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Nonadiabatic generator-coordinate calculation of H2+
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We report on a nonadiabatic calculation of the few lowest J=0 states in the H2+ molecule done
within the framework of the generator-coordinate method. Substantial accuracy is achieved with the
diagonalization of matrices of very modest dimensions. The resulting wave functions are strongly
dominated by just a few basis states. The computational scheme is set up so as to take the best ad-

vantage of good analytical approximations to existing adiabatic molecular wave functions.

I. INTRODUCTION

The generator-coordinate method' (GCM) is a varia-
tional method largely employed in nuclear physics in the
last twenty years. It is now beginning to be applied to
atomic and molecular systems. Owing to the generali-
ty of the method, moreover, many calculations exist that
can be interpreted as "unconscious" applications of the
GCM, see, for instance, Ref. 8. The purpose of this work
is to report on an exploratory calculation of some low-
lying J=0 states of the H2+ molecule with the use of the
GCM in a way that allows for nonadiabatic couplings to
become operative. We will, in particular, set up the
method in such a way as to able to take maximum advan-
tage of good analytical approximations to the adiabatic
wave function for the same molecule.

The trial wave function of the GCM is typically written
as a linear superposition of a continuous family of labeled
functions (()(a), where the labels a are called the generator
coordinates. They span a purely technical space—the la-
bel space —and are, in fact, integrated out in the typical
GCM ansatz for the trial wave function:

4= f da f(a)P(a)

in which f(a) is a weight function for the linear superpo-
sition defining 4, to be determined variationally. The op-
timal weight functions f(a) are found to satisfy the in-
tegral equation named after Hill, Wheeler, and Griffin:

merical techniques involving a discretized version of this
equation. The discretization techniques currently used are
reviewed in Sec. II below. In Sec. III we review some
relevant calculations of H2+ and then describe an explora-
tory application of the GCM to this simple system in Secs.
IV—VI. Section VII contains some concluding remarks.

II. THE DISCRETIZED GCM

0'= g c;P(a;), (2.1)

where the sum runs over the points e; of some given mesh
in label space. While it is possible to take Eq. (2.1) to be a
discrete approximation to the integral (1.1), it is also possi-
ble, in view of the general variational character of the
method, to treat it as a proposed ansatz in which the
weights c; and/or the mesh points a; are to be determined
variationally. In this latter case, the main relation to the
continuous GCM resides in writing the ansatz as a super-
position of a given parametrized basis function P(o, ) with
itself (at different parameter values), rather than with oth-
er (possibly orthogonal) functions, as done, e.g. , in
configuration-interaction calculations. Given a mesh [a; I
in label space, the optimal weights c; are found in the
standard way to satisfy the discretized version of Eq. (2.1),
r.e.,

In numerical applications one usually replaces Eq. (1.1)
by (see, e.g., Ref. 6)

f da'[H(a, a') —ES(a,a')]f(a') =0, {1.2) (2.2)

where

and

H(cs, a')=(P(~)
~

H
~

P(cs'))

S(~,~') = (P(~)
~

P(~') )

are, respectively, the energy and overlap kernels. H is the
full Hamiltonian of the system under consideration.

Analytical solutions of Eq. (1.2) are possible only for
rather special systems, and, in general, one resorts to nu-

where HJ H(a;, aj) and a ——similar notation is used for
S,J. Leaving aside any reference to the GCM, Eq. (2.2)
can be immediately linked to a well known quantum-
chemical methodology: for the given basis [this is a
nonorthogonal basis formed by the P(a;) evaluated at the
chosen mesh points in label space] the coefficients cj"' are
the optimal linear variational coefficients. With them, as
many values of E are obtained as there are meshpoints (or,
more generally, as there are linearly independent vectors in
the adopted basis). These will be variational upper bounds
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for the same number of lower exact eigenvalues of H. '

The quality of the results obtained by using Eqs. (2.1)
and (2.2) to approximate variationally the stationary states
of a given (molecular) system, on the other hand, will
clearly depend (i) on the particular form chosen for the
parametrized wave function P(a) and (ii) on the particular
set of mesh points adopted to set up Eq. (2.1). We assume,
of course, the system to be characterized dynamically by
its Hamiltonian H, expressed in terms of a complete set of
dynamical variables acting in P(a).

