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Time evolution of nonequilibrium photoexcited plasma in polar semiconductors
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The nonequilibrium thermodynamics and kinetics of evolution of relaxation processes in

polar semiconductors under high levels of optical excitation is studied. This is done using a
first-principles theory that allows for the determination of the nonlinear transport equations
which describe the irreversible processes that develop in the media in typical pump-probe
experiments. Numerical calculations are presented which permit a comprehensive discus-
sion of measurements of ultrafast-time-resolved optical spectra of GaAs.

I. INTRODUCTION

A consequence of the technological development
of laser and instrumentation has been a stepped-up
effort devoted to the studies of the effects of high
photoexcitation on semiconductor behavior. A con-
siderable amount of information is available on the
subject, and presently the growing interest in the
development of quantum generators and other de-
vices based on semiconductors at high density of ex-
citations have made this topic one of the dominant
fields in the area of semiconductor optics. ' Studies
of the optical properties of semiconductors under
high-excitation conditions has shown novel and
quite interesting features in optical spectroscopy.
The participation of nonequilibrium distribution of
carriers and optical phonons is manifested in the
behavior and shape of optical spectra. Work has
been directed towards the aim of showing the possi-
bility, in some cases, of describing the state of the
photoexcited carriers solely by an effective tempera-
ture, a concept that has been applied rather more
casually to the nonequilibrium distribution of LO
phonons produced when hot electrons cascade down
the band-energy states. This is a situation that can
be accomplished in metals and doped semiconduct-
ors under steady constraints, e.g., constant fields,
and the excitation are referred to as hot electrons;
their state is characterized by an effective tempera-
ture, a concept originally due to Frohlich. How-
ever, the constraints imposed by excitation with a
laser source are not of a steady-state nature, and,
therefore, it is necessary to analyze the time evolu-
tion of the elementary excitations in the semicon-
ductor plasma. This is the question we address here.

The highly excited plasma in semiconductors
(HEPS) is a physical system with very many degrees
of freedom in a far-from-equilibrium thermodynam-

ic state. The statistical mechanics of irreversible
processes, which deal with this kind of problem, has
shown noticeable progress in recent years. A theory
attempting to provide a unified description of non-

equilibrium statistical mechanics is Jaynes's
maximum-entropy formalism (MEF). Methods
based on this formalism were developed by Robert-
son and Zubarev, which allow for the derivation of
nonlinear transport equations. Our analysis of the
HEPS is built from the MEF using Zubarev's ap-
proach for the calculation of the transport equa-
tions. The time evolution of the macroscopic state
of the HEPS is obtained for different typical experi-
mental conditions. Theoretical results are compared
with data obtained from time-resolved laser light
spectroscopy.

These pump-probe experiments provide the opti-
cal response in situations when a mechanical pertur-
bation is superimposed on the far-from-equilibrium
HEPS. Hence irreversible processes develop in the
system while it is probed, which are evidenced in the
recorded spectra. The response function to be used
in the analysis of the experiment should consequent-
ly be expressed in terms of the characteristics of the
developing nonequilibrium state of the system. To
this end, a method was devised within the frame-
work of the MEF. In order to apply this formal-
ism, the nonequilibrium macroscopic state of the
system needs to be described by a reduced set of
thermodynamic variables. The equation for the
response function is not closed in itself but coupled
to proper transport equations for the nonequilibrium
thermodynamic variables. These are the equations
we are proposing and solving here for the HEPS.

