—:2A0 V+1,

sin( co„e/2 )
T(e)—:g A„

(A27)

(A28)

f„(—1)"sin(co„e/2)
R (e)—= g

n=1 A„

sin (co„e/2)Q(e):—4 g
n =1

(A29)

(A30)

Now, substituting expressions (A24) in (A14) and (A15)
one gets

Equations (A36) and (A37) allow us to take the limit
e~O of (A31). In this limit, one can easily see that the
last term on the right-hand side of the latter vanishes
while the second one will give us a finite contribution.
The problem is the first term of S,~ which diverges as—1E

As it was argued in Ref. 8 this is due to the steep parts
of the path at the end of the interval ( —U/2, U/2). But
since this is a consequence of expanding a discontinuous
function in terms of continuous ones we must not take
this divergent contribution into account.

After taking the limit a~0 we must convert all the
sums over co„ into integrals (with the help of appropriate
contour integrations) to finally get



41 APPLICATION OF THE GENERALIZED FEYNMAN-VERNON. . . 3115

' oth U/2

cop to +4/ ca

2(ca tap )
slncot cosQ) f

CO M

+ q + dt' da)
MU, 2iy ~, n ta coth(toU/2) g(t') (top ta—)costot' —ca sintat'

p p (ta2 ca2)2+4~2ta2

where we have introduced new paths ((t') and q (t') as

g(t') —=x(t') —y(t'), q(t') = x (t')+y(t')
2

—i riq'g', (A40)

(A41)

APPENDIX B; THE FUNCTION Io( t)

As we know, trIT=1 or

fP(q, O, t)dq= 1 . (81)

Then, evaluating the integral over g' we get

I 2

q'exp pp q', 0 0 Ip t =1 ~ B4

Then using (5.10) with (=0 and (1.4) we have

p(q, O, t)= f fdq'd('p (pq', g', 0)J(q, O, t;q', g', 0) . (82) f dq'exp
—(q')'

pp(q', 0, 0)=1,

But since we know that [see (2.12)]

(85)

Substituting (82) in (Bl), the integral over q can immedi-
ately be done yielding one has

f dq J(q, O, t;q', g', 0)~ 5(g') .
2~

(83) Ip(t)= N(t)
(86)
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