Deferring the discussion of point (i) to Sec. IV, we may
note, concerning point (ii), that there are at least four dis-
tinct procedures for selecting the meshpoints Ia; I which
can be recognized in the literature .

(A) Adopt a large number of mesh points, separated by
equal spacings Aa or by some other "a priori" prescrip-
tion, around the single variational optimum eo which min-
irnizes

bk

i ~»
(2.3)

They provide for an alternate orthonormal basis in which

E(a)=H(a, a)/S(a, a)

(Ref. 8).
(B} Select the Ia;) on the basis of some quadrature

rule.
(C} Select the Ia; I by the iterative method proposed by

Caurier: Given a sequence (a~, . . .,a„~), choose a„ to
minimize the lowest energy eigenvalues in Eq. (2.2) (see
also Ref. 6).

(D) Adopt a "brute-force" optimization procedure treat-
ing all nonlinear parameters a; as variational parame-
ters. "

In any one of such procedures (and, in fact, in connec-
tion with the continuous GCM as well, see Ref. 9) due
care should be taken with an important technical difficul-
ty due to the nonorthogonality of the basis IP(a;) I: in-
creasing the number of mesh points and/or decreasing the
separation between mesh points will lead, from a certain
point on, to an approximate linear dependence (ALD) of
the basis that will enhance numerical noise. Following
Ref. 12, we may characterize such ALD by the criterion
that the ratio of the largest to the smallest eigenvalue of
the overlap matrix S,z is larger than 10, where % is the
number of decimal figures carried in the calculations.
One particular consequence of the onset of ALD is that
the upper bound variational property of the energy will be
progressively obfuscated by numerical inaccuracies.

The ALD tends to make the overlap matrix nearly
singular. Thus the solution of the eigenvalue problem
(2.2) can no longer be safely carried out by traditional ma-
trix inversion methods. In order to bypass this difficulty,
an alternative scheme is frequently used in connection
with generator-coordinate (GC) calculation which can be
summarized as follows. '

(i) Diagonalize the matrix Sj, i.e., obtain A,» and Ib; I
such that

QS;J.b~ =A,»b;
J

(ii) Form the orthonormal set of vectors

the Hamiltonian matrix appears, in terms of H,J, as

(2.4)

which makes the source of.-trouble apparent through the
occurrence of terms in the sum with vanishingly small
denominators (the small eigenvalues of the overlap ma-
trix), thus the following.

(iii} Truncate the Hamiltonian matrix (2.4} by eliminat-
ing all eigenvectors P» associated with eigenvalues A,» of
S;J. smaller than a suitable limit 0. This truncation scheme
amounts to removing from the original nonorthogonal
basis independent components of nearly zero norm. The
solution of Eq. (2.2) is then replaced by the diagonaliza-
tion of the truncated version of Eq. (2.4). In favorable
cases, the discarded vectors do not contribute appreciably
to the eigenstates of HkI with the lowest eigenvalues, while
still being able to generate unwanted numerical noise if
carried in the calculation.

III. H2+ CALCULATIONS: A SURVEY

A. Discretized GC adiabatic calculations

%'e mention here three electronic variational GC calcu-
lations for Hq+ which, however, make no explicit refer-
ence to the GCM."' ' The first of these (Ref. 11)
makes use of procedure (D) (see Sec. II} for selecting nine
values of each one of two generator coordinates, and per-
forms, in addition, the usual determinantal optimization
of nine linear coefficients. It leads to an excellent value
for the ground-state energy. The chosen generating func-
tion P(a) is a simple Gaussian.

B. Nonadiabatic calculations

1. Variational calculations

)& exp — (R —5) H„(R —5), (3.1)

where e and g are two electronic coordinates in confocal
elliptical coordinates and R is the internuclear distance.
These functions involve four nonlinear variational param-
eters a, p, y, and 5, and H„(R —5) are Hermite polynomi-
als. The value of the ground-state energy obtained in Ref.
17 with an expression involving 57 terms is —0.5971387
a.u. (the best adiabatic value being —0.597 1385 a.u. , see
Ref. 18). An expansion involving 176 terms yielded the
value —0.59713905 a.u. (Ref. 18) and, when pushed to
nearly 500 terms, the value —0.597 13906 a.u. (Ref. 19).

