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ABSTRACT. A system of coupled nonlinear Schrödinger equa-
tions arising in nonlinear optics is considered. The existence of
periodic pulses as well as the stability and instability of such solu-
tions are studied. It is shown the existence of a smooth curve of
periodic pulses that are of cnoidal type. The Grillakis, Shatah and
Strauss theory is set forward to prove the stability results. Regard-
ing instability a general criteria introduced by Grillakis and Jones is
used. The well-posedness of the periodic boundary value problem
is also studied. Results in the same spirit of the ones obtained for
single quadratic semilinear Schrödinger equation by Kenig, Ponce
and Vega are established.

1. INTRODUCTION

The interest on nonlinear properties of optical materials have attracted the atten-
tion of Physicists and Mathematicians in the recent years. It has been suggested
that by exploiting the nonlinear response of matter, the bit-rate capacity of optical
fibres can be increased substantially and so it will allow a great improvement in
the speed and economy of data transmission and manipulation.

In non-centrosymmetric materials, i.e., those which do not posses inversion
symmetry at the molecular level, the lowest order nonlinear effects originate from
the second-order susceptibility χ(2); this means that the nonlinear response of the
matter to the electric field is quadratic (see [10], [20]). Quadratic nonlineari-
ties are long known to be responsible for phenomena such as “second-harmonic
generation” (frequency doubling), whereby laser light with frequency ω can be
partially converted to light of frequency 2ω upon passing it through a crystal
with χ(2) response (see [25]). So, such materials are of importance in parametric
wave interactions, in ultra-fast all-optical signal processing, as well as long-distance
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communications (see [11], [25] for more physics or engineering information on
χ(2)).

The phenomena of interest in two dimensions, space + time, (pulse propa-
gation in fibres) is described by the following system of two coupled nonlinear
Schrödinger equations

(1.1)


iwt + rwxx − θw + w̄v = 0,

iσvt + svxx −αv + 1
2
w2 = 0.

This is obtained from the basic χ(2) second-harmonic generation equations (SHG)
of type I (see [25]). The complex functions w = w(x, t) and v = v(x, t) rep-
resent respectively the envelopes amplitudes of the first and second harmonics of
an optical wave. So, (1.1) describes the interaction of these harmonics. We have
r , s = ±1. The signs of r and s are determined by the signs of the disper-
sions/diffractions (temporal/spatial cases, respectively). The constant σ measures
the ratios of the dispersions/diffractions. The real parameters θ and α are di-
mensionless, with α incorporating the wave-vector mismatch between the two
harmonics ([4], [7]).

An important issue for optical communication in a nonlinear regime is the un-
derstanding of the so-called, “solitary-waves:” standing or travelling waves, which
are localized solutions for (1.1) of the form

(1.2) w(x, t) = eiγtϕ(x), v(x, t) = e2iγtψ(x)

where ϕ, ψ : R , R. When we specify the boundary conditions ϕ, ψ → 0 as
|x| → +∞, these solutions are called “pulses.” Here we are interested in “peri-
odic pulses,” namely, ϕ, ψ that satisfy periodic boundary conditions ϕ(n)(0) =
ϕ(n)(L), ψ(n)(0) = ψ(n)(L), for every n ∈ N and fixed period L.

In the case r = s = 1 and θ, α > 0, which is the most interesting regime from
a physics and engineering viewpoint, the pulses satisfy the ordinary differential
equations

(1.3)


−ϕ′′ + θ0ϕ −ϕψ = 0,

−ψ′′ +α0ψ− 1
2
ϕ2 = 0,

with
θ0 = θ + γ and α0 = α+ 2σγ.

It is well known that for the explicit value of θ0 = α0 = ±1 and ϕ = ±√2ψ,
system (1.3) possesses the exact real pulse solutions

(1.4) ϕ(x) = ± 3√
2

sech2
(
x
2

)
, ψ(x) = ±3

2
sech2

(
x
2

)
,
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found by a number of authors ([7], [20]). In [29], by using methods of the cal-
culus of variations (the mountain pass theorem and concentration-compactness
arguments), the existence of pulses was proved for all values of α0 > 0 and θ0 = 1.
Regarding the shape of solutions for (1.3) some numerical ([17], [9], [29], [7]) and
analytic results ([29], [27]) have been obtained. In [27] a description of the profile
of solutions for (1.3) was given by using the framework of homoclinic bifurcation
theory. Here the existence and uniqueness up to reflection ((ϕ,ψ) , (−ϕ,ψ)),
of solutions which possess a multiple number of “humps” (peaks or troughs),
called “multipulses” or “N-pulses,” was proved for α0 < θ0 and α0 sufficiently
near to θ0. These solutions were generated from a homoclinic bifurcation arising
near a semi-simple eigenvalue scenario. For α0 Û θ0 and α0 close to θ0, it was
also proved that multipulses solutions do not exist (see [17], [27] for numerical
simulations for the existence of multipulses). We also note that in [27] it was
shown the existence of a C1 branch of 1-pulses for (1.3) parameterized by α0, for
α0 close to 1, which contains the explicit solution (1.4) at α0 = 1. In [28], the
stability and instability of the orbit generated by 1-pulses or multipulses (ϕ,ψ)
of (1.3) found in [27], namely,

(1.5) O(ϕ,ψ) = {(eisϕ(x + x0), e2isψ(x + x0)) | x0, s ∈ R},

were studied. Through the use of the Grillakis, Shatah and Strauss theory ([15],
[16]), conditions were derived for the nonlinear stability or instability of the 1-
pulses. Moreover, by the application of an instability criterion due to Grillakis
[14] (see also Grillakis [13] and Jones [19]), it was proved the remarkable fact that
the N-pulses are unstable by the flow of the coupled nonlinear Schrödinger system
(1.1).

In this paper our main interest is the study of the existence, stability and
instability of “periodic pulses” of (1.1).

For the parameter regime θ0 = α0, we establish the existence of a family of
non-trivial periodic solutions of (1.3). More precisely, Let θ > 0 fixed, under the
following conditions:

γ >
4π2

L2 − θ,(1.6a)

α, σ > 0 such that α+ 2σγ = θ + γ,(1.6b)

ϕ =
√

2ψ,(1.6c)

we obtain ψ = ψγ satisfying the differential equation

(1.7) ψ′′(ξ)− (θ + γ)ψ(ξ)+ψ2(ξ) = 0, ξ ∈ R,

such that

γ ∈
(

4π2

L2 −θ, +∞
)
, ψγ ∈ H1

per([0, L])
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is a smooth branch of solutions. Moreover, the profile of each ψγ is a cnoidal
wave, that is,

(1.8) ψ(ξ) = ψ(ξ;β1, β2, β3) = β2 + (β3 − β2)cn2

√β3 − β1

6
ξ;k

 ,
where cn(·;k) represents a Jacobi elliptic function of modulus k, the βi’s are
smooth function of γ satisfying β1 < 0 < β2 < β3,

∑
βi = 3(θ + γ)/2, and

k2 = β3 − β2

β3 − β1
.

This family of solutions for (1.8) are positive periodic pulses, which are even,
monotonically decreasing between the maximum ψ(0) = β3 (humps) and the
positive minimum ψ(L/2) = β2 (troughs).

We also will show the existence of other periodic solutions for the system (3.2)
depending on the parameter α.

Concerning the nonlinear stability of the orbit (1.5), we show that it is stable
in H1

per([0, L])×H1
per([0, L]) by the periodic flow of the system (1.1). We derive

our result from the Grillakis, Shatah and Strauss theory ([15]) and the Floquet
theory applied to the periodic eigenvalue problem for the Jacobian form of Lamé’s
equation

(1.9)


d2Λ
dx2 + [ρ − 12k2 sn2(x;k)]Λ = 0,

Λ(0) = Λ(2K), Λ′(0) = Λ′(2K),
where sn(·;k) is a Jacobi elliptic function and K = K(k) is the complete elliptic
integral of the first kind.

We also show that the orbit

(1.10) S(ϕ,ψ) = {(
√

2eiγsψγ(x), e2iγsψγ(x)) | s ∈ R},

is unstable in H1
per([0,2L]) ×H1

per([0,2L]). To obtain this result we employ the
theory of Grillakis in [14]. This seems to be the first proof of instability of periodic
pulses in a nonlinear Schrödinger-type system (see Angulo [3] for the study of the
instability of periodic travelling waves solutions in the case of the focusing cubic
Schrödinger equation).