In the next section we briefly describe the funda-
mentals of the method, in Sec. III we applied it to
the study of polar semiconductors under strong laser
light illumination, and Sec. IV is devoted to a dis-
cussion of the results and our conclusions.
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II. THEORETICAL BACKGROUND

We briefly describe in this section the fundamen-
tals of the MEF and related methods. The MEF
permits one to deal with irreversible processes begin-
ning from arbitrary nonequilibrium states, and in-

corporates from the onset nonlinear and nonlocal ef-
fects. For the cases of mechanical systems with
very many degrees of freedom, the formalism can be
looked upon as a generalization of Gibbs's ensemble
algorithm. Let p(t) be the nonequilibrium statistical
operator (NSO) such that the nonequilibrium ensem-

ble average of a dynamical quantity A is given by
(A

~
t) =Tr[AP(t)], a value to be placed in

correspondence with the results of measurements
performed on the actual physical system. The NSO
is a functional of a basis set of dynamical quantities

[P&,P2, . . . , Pr)I, in a contracted description of the
system, whose nonequilibrium expectation values

[Q&(t),Q2(t), . . . , Q„(t) I (where QI(t) =Tr[PJP(t)])
correspond to the nonequilibrium thermodynamic
variables that are observed and/or controlled in the
experiment to be considered.

According to Bogoliubov, a contracted descrip-
tion, when a reduced number of variables are enough
to describe in a macroscopic way the state of the
system is possible if there exists a relaxation time for
microinformation, r„, after which the system loses
the memory of the initial distribution. The initial
distribution, i.e., the one that should describe the
system iminediately after it is driven from equilibri-

um, depends on all the coordinates of the degrees of
freedom, and its subsequent contraction is connected
with the separation from the total Hamiltonian of
strong interactions with certain symmetries. These
are symmetries related to the fast relaxing processes.
Hence for not too short times, i.e., t &g~&, correla-
tions with a lifetime smaller than r„can be ignored,
and the macroscopic state of the nonequilibrium
system can be described by the reduced set of ma-
crovariables [QJ(t)J, j=1,2, . . . , r The choi. ce of
these macrovariables, or equivalently, that of the
basis set of dynamical quantities [PJ I, is not univer-

sal but it depends on each concrete problem. ' With
increasing time scales, successive contractions of the
basis set of dynamical quantities may be possible
whenever there exists a hierarchy of relaxation times
for subsets of macrovariables. These fundamental
aspects of the theory become apparent, and are well

illustrated, in the case of HEPS.
Once the basis set [P&I is chosen, the MEF re-

quires access to information obtained at a given ini-
tial time, i.e., knowledge of the macrostate of the
system. This information is built in the MEF sta-
tistical operator p, defined as the one that satisfies
the constraints

S= —Tr(p lnp ) .

The resulting statistical operator is

(2)

p =exp —P —g FJPJ

where P and [FJ I are MEF Lagrange multipliers;
the first ensures the normalization of p and the oth-
ers are the intensive variables thermodynamically
conjugated to the extensive macrovariable QJ in the
sense that

FJ —— ——FJ(Q&, . . . , Q„), j=1,2, . . . , r .as

(4)

The thermodynamic parameters I' 's are a function
of the expectation values Q's and Eqs. (4) can be
considered as nonequilibrium equations of state.
These relations can be inverted to obtain

where

P(F&, . . . , F„)=in Tr exp —g FJPJ

is the nonequilibrium Massieu-Planck functional or
logarithm of the nonequilibrium partition function
P=lnZ(F„. . . , F, ). The MEF fully extends the
entire equilibrium thermodynamic formalism for
use on nonequilibrium systems, no matter how far
from equilibrium, and it is completely compatible
with nonlinear nonequilibrium thermodynamics. "

The equations of evolution for the macrovariables
Qi(t) or generalized transport equations (GTE) are

de(t)
(PJ.