An early calculation by Froman and Kinsey' does not
achieve accuracy up to the third decimal figure for the
ground-state energy of H2+. Curiously, these authors
have detected problems with ALD (their basis was not
orthogonal).

A series of three variational calculations in the preced-
ing decade have led to the best known results for the first
"vibrational" (J=0) energies of Hq+. ' ' The basis set
is formed by the functions'

(e,g,R )= e"e 'q"c soh( qP)R
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2. Perturbation calculations (b(a, P, 5)=yoz(r~, r~, a, P)X(R, 5)

The nonadiabatic variational calculations described
above have not, until now, taken full advantage of the in-
formation contained in exact adiabatic wave functions, or
in good approximations for them. If, in fact, one takes
the leading term of the basis (3.1) [i.e. , $000(e,q, R)], and
takes for the four nonlinear parameters the values of Ref.
18 (optimized for the entire expansion), the resulting
ground-state energy is very poor. In 1967 Hunter and
Pritchard were able to obtain the value —0.597 138 7 a.u.
adopting a perturbation treatment starting from the adia-
batic ground-state wave function and mixing in two adia-
batic excited states. Further improvement along these
lines was, however, hard to obtain. In 1978, Wolniewicz
and Pohl ' were able to obtain the value —0.59713905
a.u. in a combined variational-perturbation calculation
which still needed many term expansions. Energies ob-
tained in this calculation for the first two vibrational exci-
tations were also less accurate than those obtained in Ref.
19.

No GC-type nonadiabatic calculations appear to be
availabe to date for H2+.

IV. NONADIABATIC GC CALCULATION FOR Hg+

Why should one attempt another nonadiabatic calcula-
tion for H2+? An answer to this question contains the
main motivation for the present work: a GC calculation
may allow for the possibility of taking maximum advan-
tage of the information already contained in good analyti-
cal approximations to adiabatic wave functions in terms of
the simplest and most widespread method in quantum
chemistry, viz. , the variational method. Particularly in
ground "electronic" state calculations, one needs just a
good variational adiabatic wave function for the lowest
eigenstate (a J=0, U =0 state), $0 =goX""'. One is freed
from the requirement of including excited electronic states
in order to allow for nonadiabaticity, since nondiagonal
matrix elements H(a, a') involving wave functions of the
same analytical form Po actually allow for the incorpora-
tion of nonadiabatic couplings. An additional, technical
advantage should also be mentioned: since the GC basis
set [$0 (a;)I involves elements of the same analytical
form, the energy matrix H(a;, aj. ) is given in terms of one
single analytical expression. A similar statement also
holds, of course, for the overlap matrix S(a;,a~ }.

A. Choosing the generating function P(a)

We restrict ourselves in this work to rotationally invari-
ant, (i.e., J=O) eigenstates. This restriction is implement-
ed, as usual, by projecting the complete Hamiltonian onto
the J=O subspaee. This is conveniently done in the coor-
dinate system of Ref. 22, which contains three variables:
two electron-nucleus distances, rz and rz, and the internu-
clear distance R. The generating function will, therefore,
also involve only these three variables. For the present ex-
ploratory calculation we have chosen as a generating func-
tion the adiabatic wave function

=exp[ a(r—„+r~ )]2cosh[@(r„rs—)]

X exp —@(R—5)
2

(4.1)

B. Choosing the GC mesh points

We have adopted procedure (A) (see Sec. II), in its sim-
plest form, for selecting the GC mesh points: A fixed in-
terval was chosen for each one of the three generator coor-
dinates, and a variable number of points were used in the
neighborhood of the variationally optimal values given in
(4.2). Moreover, it has been found useful to carry out the
following two types of preliminary probing tests before at-
tempting at a calculation with a large number of mesh
points:

(i) calculations involving all three generator coordinates
with few (e.g. , two) different values for each of them, lead-
ing to small matrices (e.g., 8 &(8 matrices); and

(ii) calculations involving only two generator coordi-
nates the third being held fixed at its variational ex-
tremum (e.g., taking a number of values for a; and P;,
with 5=5o, and so on).