In the framework of Grillakis-Shatah-Strauss, it is needed to have global or
local well-posedness for the system under consideration. In our case, it will be
enough to have a well-posedness theory in the spaces Hs([0, L])×Hs([0, L]) for
s ≥ 1 due to the conserved quantities

(1.11) F(t) :=
∫
[|w(x, t)|2 + 2σ |v(x, t)|2]dx = F(0)
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and

(1.12) H (t) :=
∫ [
r |wx(x, t)|2 + s|vx(x, t)|2 + θ|w(x, t)|2

+ α|v(x, t)|2 −Re(w2v̄)(x, t)
]
dx =H (0)

where Re denotes the real part.
Here we establish a local and global theory for the periodic IVP (1.1) in

Hs([0, L]) × Hs([0, L]) for s ≥ 0. To prove the local result we use the Fourier
restriction spaces or Xs,b spaces introduced by Bourgain in [5], [6] and bilinear
estimates introduced by Kenig, Ponce and Vega [22] to study the IVP associated to
the Korteweg-de Vries equation. More precisely, we will use the approach given by
Kenig, Ponce and Vega [23] to study the following nonlinear Schrödinger equa-
tions,

(1.13) ∂tu = i∂2
xu+Nj(u, ū), x ∈ R (T), t ∈ R,

where Nj(u, ū), j = 1, 2, 3, is a quadratic polynomial, i.e., N1(u, ū) = u2,
N2(u, ū) = uū, and N3(u, ū) = ū2.

In this work we are interested in the nonlinearities N1 and N2. To explain the
results in [23] regarding these nonlinearities we need the next definition.

Definition 1.1. Let A be space of functions f such that
(i) f : T×R→ C.

(ii) f(x, ·) ∈ S for each x ∈ T.
(iii) f(·, t) ∈ C∞(T) for each t ∈ R.
For s, b ∈ R we define the space Ys,b to be the completion of A with respect to
the norm

(1.14) ‖F‖Ys,b = ‖〈n〉s〈τ −n2〉bF̂(n, τ)‖`2
nL2
τ ,

where 〈 · 〉 = 1+ | · |.
For F ∈ Ys,b consider the bilinear operators

B1(F, F) = F2 ,(1.15)

B2(F, F) = FF̄.(1.16)

Kenig, Ponce and Vega in [23] showed that given s ∈ (− 1
2 ,0] there exists

b ∈ ( 1
2 ,1) such that

(1.17) ‖B1(F, F)‖Ys,b−1 ≤ c
∥∥F∥∥2

Ys,b

and that for s < − 1
2 and any b ∈ R the estimate (1.17) fails.
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On the other hand, given any s < 0 and any b ∈ R they showed that the
estimate

(1.18) ‖B2(F, F)‖Ys,b−1 ≤ c
∥∥F∥∥2

Ys,b

fails.
These estimates yield sharp local well-posedness for the periodic boundary

value problem associated to (1.13) for data in Hs(T), s > − 1
2 when the nonlin-

earity is N1 and in Hs(T), s Û 0, for the nonlinearity N2.
When σ = 1, we can reproduce the estimates (1.17) and (1.18) for any s ≥ 0

and some b ∈ ( 1
2 ,1) for system (1.1). These are the main estimates to obtain our

local results. We shall observe that for σ ≠ 1 we can prove estimates (1.17) and
(1.18) for s > − 1

2 and some b ∈ ( 1
2 ,1). This latter result will appear somewhere

else.
To establish global resultsHs(T)×Hs(T), s ≥ 0 it is sufficient to use the local

theory and the conserved quantity (1.11).
The plan of this paper is as follows: in Section 2, we establish the local and

global theory for the periodic boundary value problem associated to (1.1). The
existence of periodic pulses of the kind described in (1.2) will be shown in Section
3. Next we will show the existence of periodic solutions for the system (1.3)
which are not necessarily of cnoidal type. The stability of the periodic pulse will
be discussed in Section 5. Finally, in Section 6, the instability results will be
established.

Before leaving this section we want to introduce some notation needed along
this work.

Notation For any complex number z ∈ C, we denote by Rez and Imz the
real part and imaginary part of z, respectively.

For s ∈ R, the Sobolev space Hsper([0, L]) consists of all periodic distributions
f such that ‖f‖2

Hs = L
∑∞
k=−∞(1 + k2)s|f̂ (k)|2 < ∞. For simplicity, we will use

the notation Hs([0, L]) in several places.
We will use F(ϕ,k) to denote the normal elliptic integral of first type (see

[8]), that is, for y = sinϕ

(1.19)
∫ y

0

dt√
(1− t2)(1− k2t2)

=
∫ϕ

0

dθ√
1− k2 sin2 θ

= F(ϕ,k).

The normal elliptic integral of the second type, i.e.,

(1.20)
∫ y

0

√
1− k2t2

1− t2 dt =
∫ϕ

0

√
1− k2 sin2 θ dθ

will be denoted by E(ϕ,k). In both cases k ∈ (0,1) is called the modulus and ϕ
the argument. When y = 1, we denote F(π/2, k) and E(π/2, k) by K = K(k)
and E = E(k), respectively.
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The Jacobian elliptic functions denoted by sn(u;k), cn(u;k) and dn(u;k),
respectively, are defined via the previous elliptic integrals. More precisely, let

(1.21) u(y1;k) := u = F(ϕ,k);

then y1 = sinϕ := sn(u;k) = sn(u) and

(1.22)
cn(u;k) :=

√
1−y2

1 =
√

1− sn2(u;k),

dn(u;k) :=
√

1− k2y2
1 =

√
1− k2 sn2(u;k),

requiring that sn(0;k) = 0, cn(0;k) = 1 and dn(0;k) = 1.

2. WELL-POSEDNESS THEORY

In this section we show local and global results for the periodic IVP,

(2.1)


iwt +wxx − θw + w̄v = 0 ,

iσvt + vxx − α̃v + 1
2
w2 = 0,

w(x,0) = w0(x), v(x,0) = v0(x),

x ∈ [0, L], t ∈ R,

where θ, α̃ ∈ R and σ > 0, in the periodic Sobolev spaceHs([0, L])×Hs([0, L]).
To simplify our analysis we will use L = 2π .

We first rewrite (2.1) as

(2.2)


iwt +wxx − θw + w̄v = 0 ,

ivt + avxx −αv + a2w
2 = 0,

w(x,0) = w0(x), v(x,0) = v0(x),

x ∈ [0, L], t ∈ R,

where a = 1/σ and α = α̃/σ .
Next we consider the equivalent integral system of equations associated to

(2.2). Let ψ be a C∞0 (R) function with suppψ ⊂ (−2,2) such that ψ(t) = 1, for
t ∈ [−1,1]. Let ψT(·) = ψ(·/T).

(2.3)


w(t) = ψTW(t)w0 − iψT

∫ t
0
W(t − t′)w̄v(t′)dt′,

v(t) = ψTV(t)v0 − ia2 ψT
∫ t

0
V(t − t′)w2(t′)dt′,

where W(t) = eit(∂2
x−θ) and V(t) = eit(a∂2

x−α) are the corresponding Schrödinger
generators (unitary groups) associated to the linear problem.

To give the statement of our results we need the following definition.
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Definition 2.1. Let A be a space of functions f such that
(1) f : [0, L]×R→ C.
(2) f(x, ·) ∈ S for each x ∈ [0, L].
(3) f(·, t) ∈ C∞([0, L]) for each t ∈ R.
For s ∈ R we define the space Xs,b to be the completion of A with respect to the
norm

(2.4) ‖f‖Xs,b = ‖〈n〉s〈τ −n2 − θ〉bf̂ (n, τ)‖`2
nL2
τ
.

Similarly, for s ∈ R and a > 0 we define the space Xas,b to be the completion
of A with respect to the norm

(2.5) ‖f‖Xas,b = ‖〈n〉s〈τ − an2 −α〉bf̂ (n, τ)‖`2
nL2
τ
.

The local well-posedness theory is as follows.

Theorem 2.2. Let s ≥ 0, a > 0 and b > 1
2 . For any (w0, v0) ∈ Hs([0, L])×

Hs([0, L]), there exist T = T(‖(w0, v0)‖Hs×Hs ) > 0, and a unique solution of the
IVP (2.2) in the time interval [−T, T] such that

(2.6)
(w,v) ∈ C([−T, T] : Hs([0, L])×Hs([0, L])),
(ϕTw,ϕTv) ∈ Xs,b ×Xas,b.

Moreover, for any T ′ ∈ (0, T), the map (w0, v0) , (w(t), v(t)) is Lipschitz
from a neighborhood of Hs([0, L]) × Hs([0, L]) to C([−T ′, T ′] : Hs([0, L]) ×
Hs([0, L]))∩Xs,b ×Xas,b.

Remark. If a ≠ 1, the result above in Theorem 2.2 holds for s > − 1
2 .

Once we have proved Theorem 2.2 it is not difficult to show the next global
result.