~

r ) =Tr—[(ih') '[PJ,H]p(t) I,

and to close the formalism an expression for the
NSO p(t) needs to be obtained. The NSO should
satisfy the Liouville equation, for isolated systems,
and is a functional of p, which fixes the initial con-
ditions. There are several methods to obtain p(t) in
terms of the MEF distribution p, ' ' associated with
different forms of projection operators P, which
separate the NSO at all moments of time

P=PP+(1 P)P=P+(P P)

into a secular nondissipative term p, and another

Qi =Tr(PJp),

and, subjected to these constraints and to normaliza-
tion, makes maximum the MEF entropy
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that carries on irreversible behavior. In Zubarev's

approach the NSO, corresponding to the initial
value problem, with initial condition p, is defined by

p,(t) =exp e dt'e"' "lnp(t', t' t)—

(8)

with a~0+ after the trace operation in the calcula-
tion of averages has been performed. In this equa-
tion the first term in the argument of p stands for
the time dependence on the parameters F ( t),
whereas the second denotes the dependence on time
of operators P in the Heisenberg picture.

NSO (8) satisfies the equation

—Inp, +i Wlnp, = —e(lnp, —lnp),
p(t) =exp P(t) —gF—(t)P. (10a)

posed by the given experimental situation. Hence

Zubarev's method introduces from the onset irrever-

sible macroscopic evolution of the system through a
breaking of the time-reversal symmetry of the Liou-
ville equation. ' The choice in Eq. (8) of the initial

reference time in the remote past and the use of the
convergence factor exp(et) eliminates undesirable

transients; this satisfies the requirement that the
treatment is valid for times t )&~&.

'

NSO (8) can be separated in the form

p, =p+{p,—p), composed of a nondissipative term

and another describing irreversible producing pro-

cesses, where

which is a Liouville equation with infinitesimal
sources, and W is the Liouville operator of the sys-

tem, i.e., I ' times the commutator with H. The
source in Eq. (9}selects the retarded solutions of the
Liouville equation corresponding to the condition
given at the initial time by p, i.e., the constraints im-

p —p= f du Y(g
~
u)(p) "g(p)"+

Y(g
~

x)=1+ f du Y(g
~

u)(P)-"g(p)",
0

g(t)= —f dt'e", lnp(t+t', t') .

With these results the GTE's (7) are

(10b)

(10c)

(10d)

dQ (t)
=&P, ~t)0+ g f dt'e"'[[PJ Pk it]F '(tk+t')+[PJ Pk It]Fk(t+t'))

where

1

[3;8 i
t]= f du&AY(g

i
u)(p) "58(P)"

i
t)0

Cjk(t) =(P),Pk
~

t)
1= f du&P, (p)-"~Pk(p)" lt)o.

(15)

dQ, a'p
dt BF BF dt
'= —X = —g (PJ»k I

t)Fk

and inversion of this system of equations provides
the alternative set of GTE's:

= —yCk'(t)&(inert) '[Pk, H]
~
t),

k

where C ' is the inverse of the correlation matrix

(14)

(12)

is a generalized correlation function of quantities A

and8, bed=8 —&8
~
t)0, and &f ~

t)o ——Tr[fp(t)].
Let us observe that the right-hand side of Eq. (11)

depends exphcitly on the thermodynamic parame-
ters F(t) and implicitly on the macrovariables Q(t)
via the state equations (4) or (5), and therefore it is
convenient to go over a set of equations for them.
Using Eqs. (7}and (5) we write

GTE's (11}or (12) are highly nonlinear integrodif-
ferential equations whose solutions, for given initial
conditions, determine the irreversible evolution of
the macroscopic state of the system. The method is
closed at this point, and in conclusion we may say
that, for systems governed by Hamiltonian dynam-

ics, methods based on the MEF provide a way to
describe the thermodynamic evolution and behavior
of far-from-equilibrium systems for a large class of
experimental situations. %e proceed next to apply
the method to the study of optically excited non-

equilibrium plasma in semiconductors.