The results of these test calculations have been instruc-
tive in that they roughly indicate the effects associated
with the different generator coordinates and with their
couplings. They are discussed in Sec. V below.

The electronic factor y&z is the Guillemin-Zener wave
function. Optimal variational values for a, 13, y, and 5,
determined by Diehl and Flugge, are

ao ——1.346, Po ——0.913,
(4.2)

yo ——3.200, 6o——2.043,

leading to the value —0.596430 a.u. for the ground-state
energy.

We have selected a, P, and 5 as generator coordinates.
The parameter y was held fixed at its optimum variational
value yo. The expansion (2.1}is, therefore, now written as

tf = g c ~P(a, P, 5), (4.3}
a, P, 5

where the sum runs over the adopted mesh points. The
choice of these is discussed in Sec. IV 8. Actually, it ean
be shown that were one to treat 6 as an unrestricted, con-
tinuous generator coordinate, this amounts to no restric-
tion regarding the internuclear degree of freedom R. A
great deal of flexibility is to be expected by allowing for
the coupling of these generator coordinates. Particularly,
dynamical couplings involving 5 and the electronic genera-
tor coordinates a and P will introduce dynamical correla-
tions between nuclear and electronic motion.

It should be noted also that the symmetry of the elec-
tronic part of (4.1) does not allow for bound electronic ex-
citations of the molecule. Thus, the number of bound
states obtainable from the secular determinant will always
be limited by the number of different values of 6. They
can be associated essentially with nuclear vibrational exci-
tations.
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C. Evaluation of the energy and overlap kernels

The procedure followed to obtain the two kernels
analytically is completely straightforward (see Ref. 22).
As one will immediately recognize upon inspection of Eq.
(4.1), the integrations over the internuclear distance R will
lead to expressions involving error functions. They were
programmed by making use of Hasting's algorithm with
an accuracy of better than 7.0&10 . However, given the
value chosen for y (yo ——3.2), the obtained accuracy was in
all cases considerably better than this limit. The reduced
mass was taken as 908.0764. '

1.480
1.680

0.800
1.000

2.020
2.080

E
—0.597 0432

Matrix
dimensions

S=8X8
H=8X8

TABLE I. "Best" 8X 8 calculation. Chosen values for each
of the three generator coordinates and resulting energy eigen-
value (for ground state) and dimensions of overlap and energy
matrices are given. Energy values are given in atomic units.

D. Numerical procedure

Matrix diagonalizations were performed by the conven-
tional Jacobi method. A test analogous to that utilized
in Ref. 12 was used to assess the numerical reliability of
the obtained energy eigenvalues, as a check on the absence
of ALD problems. All calculations were carried out with
double precision on a Digital Equipment Corporation
PDP-10 computer.

V. PRELIMINARY TESTS

Small dimensionality runs (typically using two values
for each one of three generator coordinates a, P, and 5,
leading to 8 && 8 matrices) were useful to indicate adequate
spacings of mesh points. The numbers corresponding to
the best calculation of dimension 8=2)&2)&2 in an exten-
sive series of tests are given in Table I. The mesh points,
curiously, do not include the optimal variational values of
the generator coordinates [Eq. (4.2)]. In general, the
ground-state energy was found to be less sensitive to
changes in the values of P than in the values of the other
two coordinates; and the values of 5 were found to be pro-
fitably chosen as rather densely clustered near the optimal
variational value 60, an expected result in view of the con-
siderable stability of the internuclear separation in H2+.
In view of the results of Table I, and of the general trend
of the results of many small dimensionality runs involving
different spacings and positions of mesh points, we choose
Qa-0, 20, b,P-0.20, and 65=0.06 as typical adequate
values for setting up the generator-coordinate mesh in
larger calculations.