Theorem 2.3. Let (w0, v0) ∈ Hs([0, L]) × Hs([0, L]), s ≥ 0. Then the
solutions (w,v) given in Theorem 2.2 can be extended to any interval of time.

Proof of Theorem 2.3. The result is deduced using the conserved quantity

(2.7)
∫
(|w(x, t)|2 + 2σ |v(x, t)|2)dx =

∫
(|w0(x)|2 + 2σ |v0(x)|2)dx.

and Theorem 2.2. ❐

To establish Theorem 2.2 we need a series of lemmas. We begin with the next
result.
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Lemma 2.4. Let s ∈ R, b > 1
2 ; then

‖ψTW(t)w0‖Xs,b ≤ c‖w0‖Hs ,(2.8)

‖ψTV(t)v0‖Xas,b ≤ c ‖v0‖Hs ,(2.9)

and

∥∥∥∥ψT ∫ t
0
W(t − t′)F(t′)dt′

∥∥∥∥
Xs,b

≤ cTγ‖F‖Xs,b−1 ,(2.10) ∥∥∥∥ψT ∫ t
0
V(t − t′)F(t′)dt′

∥∥∥∥
Xas,b

≤ cTγ‖F‖Xas,b−1
,(2.11)

where W(t) and V(t) are defined above and γ > 0.

Proof. For a proof of this see for instance [5], [6], [23]. ❐

The key estimates to deal with the nonlinear terms are next.

Lemma 2.5. For s ≥ 0 and a > 0 we have

‖w̄v‖Xs,−1/2 ≤ c‖w‖Xs,1/2 ‖v‖Xas,1/2 ,(2.12)

‖w2‖Xas,−1/2
≤ c∥∥w∥∥2

Xs,1/2 .(2.13)

Remark. If a ≠ 1, the estimate (2.12) holds for s > − 1
2 . For any a > 0, the

estimate (2.13) is satisfied for s > − 1
2 .

As in [23], the next corollary follows from the proof of Lemma 2.5.

Corollary 2.6. Let b > 1
2 with 1− b, b′ > 3

8 ; then

‖w̄v‖Xs,b−1 ≤ c‖w‖Xs,b′ ‖v‖Xas,b′ ,(2.14)

‖w2‖Xas,b−1
≤ c∥∥w∥∥2

Xs,b′ .(2.15)

The next lemmas will be useful in the proof of Lemma 2.5. The first one was
proved in [23], that is,

Lemma 2.7. If γ > 1
2 , then

(2.16) sup
n∈Z, τ∈R

∑
n1∈Z

1
(1+ |τ ±n1(n−n1)|)γ <∞.
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Lemma 2.8. Let s ≥ 0, and let

A(n,τ,a) := 〈n〉s
〈τ −n2 − θ〉1/2

×
( ∑
n1∈Z

∫∞
−∞

〈n1〉−2s〈n−n1〉−2s

〈τ1 − an2
1 −α〉〈τ − τ1 + (n−n1)2 + θ〉 dτ1

)1/2
,

A1(n1, τ1) := 1
〈n1〉s〈τ1 −n2

1 −α〉1/2

×
( ∑
n∈Z

∫∞
−∞

〈n〉2s〈n−n1〉−2s

〈τ −n2 − θ〉〈τ − τ1 + (n−n1)2 + θ〉 dτ
)1/2

,

and

B(n, τ,a) := 〈n〉s
〈τ − an2 −α〉1/2

×
( ∑
n1∈Z

∫∞
−∞

〈n1〉−2s〈n−n1〉−2s

〈τ1 −n2
1 − θ〉〈τ − τ1 − (n−n1)2 − θ〉 dτ1

)1/2
.

Then

sup
n∈Z, τ∈R

A(n,τ,a) ≤ c,(2.17)

sup
n1∈Z, τ1∈R

A1(n1, τ1) ≤ c,(2.18)

sup
n∈Z, τ∈R

B(n, τ,a) ≤ c.(2.19)

Proof. We will only give a sketch of the proof of inequality (2.17). The proofs
of the estimates (2.18) and (2.19) follow a similar argument so we will omit them.

Using that s ≥ 0 and the change of variables x = τ1 − an2
1 −α we obtain

(2.20) A(n,τ,a) ≤ c
〈τ −n2 − θ〉1/2

×
( ∑
n1∈Z

∫∞
−∞

dτ1

〈τ1 − an2
1 −α〉〈τ − τ1 + (n−n1)2 + θ〉

)1/2

≤ sup
n∈Z,τ∈R

( ∑
n1∈Z

ln(2+ |τ +n2 −n1(2n− (1− a)n1)+ (θ −α)|)
1+ |τ +n2 −n1(2n− (1− a)n1)+ (θ −α)|

)1/2
.

An application of Lemma 2.7 yields the result. ❐

Proof of Lemma 2.5. We begin by proving the bilinear estimate (2.12).
We consider first the casea ≠ 1. Let f(n, τ) = 〈n〉s〈τ−an2−α〉1/2|v(n,τ)|

and g(n,τ) = 〈n〉s〈τ +n2 + θ〉1/2| ˆ̄w(n,τ)|.
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Then from Definition 2.1, the Cauchy-Schwarz inequality, Fubini’s theorem,
and (2.17) in Lemma 2.8 it follows that,

‖w̄v‖Xs,−1/2 ≤ sup
n∈Z, τ∈R

A(n,τ,a)‖f‖`2
nL2
τ
‖g‖`2

nL2
τ

(2.21)

≤ c‖w‖Xs,1/2‖v‖Xas,1/2 .

Now we consider a = 1. A duality argument combined with Lemma 2.8 gives

(2.22) ‖w̄v‖Xs,−1/2 ≤
∑
n∈Z

〈n〉s
∫∞
−∞

h(n,τ)dτ
〈τ −n2 − θ〉

×
( ∑
n1∈Z

∫∞
−∞

g(n−n1, τ − τ1)f (n1, τ1)
〈n−n1〉s〈τ − τ1 + (n−n1)2 + θ〉1/2〈n1〉s〈τ1 −n2

1 −α〉1/2 dτ1

)

≤ sup
n1∈Z, τ1∈R

A1(n1, τ1)‖f‖`2
nL2
τ
‖g‖`2

nL2
τ
‖h‖`2

nL2
τ

≤ c‖w‖Xs,1/2 ‖v‖Xas,1/2 .

This implies inequality (2.12).
Next we prove the estimate (2.13). We use the definition of the space Xas,−1/2,

the Cauchy-Schwarz inequality and Lemma 2.8 to obtain

(2.23) ‖w2‖Xas,−1/2
≤ sup
n∈Z, τ∈R

B(n, τ,a)
∥∥g∥∥2

`2
nL2
τ
≤ c∥∥w∥∥2

Xs,1/2 ,

This finishes the proof of Lemma 2.5. ❐

Proof of Theorem 2.2. We follow similar arguments as those in [23]. We de-
fine the metric space of functions

(2.24) XM := {(w,v) ∈ Xs,b ×Xas,b : |||(w,v)||| = ‖w‖Xs,b + ‖v‖Xas,b ≤M}.

For (w,v) ∈ XM we define the operators

(2.25)


Φ1(w,v)(t) = ψ1W(t)w0 − iψT

∫ t
0
W(t − t′)w̄v(t′)dt′,

Φ2(w,v)(t) = ψ1V(t)v0 − iσ2 ψT
∫ t

0
V(t − t′)w2(t′)dt′.

Applying Lemma 2.4 and Corollary 2.6 we have

‖Φ1(w,v)‖Xs,b ≤ c‖w0‖Hs + cTγ‖w‖Xs,b ‖v‖Xas,b(2.26)

≤ c‖w0‖Hs + cTγM2

and
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‖Φ2(w,v)‖Xas,b ≤ c‖v0‖Hs + cTγ
∥∥w∥∥2

Xs,b(2.27)

≤ c‖v0‖Hs + cTγM2.

Taking M ≥ 2c(‖w0‖Hs + ‖v0‖Hs ) and T such that cTγM < 1
2 , we have that the

map (Φ1(w,v),Φ2(w,v)) : XM , XM is well defined. Similarly, one can prove
that (Φ1(w,v),Φ2(w,v)) is a contraction onXM . From the contraction mapping
principle we deduce the existence of a unique fixed point for (Φ1(w,v),Φ2(w,v))
which solves the problem. To finish the proof we use standard arguments thus we
omit the details. This completes the proof of Theorem 2.2. ❐

3. EXISTENCE OF CNOIDAL WAVES SOLUTIONS

In this section we establish the existence theory of a smooth curve of periodic
travelling wave solutions to the χ(2) SHG equations (1.1) of the form

(3.1) w(x, t) = eiγtϕ(x), v(x, t) = e2iγtψ(x)

where ϕ, ψ : R , R. Substituting (3.1) in (1.1) (with r = s = 1) we obtain the
system of ordinary differential equations

(3.2)


−ϕ′′ + (θ + γ)ϕ −ϕψ = 0,

−ψ′′ + (α+ 2σγ)ψ − 1
2
ϕ2 = 0.

We are interested in solutions of (3.2) satisfying θ + γ = α + 2σγ. Thus if we
consider ϕ = √2ψ, we reduce our analysis to study the equation

(3.3) ψ′′(ξ)− (θ + γ)ψ(ξ)+ψ2(ξ) = 0, ξ ∈ R,
with the periodic boundary conditions ψ(n)(0) = ψ(n)(L) for every n ∈ N and
fixed period L. We note that our approach will give us just a family of posi-
tive periodic solutions with fundamental period L. We also observe that the pair
(ϕ,ψ) ≡ (−√2ψ,ψ) is a solution of (3.2).

Before stating our main result regarding the existence of solutions for (3.3)
we will list some elementary properties satisfied for the Jacobian elliptic functions
defined in the introduction which will be useful in our analysis.

Let K(k) and E(k) be as in (1.19)–(1.20). Then
(1) K(0) = E(0) = π/2, E(1) = 1 and K(1) = +∞.
(2) For k ∈ (0,1), K′(k) > 0, K′′(k) > 0, E′(k) < 0 and E′′(k) < 0 with

(3.4)

dK
dk

= E − k
′2K

kk′2
,

dE
dk

= E − K
k

,

d2E
dk2 = −

1
k
dK
dk

= −E − k
′2K

k2k′2
.
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(3) For k ∈ (0,1), E(k) < K(k), E(k)+K(k) and E(k)K(k) are strictly increas-
ing functions.
Next we establish the existence theory of periodic solutions for (3.3) of cnoidal

type with wave velocity r ≡ θ + γ > 0. From (3.3) we have that ψ satisfies the
first-order equation

(3.5) [ψ′]2 = 2
3

[
−ψ3 + 3r

2
ψ2 + 3Bψ

]
= 2

3
(ψ − β1)(ψ− β2)(β3 −ψ),

where βi, i = 1, 2, 3, are the real zeros of the polynomial Fψ(t) = −t3 +
(3r/2)t2 + 3Bψ. Therefore, we must have the relations

(3.6) 3r0 =
3∑
i=1

βi, 0 =
∑
i<j
βiβj, 3Bψ =

3∏
i=1

βi,

for r0 = r/2. We assume without losing generality that β1 < β2 < β3. From the
first and second relations in (3.6) we deduce that

(3.7) −β1 = β2β3

β2 + β3
= β2 + β3 − 3r0.

Thus β2, β3 belong to the rotated ellipse Ξ(r0),

(3.8) Ξ(r0) : β2
2 + β2

3 + β2β3 − 3r0(β2 + β3) = 0.

Then, since β2 < β3, it follows that 0 < β2 < 2r0 < β3 < 3r0. Moreover,
β2 Ú ψ Ú β3 which implies that ψ must be a positive solution.

Next, by taking ζ ≡ ψ/β3, we see that (3.5) becomes

[ζ′]2 = 2β3

3
(ζ − η1)(ζ − η2)(1− ζ),

where ηi = βi/β3, i = 1, 2. “If we take the crest of the wave to be at ξ = 0, ζ(0) =
1.” Next we define a further variable χ via the relation ζ = 1 + (η2 − 1) sin2 χ,
and so we get that

(χ′)2 = β3

6
(1− η1)[1− k2 sin2 χ],

where k2 = (1− η2)/(1− η1). Note that 0 < k2 < 1. Then, for ` =
(β3/6)(1− η1), we obtain

(3.9) F(χ;k) =
∫ χ(ξ)

0

dt√
1− k2 sin2 t

=
√
` ξ.
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The left-hand side of (3.9) is just the standard elliptic integral of the first kind
and thus from the definition of the Jacobi elliptic function y = sn(u;k) (1.21) it
follows that sinχ = sn(

√
` ξ;k). Hence

ζ = 1+ (η2 − 1) sn2(
√
` ξ;k).

Therefore, since sn2u+cn2u = 1, we “arrive” to the so-called cnoidal wave solution
associated to equation (3.3)

(3.10) ψ(ξ) = ψ(ξ;β1, β2, β3) = β2 + (β3 − β2) cn2

√β3 − β1

6
ξ;k

 ,
where the βi’s satisfy (3.6) and

k2 = β3 − β2

β3 − β1
.

Next, since cn2(·;k) has fundamental period 2K(k) then ψ has fundamental pe-
riod Tψ given by

(3.11) Tψ ≡ 2
√

6√
β3 − β1

K(k).

Now, we see that the period Tψ depends a priori on the wave velocity r . More
precisely,

Tψ >
√

2π√
r0
.

In fact, we first express Tψ as a function of β2 and r0. Since for every β2 ∈ (0,2r0)
there is a unique β3 ∈ (2r0,3r0) such that (β2, β3) ∈ Ξ(r0), it follows that

2β3 = 3r0−β2+
√

9r 2
0 − 3β2

2 + 6r0β2. Hence by defining β1 ≡ 3r0−β2−β3 we
obtain for

g(β2, r0) ≡
√

9r 2
0 − 3β2

2 + 6r0β2,
(3.12)

k2(β2, r0) = 1
2
+ 3(r0 − β2)

2g(β2, r0)

that g(β2, r0) = β3 − β1 and

Tψ(β2, r0) = 2
√

6√
g(β2, r0)

K(k(β2, r0)).
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Then by fixing r0 > 0, we have Tψ(β2, r0) → +∞, as β2 → 0, and Tψ(β2, r0) →√
2π/√r0, as β2 → 2r0. Since the map β2 ∈ (0,2r0) , Tψ(β2, r0) is strictly

decreasing (see proof of Theorem 3.1 below) we deduce that Tψ >
√

2π/
√
r0.

The analysis above allows us to obtain a cnoidal wave solution for equation
(3.3) with an arbitrary fundamental period L. Indeed, for a wave velocity r >
4π2/L2 there is, for r0 = r/2, a unique β2,0 ∈ (0,2r0) such that Tψ(β2,0, r0) = L.
Thus, for β3,0 such that (β2,0, β3,0) ∈ Ξ(r0), we have that the cnoidal waveψ(·) =
ψ(·;β1,0, β2,0, β3,0) with β1,0 = 3r0 − β2,0 − β3,0, has fundamental period L and
satisfies (3.3) with θ+γ = r . We also note that the cnoidal wave ψ(·;β1, β2, β3)
in (3.10) can be seen as a function depending only on r and β2, ψr(·;β2(r)).

Next we show the existence of a smooth curve of cnoidal waves solutions for
the equation (3.3). In other words, we show that at least locally the choice of
β2,0(r0) above depends smoothly on r0.

Theorem 3.1. Let L > 0 be arbitrary but fixed. Consider r0 > 2π2/L2 and the
unique β2,0 ∈ (0,2r0) such that

2
√

6K(k(β2,0, r0))√
g(β2,0, r0)

= L.

Then,
(1) there exist an interval J(r0) around r0, an interval B(β2,0) around β2,0, and a

unique smooth function Γ : J(r0), B(β2,0), such that Γ(r0) = β2,0 and

(3.13)
2
√

6√
g(β2, λ)

K(k(β2, λ)) = L,

where λ ∈ J(r0), β2 = Γ(λ), and k(β2, λ), g(β2, λ) are defined in (3.12).
Moreover, J(r0) = (2π2/L2,+∞).

(2) Let θ > 0. Then for γ ∈ (4π2/L2−θ,+∞) and λ(γ) = (θ+γ)/2 the cnoidal
wave solution

ψγ(·) ≡ ψλ(γ)(·;β2(λ(γ)))

has fundamental period L and satisfies equation (3.3). Moreover, the mapping

γ ∈
(

4π2

L2 −θ, +∞
)
, ψγ ∈ Hnper([0, L])

is a smooth function.

Proof. We will apply the implicit function theorem to prove the results. First,
we consider the open set Ω = {(β2, λ) | λ > 2π2/L2, β2 ∈ (0,2λ)} ⊆ R2 and
define Φ : Ω→ R by

(3.14) Φ(β2, λ) = 2
√

6√
g(β2, λ)

K(k(β2, λ))− L
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where g(β2, λ) and k2(β2, λ) are defined in (3.12). By hypotheses Φ(β2,0, r0) =
0. Now we show that (∂Φ/∂β2)(β2,0, r0) < 0. In fact, by using the relations,
18λ2 = g2(2− 2k2 + 2k4),

∂g
∂β2

= 3(λ− β2)
g

,
∂k
∂β2

= − 9λ2

kg3

and the differential relation

dK
dk

= E − k
′2K

kk′2
,

where k′2 = 1− k2, we have formally that,

∂Φ
∂β2

< 0 ⇐⇒ −18λ2dK
dk

< g2(2k2 − 1)kK(3.15)

⇐⇒ 18λ2E > [18λ2 − k2(2k2 − 1)g2]k′2K

⇐⇒ (2− 2k2 + 2k4)E > (2− 3k2 + k4)K.