From test runs involving the various combinations of
two "active" generator coordinates we have been able to
conclude that the most relevant coupling, in the sense that
it leads to a substantial lowering of the ground-state ener-

gy, occurs between a and 5. Results for a typical calcula-

tion involving a and 6 as active coordinates are shown in
Table II. It may be noted that, as in the case of Table I,
the dimensionality of the overlap matrix S corresponds to
all the possible combinations of the different values of the
two generator coordinates. The Hamiltonian matrix
which was diagonalized has a lower dimensionality, how-
ever, in view of the adopted truncation parameter e (see
Sec. II) which led to discarding three eigenvectors of S.
We also found that the inclusion of still more values of a
and 5 in a calculation such as that shown in Table II was
of little help in further reducing the ground-state energy.
We, therefore, turned to calculations where all three gen-
erator coordinates a, P, and 5 were allowed to become ac-
tive.

VI. FINAL RESULTS AND DISCUSSION

A. The ground-state energy

In order to obtain further improvement in the ground-
state energy without substantially increasing ALD effects
or computing time we have added just two additional
values of p to the mesh given in Table II, leading to an
overlap matrix of dimensionality 75=5&&3&&5 (see Table
III). We kept the truncation parameter fixed at @=10
and this produced, in this case, a Hamiltonian matrix of
dimensionality 49. The truncation effectively reduces
ALD problems for the first few excited states while affect-
ing the lowest eigenvalue in the eighth decimal place only.

The improvement of the ground-state energy, with
respect to the calculation shown in Table II, is clear. The
footnotes on the excited-state energies given in Table III
give the figures affected by ALD problems, as evidenced
through the test mentioned in Sec. IVD. As shown, the
noise contamination of these results grows progressively as

TABLE II. Calculation involving only a and 5 as active generator coordinates. Table arrangement is similar to that of Table I.
Also given is the adopted cutoff value for the eigenvalue A. of the overlap matrix, and the order of magnitude of the smallest eigen-
value. Energy values are given in atomic units.

0.946
1.146
1.346
1.546
1.746

0.913

1.963
2.003
2.043
2.083
2.123

Eo

—0.597 1091

El
—0.587 0473

E
—0.576 7862 10—12

Matrix dimensions

S=25X25
H =22X22
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TABLE III. Calculation involving three active generator coordinates. Table arrangement is similar to that of Tables I and II.
"Exact" results for the energy eigenvalues are also quoted from the literature (Ref. 21). Energy values are given in atomic units.

Matrix dimensions

0.946
1 ~ 146
1.346
1.546
1.746

0.713
0.913
1.1 13

1.963 —0.597 1379
2.003 —0.597 13905'
2.043
2.083
2.123

—0.587 106' —0.576 861'
—0.587 155 62' —0.577 751 79'

—0.561 66
—0.568 908 57'

10—12 —10-" S=75 X75
H =49X49

'Seventh decimal place affected by ALD problems.
Sixth and seventh decimal places affected by ALD problems.

'From Ref. 2 1 ~

the energy increases. Its level in the present calculation
suggests, moreover, that still larger calculations would not
be particularly effective in further improving energy
values, so that better values should rather be sought by
more sophisticated techniques (see Sec. VII below on this
point).

In Table IV we also report on a calculation of the same
maximum dimensionality as that of Table III, but involv-
ing different mesh points. This calculation, in fact, can be
seen as done on a mesh which simply adds some extra
generator-coordinate values to those given already in Table
I. It is remarkable that Tables III and IV give equally
good approximations to the exact value of the ground-
state energy. This can be qualitatively understood in
terms of the following features: (i) the values of 6 have in
both cases the favored concentration around the variation-
al minimum; (ii) the ground-state energy appears not to be
too sensitive to the adopted values for a and P, provided
they fall in the ranges 9.00(a (2.000 and
0.600 & P & 1.300; and (iii) the ground-state energy appears
to be rather more sensitive to the spacings between mesh
points in a and P, ideal choices being b,a=0.20 and
b,P=0.20.

B. The ground-state eigenvector

The most salient feature of the eigenvector associated
with the lowest energy eigenvalue is conveniently brought
out by expanding it in terms of the eigenvectors Pk of the
ouerlap matrix [see Eq. (2.3)]:

+0= gak 4k .(0)

k

In fact, for the calculations reported in Tables III and IV

(as well as in all other examined cases, in which the values
of 5 were concentrated around 5-2.000) it has been found
that the expansion (6.1) is strongly dominated by the single
eiyenvector $0 of S with largest eigenvalue (typically
ak

'
0 & 0.98}. At the same time, of course, the expectation

value (Pk 0 ~H
~ Pk o) is already quite close to the

low est energy eigenvalue as obtained in the calculation.
For the first excited eigenvector, a similar result holds for
the eigenvector of S with the next-to-highest eigenvalue.