Next, since E +K is a strictly increasing function we have that

(2− k2)E > 2(1− k2)K, k ∈ (0,1).

Moreover, from the definition of the complete elliptical integrals E and K it follows
that

(k2 − 1)K Ú (2k2 − 1)E, k ∈ (0,1).

So we obtain from (3.15) that (∂Φ/∂β2)(β2, λ) < 0 for every (β2, λ) ∈ Ω.
Therefore, there is a unique smooth function, Γ , defined in a neighborhood

J(r0) of r0, such that Φ(Γ(λ), λ) = 0 for every λ ∈ J(r0). So, we get (3.13).
Finally, since r0 was arbitrarily chosen in the interval I = (2π2/L2,+∞), it follows
that Γ can extend to I. This completes the proof of the theorem. ❐

Corollary 3.2. Let Γ : J(r0) , B(β2,0) be the map given by Theorem 3.1.
Then, β2(λ) ≡ Γ(λ) is a strictly decreasing function in J(r0). Moreover, the modulus
function

k2(λ) = 1
2
+ 3(λ− β2(λ))

2g(β2(λ), λ)
,(3.16)

where g was defined in (3.12), is a strictly increasing function.



Nonlinear Schrödinger Equations 863

Proof. From (the proof of ) Theorem 3.1 we have Φ(Γ(λ), λ) = 0, then
dΓ/dλ = −(∂Φ/∂λ)/(∂Φ/∂β2). Hence, we only need to show that ∂Φ/∂λ < 0.
In fact, from (3.12) and the relation kg3(dk/dλ) = 9λβ2 we have

∂Φ
∂λ
< 0 ⇐⇒ 6λβ2

dK
dk

< gk(3λ+ β2)K(3.17)

⇐⇒ 6λβ2E < [gk2(3λ+ β2)+ 6λβ2]k′
2K.

Now, since

gk2(3λ+ β2)+ 6λβ2 = g
2

2
+ g(3λ+ β2)

2
-⇒ 6λβ2 < g(3λ+ β2)k′

2,

it follows from the inequality E < K and (3.17) that ∂Φ/∂λ < 0.
Finally, from the definition of k and g we obtain

dk
dλ

= 9λ
kg3 (β2 − λβ′2) > 0.

This completes the proof. ❐

4. SPECTRAL ANALYSIS

The study of the spectra of the following matrix differential operators LR and LI
given by

LR =

−
d2

dx2 + (θ + γ)−ψ −ϕ

−ϕ − d
2

dx2 + (α+ 2σγ)

,(4.1)

and

LI =

−
d2

dx2 + (θ + γ)+ψ −ϕ

−ϕ − d
2

dx2 + (α+ 2σγ)

,(4.2)

where the pair (ϕ,ψ) is a solution of equation (3.2), is crucial for the stability and
instability analysis of the periodic traveling waves solutions found in the previous
section. In what follows, σ(L) will denote the spectrum of a linear operator L.
It is well known that it can be decomposed into the essential spectrum σess(L)
and the discrete spectrum σdisc(L), where σdisc(L) = σ(L) − σess(L) (see [26]).
So, σdisc(L) consists of all isolated eigenvalues of finite multiplicity; it means that
the eigenspace (geometric) associated to each eigenvalue is finite dimensional. We
recall that, in the case of L being self-adjoint, the algebraic multiplicity of an
eigenvalue coincides with the dimension of the eigenspace.
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In the analysis of the self-adjoint operator LR when (ϕ,ψ) = (
√

2ψ,ψ),
with ψ being the cnoidal wave solution for (3.3) given by Theorem 3.1, the un-
derstanding of the following periodic eigenvalue problem

(4.3)


Lcnζ ≡

(
− d

2

dx2 + (θ + γ)− 2ψ
)
ζ = λζ,

ζ(0) = ζ(L), ζ′(0) = ζ′(L),

is necessary. The following theorem contains useful information regarding the
operator Lcn.

Theorem 4.1. Let θ > 0, γ ∈ (4π2/L2 − θ,+∞) and ψ = ψγ be the cnoidal
wave solution of (3.3) given by Theorem 3.1. Then, the linear operator Lcn in (4.3)
defined on H2

per([0, L]) has its first three eigenvalues simple, the eigenvalue zero being
the second one, with eigenfunction ψ′. Moreover, the remainder of the spectrum is
constituted by a discrete set of eigenvalues which are double.

Theorem 4.1 is a consequence of the Floquet theory (see [24]). For the sake
of clearness in the exposition we will list some basic facts of this theory.

From the theory of compact symmetric operators, (4.3) determines that
σ(Lcn) = σdisc(Lcn) = {λn | n = 0,1,2, . . . } with λ0 Ú λ1 Ú λ2 Ú · · · ,
where a double eigenvalue is counted twice and λn → ∞ as n → ∞. We de-
note by ζn the eigenfunction associated to the eigenvalue λn. By the conditions
ζ(0) = ζ(L), ζ′(0) = ζ′(L), ζn can be extended to the whole of (−∞,∞) as a
continuous differentiable function with period L.

From the Floquet theory, we know that the periodic eigenvalue problem (4.3)
is related to the following semi-periodic eigenvalue problem considered on [0, L]

(4.4)

Lcnξ = µξ,
ξ(0) = −ξ(L), ξ′(0) = −ξ′(L),

which is also a self-adjoint problem and therefore its spectrum, σ sm(Lcn), is given
by σ sm

disc(Lcn) = {µn |n = 0,1,2,3, . . . }, with µ0 Ú µ1 Ú µ2 Ú · · · , where
double eigenvalues are counted twice and µn → ∞ as n → ∞. We denote by ξn
the eigenfunction associated to the eigenvalue µn. Then we have that the equation

(4.5) Lcnf = γf
has a solution of period L if and only if γ = λn, n = 0, 1, 2, . . . . Similarly, it
has a solution of period 2L if and only if γ = µn, γ = λn, n = 0, 1, 2, . . . . If
all solutions of (4.5) are bounded, we say that they are stable; otherwise, we say
that they are unstable. The Oscillation Theorem (see [24]) guarantees that the
distribution of the eigenvalues λi, µi, is as follows:

(4.6) λ0 < µ0 Ú µ1 < λ1 Ú λ2 < µ2 Ú µ3 < λ3 Ú λ4 · · · .
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The intervals (λ0, µ0), (µ1, λ1), . . . , are called intervals of stability. At the
endpoints of these intervals the solutions of (4.5) are, in general, unstable. This
is true for γ = λ0 (λ0 is always a simple eigenvalue). The intervals, (−∞, λ0),
(µ0, µ1), (λ1, λ2), (µ2, µ3), . . . , are called intervals of instability, omitting however
any interval which is absent as a result of having a double eigenvalue. The interval
of instability (−∞, λ0) will always be present. We note that the absence of an
instability interval means that there is a value of γ for which all solutions of (4.5)
have either period L or semi-period L. In other words, coexistence of solutions of
(4.5) with period L or period 2L occurs for that value of γ.

We end this brief review by describing how the number of zeros of ζn and ξn
is determined. Indeed,

ζ0 has no zeros in [0, L].(4.7a)

ζ2n+1 and ζ2n+2 have exactly 2n+ 2 zeros in [0, L).(4.7b)

ξ2n and ξ2n+1 have exactly 2n+ 1 zeros in [0, L).(4.7c)

Proof of Theorem 4.1. Since Lcnψ′ = 0 and ψ′ has 2 zeros in [0, L), then the
eigenvalue 0 is either λ1 or λ2. We will show that 0 = λ1 < λ2 and thus zero is
simple. In fact, for Tηζ(x) ≡ ζ(ηx) with η2 = 6/(β3−β1) we have for Λ ≡ Tηζ
that

(4.8)


d2

dx2Λ+ [ρ − 12k2 sn2(x)]Λ = 0,

Λ(0) = Λ(2K), Λ′(0) = Λ′(2K),
where for r = γ + θ,

ρ = −6[r − λ− 2β3]
(β3 − β1)

.

The second order differential equation in (4.8) is called the Jacobian form of Lamé’s
equation. Now, from Floquet theory it follows that (4.8) has exactly 4 intervals of
instability which are (−∞, ρ0), (µ′0, µ

′
1), (ρ1, ρ2), (µ′2, µ

′
3) (where µ′i, i Û 0, are

the eigenvalues associated to the semi-periodic problem determined by Lamé’s
equation). Therefore, the eigenvalues ρ0, ρ1, ρ2 are simple and the rest of eigen-
values ρ3 Ú ρ4 < ρ5 Ú ρ6 < · · · satisfy that ρ3 = ρ4, ρ5 = ρ6, . . . , that is, they
are double eigenvalues.

For the sake of clearness in our exposition and further study of instability in
Section 5, we will explicitly determine these eigenvalues and their corresponding
eigenfunctions. We start by noting that ρ1 = 4 + 4k2 is an eigenvalue to (4.8)
with eigenfunction Λ1(x) = cn(x) sn(x)dn(x) = β · Tηψ′(x) which implies
that λ = 0 is a simple eigenvalue to (4.3) with eigenfunction ψ′. Now from Ince
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([18]) we have that the Lamé polynomials,

(4.9)
Λ0(x) = dn(x)[1− (1+ 2k2 −

√
1− k2 + 4k4 ) sn2(x)],

Λ2(x) = dn(x)[1− (1+ 2k2 +
√

1− k2 + 4k4 ) sn2(x)],

with period 2K(k) are the associated eigenfunctions to the other two eigenvalues
ρ0, ρ2 given by

(4.10) ρ0 = 2+ 5k2 − 2
√

1− k2 + 4k4, ρ2 = 2+ 5k2 + 2
√

1− k2 + 4k4.

Since Λ0 has no zeros in [0,2K] and Λ2 has exactly 2 zeros in [0,2K), it follows
that Λ0 is the eigenfunction associated to ρ0 which will be the first eigenvalue to
(4.8). Since ρ0 < ρ1 for every k2 ∈ (0,1), we obtain from (3.12) the relation
−β1(1+ k2) = (2− k2)β3 − 3r/2 and so

6λ0 = ρ0(β3 − β1)+ 12
(
r
2
− β3

)
(4.11)

= 3
β3 − r/2
k2 + 1

ρ0 + 12
(
r
2
− β3

)
< 0.

Therefore λ0 is the first negative eigenvalue to Lcn with eigenfunction ζ0(x) =Λ0((1/η)x). Now, since ρ1 < ρ2 for every k2 ∈ (0,1), we obtain that

(4.12) 6λ2 = 3
β3 − r/2
k2 + 1

ρ2 + 12
(
r
2
− β3

)
> 0.

Hence λ2 is the third eigenvalue to Lcn with eigenfunction ζ2(x) = Λ2((1/η)x).
Next, we can see that

µ′0 = 5+ 2k2 − 2
√

4− k2 + k4, µ′1 = 5+ 5k2 − 2
√

4− 7k2 + 4k4

are the first two eigenvalues to Lamé’s equation in the semi-periodic case, with
associated eigenfunctions given by

(4.13)
ξ0,sm(x) = cn(x)[1− (2+ k2 −

√
4− k2 + k4 ) sn2(x)],

ξ1,sm(x) = 3 sn(x)− (2+ 2k2 −
√

4− 7k2 + 4k4 ) sn3(x),

respectively. Since µ′0 < µ
′
1 < 4k2 + 4, the equality

(4.14) µ′i = −6
(r − µi − 2β3)
β3 − β1
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implies that the first three associated instability intervals to Lcn are (−∞, λ0),
(µ0, µ1), (0, λ2). Finally, since the functions

ξ2,sm(x) = cn(x)[1−(2+ k2 +
√

4− k2 + k4 ) sn2(x)],

ξ3,sm(x) = 3 sn(x)− (2+ 2k2 +
√

4− 7k2 + 4k4 ) sn3(x)

have three zeros in [0,2K) and are eigenfunctions of Lamé’s equation with eigen-
values µ′2 = 5 + 2k2 + 2

√
4− k2 + k4 and µ′3 = 5 + 5k2 + 2

√
4− 7k2 + 4k4, it

follows from (4.14) that the last instability interval of Lcn is (µ2, µ3). This fin-
ishes the proof of Theorem 4.1. ❐

The next result will be necessary in the study of the nonlinear instability of
the periodic travelling waves (eiγtϕ, e2iγtψ), (ϕ,ψ) = (√2ψγ,ψγ), by pertur-
bations with twice the fundamental period.

Theorem 4.2. Let θ > 0, γ ∈ (4π2/L2 − θ,+∞) and ψ = ψγ be the cnoidal
wave solution of (3.3) given by Theorem 3.1 with fundamental period L. Then, the
linear operator Lcn in (4.3) defined on H2

per([0,2L]) has its first four eigenvalues
simple, being the eigenvalue zero the fourth one with eigenfunction ψ′. Moreover, ifΦ1, Φ2 denote the eigenfunctions associated to the second and third eigenvalues thenΦi ⊥ ψ.

Proof. Since ψ′ has 4 zeros in [0,2L) and Lcnψ′ = 0 on [0,2L], it follows
from (4.7) and relation (4.12) that zero is the fourth eigenvalue for Lcn on [0,2L]
and it is simple.

On the other hand, from the proof of Theorem 4.1 we have that the first three
eigenvalues for Lcn in H2

per([0,2L]) are λ0, µ0, µ1. Here λ0 is determined by the
relation (4.11) with associated eigenfunction

(4.15) Φ0(x) = dn(x/η)[1− (1+ 2k2 −
√

1− k2 + 4k4 ) sn2(x/η)],

η2 = 6/(β3 − β1). Meanwhile, µ0 and µ1 are determined by the relation (4.14)
with eigenfunctions

(4.16)
Φ1(x) = cn(x/η)[1− (2+ k2 −

√
4− k2 + k4 ) sn2(x/η)],

Φ2(x) = 3 sn(x/η)− (2+ 2k2 −
√

4− 7k2 + 4k4 ) sn3(x/η),

respectively.

Using the relation
∫ 4K

0
cn2k+1(x)dx = 0 for every k Û 0, and the fact that

sn2k+1 and sn2k+1cn2 are odd periodic functions with period 4K, we deduce thatΦ1 and Φ2 are orthogonal to ψ. This finishes the proof of the theorem. ❐
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Now we are ready to describe the spectra of the self-adjoint operator LR and LI
when (ϕ,ψ) = (√2ψ,ψ) and ψ = ψγ is given by Theorem 3.1.

Theorem 4.3. Let θ > 0, γ ∈ (4π2/L2 − θ,+∞) and ψ = ψγ be the cnoidal
wave solution of (3.3) given by Theorem 3.1 with fundamental period L. Then, for
α, σ > 0 such that α+ 2σγ = θ + γ we have:

(1) The linear operatorLR in (4.1) defined in L2
per([0, L])with domainH2

per([0, L])
has exactly one negative eigenvalue which is simple, zero is an eigenvalue, simple
with eigenfunction (2ψ′/3,

√
2ψ′/3). Moreover, the remainder of the spectrum

is constituted by a discrete set of eigenvalues.
(2) The linear operatorLI in (4.2) defined in L2

per([0, L]) with domainH2
per([0, L])

has no negative spectrum at all, zero is an eigenvalue, simple with eigenfunction
(
√

2ψ/2,ψ). Moreover, the remainder of the spectrum is constituted by a discrete
set of eigenvalues.

Proof. The main point of the proof is to show that LR and LI can be diago-
nalized under a similarity transformation. In fact, consider

AR =
(

1
√

2/2
−√2/3 2/3

)
;

then we have ARLRA−1
R = LDR, where

LDR =

−
d2

dx2 + (θ + γ)− 2ψ 0

0 − d
2

dx2 + (θ + γ)+ψ

 .

Note that sinceψ is positive, the operatorLP ≡ −(d2/dx2)+(θ+γ)+ψ is strictly
positive and σ(LP ) Û θ + γ. Now, let ~f = (f , g)t be such that LDR ~f = ~0; then
Lcnf = 0 and LPg = 0. Hence g ≡ 0 and from Theorem 4.1 f = βψ′. Then
the kernel of LDR is generated by (ψ′,0)t. Hence the kernel of LR is generated
by (2ψ′/3,

√
2ψ′/3)t.

Now let λ < 0 and ~f = (f , g)t such that LDR ~f = λ~f ; then g ≡ 0 and
Lcnf = λf . Thus, from Theorem 4.1 we have that λ = λ0 (see (4.11)) and
f = βζ0. Therefore LR has exactly a negative eigenvalue which is simple with
eigenfunction (2ζ0/3,

√
2ζ0/3)t .