For higher vibrational states this pattern is progressive-
ly lost as more and more vectors Pk give important contri-
butions to expansions of the type (6.1). The increased
relevance of states Pk arising from the small norm content
of the generator-state base accounts qualitatively for the
increase of ALD problems as one goes to higher excita-
tions. On the other hand, the dominance of eigenvectors
of S with large eigenvalues in the case of the first few
states corroborates "a posteriori" the adequacy of the nu-
merical procedure for these states, at least.

In order to check more specifically the degree of simi-
larity of the ground-state eigenvectors given by the calcu-
lations of Tables III and IV, respectively (as is well
known, the variational energy is not an appropriate cri-
terion for comparison of wave functions), we have also
computed two different averages involving the electron-
nucleus distance r, viz. , (r, ') and (r, ) in each of the
two wave functions. Results are given in Table V. They
show differences in these moments at about the fifth de-
cimal figure. A comparison of the values obtained from
the generator-coordinate calculations of Tables III and IV
with the best adiabatic and nonadiabatic results given in
the literature suggests, moreover, that any of the
generator-coordinate wave functions has already incor-
porated a substantial amount of nonadiabaticity.

TABLE IV. Same as Table III, with a different arrangement of mesh points.

El E E3 ~min Matrix dimensions

1.280
1.480
1.680
1.880
2.080

0.800
1 .000
1.200

1.980
2.020
2.060
2.100
2.140

—0.597 1379 —0.587 1 187 —0.576 922' —0.565 99 10 &2 10—15 S=75 X75
H =46X46

'Seventh decimal place affected by ALD problems.
Sixth and seventh decimal places affected by ALD problems.
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TABLE V. Values of (r, ') and (r, ) for the ground-state wave functions resulting from the calcu-
lations of Table III and IV (in atomic units). Also given are Born-Oppenheimer (BO), adiabatic (AD),
and nonadiabatic (NAD) values for the same quantities from the literature.

Parameter Table III

0.842 51
1.692 89

Table IV

0.842 50
1.692 92

BO
Reference 26

0.842 82
1.6925

AD
Reference 26

0.842 69
1.6928

NAD
Reference 26

0.842 49
1.6930

VII. FINAL REMARKS AND OUTLOOK

We reported in this paper on a nonadiabatic calculation
of the simple H2+ molecule using the general framework
of the generator-coordinate method as a tool to take max-
imum advantage of the information already contained in
good analytical approximations to the adiabatic wave
function. The calculation was performed in an explorato-
ry sense, and we think that the results obtained are en-
couraging: not only was the value obtained for the
ground-state energy extremely accurate, but it was associ-
ated to a state having an expansion heavily dominated by
a single term in the most natural basis suggested by the
formalism. These results were achieved in terms of the di-
agonalization of matrices of only modest dimensionality
(typically of the order 50X 50).

We are presently trying to improve on our calculations
by introducing still better adiabatic wave functions as gen-
erating functions in the place of Eq. (4.1). The use of
more sophisticated techniques for setting up the
generator-coordinate mesh (see Sec. II) tnay also be con-
sidered. Our basic aim will be to obtain better accuracy

for the ground-state energy while keeping within the
bounds of a generator-coordinate basis of dimension less
than about 75, as done in the present work. More atten-
tion wi11 also be paid to the energies and wave functions of
excited (vibrational) states.

Other three-body systems such as D2+, muonic H2+,
etc., may also be treated in terms of the present scheme
and at essentially the same level of numerical difficulty.
Although the procedure is, in principle, quite general, and
could be useful whenever good adiabatic functions are
available to feed the GC procedure, four-body molecules
such as H2 will already involve a substantially larger corn-
putational effort at the present level of technical sophisti-
cation. Further investigation of the simpler, three-body
systems is therefore in order.
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