Next we analyze LI . Let

AI =
(

1 −√2/2√
2/3 2/3

)
;
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then we have AILIA−1
I = LDI , where

LDI =

−
d2

dx2 + (θ + γ)+ 2ψ 0

0 − d
2

dx2 + (θ + γ)−ψ

 .
Since the top left entry in LDI is a strictly positive operator, the basic part of its
spectrum depends exclusively on L = −d2/dx2+(θ+γ)−ψ. Since Lψ = 0 and
ψ > 0 it follows from (4.7) that zero is the first eigenvalue for L and it is simple.
Then LI has no negative eigenvalues and the kernel is generated by (

√
2ψ/2,ψ)t.

Finally, Weyl’s essential spectral theorem implies that the remainders of the
spectrum of LR and LI are discrete. This finishes the proof. ❐

5. EXISTENCE OF OTHER SOLUTIONS

In Section 3, we established the existence of periodic pulses for the system (3.2)
of the form ϕγ =

√
2ψγ provided that for θ > 0 fixed we have the conditions

γ > 4π2/L2−θ and α+2σγ = θ+γ, for α, σ > 0. Here, the map γ , ψγ is a
smooth curve of cnoidal waves. Next, we show the existence of another family of
periodic traveling wave solutions (ϕ,ψ) for (3.2) but depending on the parameter
α. So, we first choose an arbitrary pair (α0, σ) such that α0 + 2σγ = θ + γ and
we define G : R×H2

per,e([0, L])×H2
per,e([0, L]) , L2

per,e([0, L])× L2
per,e([0, L])

as

(5.1) G(α,ϕ,ψ) = (−ϕ′′+(θ+γ)ϕ−ϕψ, −ψ′′+(α+2σγ)ψ−ϕ2/2),

where Hsper,e([0, L]) denotes the set of even, L-periodic-Sobolev distributions of
order s ∈ R. So, by Theorem 3.1 we have that G(α0,

√
2ψγ,ψγ) = (0,0).

Moreover, it is not difficult to see that the Fréchet derivative

G ≡ ∂G
∂(ϕ,ψ)

(α0,
√

2ψγ,ψγ) = LR,

with LR defined in (4.1) with α changed by α0. Next, we will prove that G is a
bijection from H2

per,e×H2
per,e → L2

per,e×L2
per,e. We start with the injectivity. From

Theorem 4.3, Ker(G) = [(2ψ′γ/3,
√

2ψ′γ/3)t]. Since ψ′γ is an odd function
it follows immediately that Ker(G) = {(0,0)t} over H2

per,e × H2
per,e. Now, we

prove that G is a surjective map onto L2
per,e × L2

per,e. Indeed, from Weyl’s essential
theorem it is easy to see that the essential spectrum of G is empty. Hence, σ(G) =
σdisc(G). Therefore 0 ∈ ρ(G), where ρ is used to denote the resolvent set of an
operator. Hence G is surjective.

Finally, since G is a C1-map on an open neighborhood of ”the point” (α0,√
2ψγ,ψγ), it follows from the Implicit Function Theorem that there exist δ > 0,
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and a unique C1-map

α ∈ (α0−δ, α0+δ), Φα = (ϕα,ψα)
such that G(α,Φα) = (0,0). So, we obtain that Φα is a solution of (3.2). More-
over, since G(α,ϕ,ψ) depends analytically on α, the map α , Φα is analytic as
well.

6. NONLINEAR STABILITY

In this section we will study the properties of stability and instability of the peri-
odic traveling wave found in Section 3. The framework for stability will be that
set by Grillakis, Shatah and Strauss in [16]. We start by rewriting system (1.1) as
a real Hamiltonian system. Let w = P + iQ, v = R + iS; then H in (1.12) can
be rewritten as

(6.1) H (P,R,Q, S) = 1
2

∫ {
r[(P ′)2 + (Q′)2]+ s[(R′)2 + (S′)2]

+ θ(P2 +Q2)+α(R2 + S2)− 2PQS − P2R +Q2R
}
dx

and F in (1.11) as

(6.2) F(P,R,Q, S) = 1
2

∫
P2 +Q2 + 2σ(R2 + S2)dx.

Therefore, system (1.1) for u = (P,R,Q, S)t has the form

(6.3)
∂u
∂t

= JH′(u(t))

where J = (aij) is the skew-symmetric linear operator defined as a13 = 1, a24 =
1/σ , and aij = 0 for (i, j) ≠ (1,3), (2,4), (3,1), (4,2).

The system (1.1) has two basic symmetries:
(1) Translation in x: if (w(x, t), v(x, t)) is a solution, then

(w(x + x0, t), v(x + x0, t))

is also a solution for every x0 ∈ R. This transformation will be denoted by
the one-parameter group of unitary operators Ttr(x0).

(2) Phase (or rotational): if (w(x, t), v(x, t)) is a solution, then

(eisw(x, t), e2isv(x, t))

is also a solution for every s ∈ R. This transformation will be denoted by the
one-parameter group of unitary operators Tp(s).
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The differential of these groups (the infinitesimal generators) are T ′tr(0) = ∂/∂x
and T ′p(0) = i, respectively.

The notion of stability or instability we will use is as follows:

Definition 6.1. Let X = H1
per([0, L]) × H1

per([0, L]). A travelling wave so-
lution for (1.1), Ψ(x, t) = (eiγtϕ(x), e2iγtψ(x)), is orbitally stable in X if for
every ε > 0 there exists a δ > 0, such that if z0 ∈ X and ‖z0 − (ϕ,ψ)‖X < δ,
then the solution z(t) = (w(t), v(t)) of (1.1) with z(0) = z0 exists for all t and

sup
t∈R

inf
s, r∈R

‖z(t)− Tp(s)Ttr(r)(ϕ,ψ)‖X < ε.

Otherwise, we said that Ψ is X-unstable.

Observe that (ϕ,ψ) is a solution of (3.2) if and only if

(6.4) H′(ϕ,ψ,0,0)+ γF′(ϕ,ψ,0,0) = 0.

Then, from Theorem 3.1 we have the existence of a smooth curve of cnoidal wave
solutions γ , (ϕγ,ψγ) = (

√
2ψγ,ψγ) which are critical points of H + γF .

Next, we define

(6.5) Lγ =H′′(ϕ,ψ,0,0)+ γF′′(ϕ,ψ,0,0) =
(
LR 0
0 LI

)
,

where LR, LI are as in (4.1), (4.2), respectively. From Theorem 4.3 and its proof
we have that:
(a) For ~f = (2ψ′/3,√2ψ′/3,0,0) and ~g = (0,0,√2ψ/2,ψ), the set Z = {k1 ~f+
k2 ~g | k1, k2 ∈ R} is the kernel of Lγ .

(b) For ~h = (2ζ0/3,
√

2ζ0/3,0,0) we have that Lγ has exactly a negative eigen-
value λ0 and N = {k~h | k ∈ R} is the negative eigenspace of Lγ .

(c) Applying Weyl’s essential spectral theorem we deduce the existence of a closed
subspace, P , such that 〈Lγu,u〉 Û η‖u‖2

X , for u ∈ P , with η > 0.
From (a)–(c) we obtain the following orthogonal decomposition for XR =

[H1
per([0, L])]4,

(6.6) XR = N ⊕ Z ⊕ P.

Let θ > 0, γ ∈ Ω = (4π2/L2 − θ,+∞), and α, σ > 0 such that α+ 2σγ =
θ + γ. Denoting ~ψγ = (

√
2ψγ,ψγ,0,0), where ψγ is given by Theorem 3.1, we

define d : Ω, R by

(6.7) d(γ) =H ( ~ψγ)+ γF( ~ψγ).

The stability result for (1.1) reads as follows.
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Theorem 6.2 (Stability). Let θ > 0, γ ∈ (4π2/L2 − θ,+∞), and α, σ > 0
such that α + 2σγ = θ + γ. Then for ψγ given by Theorem 3.1 we have that
the periodic travelling waves Ψγ(x, t) = (√2eiγtψγ(x), e2iγtψγ(x)) are orbitally
stable.

Proof. Since ~ψγ satisfies (6.4), XR has the decomposition in (6.6) and the
initial value problem associated to system (1.1) is globally well-posed in X, the
proof of the theorem follows from the abstract Stability Theorem in [16] provided
that the number of negative eigenvalues of Lγ , n(Lγ), be equal to the number of
positive eigenvalues of d′′, p(d′′), respectively. Since Lγ has exactly one negative
eigenvalue which is simple it will be sufficient to show that d′′(γ) > 0. Indeed,
from (6.4) we have that d′(γ) = F( ~ψγ). Then from (3.3) and ψγ = ψλ(γ) with
λ(γ) = (θ + γ)/2, we obtain

d′(γ) = 2(1+σ)λ(γ)
∫ L

0
ψλ(γ)(x)dx ≡ 2(1+σ)H(λ(γ)).

Thus d′′(γ) > 0 if and only if H(λ) = λ
∫ L

0
ψλ(x)dx is a strictly increasing

function for λ ∈ (2π2/L2,+∞).
To prove the last statement we start by obtaining an explicit expression for

G(λ) =
∫ L

0
ψλ(x)dx. From (3.10), (3.13) and [8] we obtain for k = k(λ) (see

(3.16)) that

∫ L
0
ψλ(x)dx = β2L+ 2

√
6
√
β3 − β1[E − k′2K]

= β2L+ 24
K
L
[E − k′2K].

Next, we express β2 as a function of k and K. First, we show that 18λ2 =
2g2(1 − k2 + k4). Indeed, from (3.12) we have g(2k2 − 1) = 3(λ − β2) and
g2 = 9λ2−3β2

2+6λβ2. Therefore, g2(2k2−1)2+3g2 = 36λ2 which proves our
affirmation. Now using (3.12) and (3.13) we obtain

β2 = g
(
λ
g
− 2k2 − 1

3

)
= 8K2

L2 [
√

1− k2 + k4 + 1− 2k2].

Therefore,

G(λ) = 8K2

L
[
√

1− k2 + k4 + k2 − 2]+ 24
L
KE ≡ J0(k(λ)).
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Since J0 is a strictly increasing function of the parameter k and (dk/dλ)(λ) > 0
by Corollary 3.2, we have then that

d
dλ
H(λ) = G(λ)+ λdJ0(k)

dk
dk
dλ
> 0.

This completes the proof of the theorem. ❐

Remark. The periodic solutions found in Section 5 are also stable. Indeed,
Theorem 4.3 and the classical perturbation theory for closed operators (see [21,
Section IV-2], [1], [2]) allows us to show that the operators in (4.1) and (4.2)
with (ϕ,ψ) = (ϕα,ψα) have the same spectrum that the ones for α = α0, for α
closed to α0. Similarly, we can deduce from Theorem 6.2 that the function d(γ)
is strictly convex for α closed to α0.

7. NONLINEAR INSTABILITY

In this section we are interested in studying the instability properties of the peri-
odic travelling wave solutions Ψγ(x, t) = (√2eiγtψγ(x), e2iγtψγ(x)) with ψγ
being the cnoidal wave solutions with fundamental period L found in Theorem
3.1. More precisely, we will prove that in the “world” of the periodic functions of
period 2L, Ψγ is unstable by the flow generated by the equation (1.1).

The study of nonlinear instability for periodic traveling waves of equation
(1.1) will be based in the analysis of instability of the zero solution for the lin-
earization of (1.1) around the orbit {Tp(γt)(ϕ,ψ,0,0) | t ∈ R}. The vec-
tor (ϕ,ψ,0,0) satisfies (6.4). We note that the transformation Tp in terms of
(P,Q,R, S) is

Tp(s)


P
R
Q
S

 =


cos(s) 0 − sin(s) 0
0 cos(2s) 0 − sin(2s)

sin(s) 0 cos(s) 0
0 sin(2s) 0 cos(2s)




P
R
Q
S

 .

Then the differential of Tp (the infinitesimal generator) is the skew-symmetric
linear operator defined as T ′p(0) = (aij) with a13 = −1, a24 = −2, and aij = 0
for (i, j) ≠ (1,3), (2,4), (3,1), (4,2). To obtain the linearization of (1.1) we
proceed as follows: For v = (U,V , T ,W)t and Φ = (ϕ,ψ,0,0)t define

v = Tp(−γt)u− Φ.
Then, using the relations

Tp(s)T ′p(0) = T ′p(0)Tp(s), Tp(s)Tp(−s) = I, Tp(−s)JTp(s) = J,
H′(Tp(s)u) = Tp(s)H′(u), J−1T ′p(0)u = −F′(u),
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and the equalities (6.3) and (6.4) we obtain

dv
dt

= J[H′(v + Φ)+ γF′(v + Φ))(7.1)

= J[H′′(Φ)v + γF′′(Φ)v +H′(Φ)+ γF′(Φ)+O(‖v‖2)]

= JLγv + JO(‖v‖2) = JLγv +O(‖v‖2)

where in the last inequality we have used that J is a bounded operator.
It is well known that if JLγ has finitely many eigenvalues with strictly positive

real part; then the zero solution of (7.1) is unstable (see appendix of [13] for a
proof of this or Theorem 6.1 in [16]). Thus, we are obtaining the nonlinear
instability of the orbit {Tp(γt)Φ | t ∈ R} from an associated linear instability
result.

We note that from Weyl’s essential spectrum [26], we have that the essential
spectrum of JLγ is empty. Moreover, from Lemma 5.6 and Theorem 5.8 in [16]
we have that the spectrum of JLγ is symmetric with respect to both the real and
imaginary axes. Furthermore, from (6.6) the number of eigenvalues of JLγ in the
half-closed quarter plane {λ ∈ C | Reλ < 0, Imλ Û 0} is at most n(Lγ), the
number of negative eigenvalues of Lγ .

Several criteria to show the instability of the zero solution for a general equa-
tion of the form (7.1) have been established, see for instance the works of Jones
[19], Grillakis [13], [14], and Grillakis, Shatah, Strauss [16]. We will use the
general criterion shown in [14].

Before establishing our results, we would like to comment that the Instability
Theorem established in [16] cannot be applied in our situation. In fact, if n(Lγ)
denotes the number of negative eigenvalues of Lγ and p(d′′) denotes the number
of positive eigenvalues of d′′, then the criterion states that if n(Lγ) − p(d′′) is
odd, then the periodic traveling wave is unstable. In our case, it is clear that
d′′(γ) > 0. From the last section we know that n(Lγ) depends essentially on
those of the operator LR in (4.1). Thus, it is sufficient to analyze the equivalent
operator LDR. From the proof of Theorem 4.1 we have that the operator Lcn

in (4.3) on [0,2L] has exactly three negatives eigenvalues λ0, µ0, µ1 given by
(4.11)–(4.14) with associated 2L-periodic eigenfunction Φ0, Φ1, Φ2 in (4.15)–
(4.16), respectively. Hence n(Lγ)− p(d′′) = 3− 1 = 2, which is even.

Theorem 7.1 (Instability). Let θ > 0, γ ∈ (4π2/L2 − θ,+∞), and α, σ > 0
such that α + 2σγ = θ + γ. Then for ψγ given by Theorem 3.1 we have that the
orbit

{Tp(γt)(
√

2ψγ(x),ψγ(x)) | t ∈ R}
is H1

per([0,2L])×H1
per([0,2L])-unstable by the flow of equation (1.1).

Proof. The idea of the proof is to apply Theorem 2.6 in [14]. This will allow
us to prove that JLγ has exactly two pairs of real non-zero eigenvalues. Then
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we will obtain the nonlinear instability of the zero solution for the equation (7.1)
which will imply our claim.

The functional-analytic approach given in [14] starts by writing

Y ≡ [ker(LR)∪ ker(LI)]⊥ = [(2ψ′/3,
√

2ψ′/3), (
√

2ψ/2,ψ)]⊥,

where in the last equality we have used Theorem 4.3. Let us denote by L̂R the
restriction of LR to Y and by L̂−1

I the restriction of L−1
I to Y ; then Grillakis’s

theorem guarantees that JLγ has exactly

max{n(L̂R),n(L̂−1
I )} − d(C(L̂R)∩ C(L̂−1

I ))

± pairs of real eigenvalues. Here C(L) = {y ∈ Y | 〈Ly,y〉 < 0} denotes
the negative cone of the operator L, and d(C(L)) denotes the dimension of the
maximal subspace of Y that is contained in C(L).

We first prove that n(L̂R) = 2. Indeed, note that if y ∈ Y ∩D(LR), y ≠ 0,
and L̂Ry = λy for λ < 0, then λ must be a negative eigenvalue of LR and so
n(L̂R) Ú n(LR) = 3, where in the last equality we used Theorem 4.2. Therefore,
the possible eigenvalues of L̂R are λ0, µ0, µ1, determined in the proof of Theorem
4.1 with associated eigenfunctions

~Φ0 = (2Φ0/3,
√

2Φ0/3), ~Φ1 = (2Φ1/3,
√

2Φ1/3), ~Φ2 = (2Φ2/3,
√

2Φ2/3),

respectively. Φi are given by (4.15) and (4.16). Next we will see which ~Φi belongs

to Y . It is immediate that ~Φ0 ∉ Y since
∫ Φ0ψdx > 0. By Theorem 4.2, we

have that Φ1, Φ2 are orthogonal to ψ. Therefore, µ0, µ1 are exactly the negative
eigenvalues for L̂R.

SinceLI is a strictly positive operator on Y , it follows immediately thatn(L̂−1
I )

= 0 and C(L̂−1
I ) = ∅. Therefore, JLγ has two pairs of real eigenvalues. This

completes the proof of the theorem. ❐
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