III. TIME EVOLUTION OF HOT
PHOTOEXCITED PLASMA IN SEMICONDUCTORS

Studies of optical properties of semiconductors
under high-excitation densities provide measure-
ments of the effective temperature of hot car-
riers ' ' and determination of the distribution
functions of hot phonons generated by the photoex-
cited carriers cascading down the. band-energy
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states. ' ' Based on the method described in Sec.
II, we present here a study of the evolution of the
nonequilibrium thermodynamic state of the HEPS
under different experimental conditions. In this
study a direct-band-gap polar semiconductor is il-
luminated by intense laser radiation, and a concen-
tration of electron-hole pairs is being created in sin-

gle or double photon absorption processes. Optical
spectra (time resolved or time integrated) are record-
ed while the HEPS is relaxing its energy excess
through different channels. The system Hamiltoni-
an is composed of the electron energy operator; i.e.,
Bloch-bands Hamiltonian and Coulomb interaction
energy, the Hamiltonians of the phonon and photon
fields, the interaction energies of electrons with lat-
tice vibrations (deformation potentials and Frolich
interactions), and radiation, using the dipole approx-
imation for the latter, and anharmonic interactions
between lattice modes. They are well known, and
therefore we omit listing them here. For the Bloch
Hamiltonian we consider only two inverted bands,
and the effective-mass approximation for describing
the dynamics of electrons in conduction and valence
bands is used. Further, we resort to the electron-
hole representation.

Next, according to the MEF, to describe the non-
equilibrium macroscopic state of the system it is
necessary to choose a basis set of dynamical quanti-
ties [PJ I. This requires an analysis of the hierarchy
of relaxation times referred to in Sec. II. First, we
assume that local lattice heating on the focal zone of
the laser beam can be neglected, i.e., experimental
conditions are supposed to be such as to keep
acoustical phonons in fairly constant equilibrium,
throughout the sample, with a heat reservoir at tem-
perature To. Second, we neglect stimulated recom-
bination and self-absorption, which give no relevant
contribution except near equilibrium conditions that
are exempted from our discussion. The radiation
field associated with spontaneous recombination is
incorporated in the carrier Hamiltonian, and the
laser field is characterized by its photon energy and
power. Thus variables for the photon and acoustical
phonon subsystems need not be included into the
basis set of macrovariables. The NSO can be factor-
ized into the direct product of the distribution func-
tion of the external subsystems of laser and A pho-
nons, and the relevant one corresponding to the open
system of carriers and LO phonons. We derive
GTE's for a proper set of variables of the open sys-
tem under the constraints imposed by contact with a
thermal reservoir and laser illumination. '

The photoinjected carriers attain a very rapid
internal thermalization due to the strong Coulomb
interaction, ' this occurs in the subpicosecond time
scale for the levels of excitation we are going to con-

sider here. Hence, for times larger than a tenth of a
picosecond, the contracted description of the carrier
subsystems can be done in terms of the carrier Harn-
iltonian P& ——H„and the number operators for elec-
trons and holes P2 ——X, and P3 ——XI„since electron-
hole pairs are created in laser light absorption and
annihilated in recombination processes. The ther-
modynamically conjugated parameters will be writ-
ten

F, (t) =P(t) = [kii T(t)]

F,(t) = /3(t)p, ,—(t),

F3(t) = —p(t)pi, (t),

where T(t) is to be interpreted as the quasitempera-
ture of carriers and p, and p~ as the quasichemical
potentials, respectively, of electrons and holes hav-

ing effective masses m, and mi, .
The LO phonons are produced by relaxation of

the hot carriers at large rates in the early stages fol-
lowing the initial departure from equilibrium. This
rate of production is larger when the phonon wave
number is smaller. ' As a consequence, differently
to the case of the carrier system, a contracted
description of the LO-phonon subsystem in terms of
solely its energy —and the associated quasi-
temperature —should not be an appropriate one for
very short times after initial excitation. Experimen-
tal and theoretical evidence' ' ' show that internal
thermalization of LO-phonon modes occurs with the
different modes coming successively in equilibrium
with the carrier system. Next the composed system
relaxes towards final equilibrium with the lattice
with a long delay time, unless the number of LO
phonons in excess of equilibrium is not large, as we
will see later on. Therefore, for the initial stage, fol-
lowing the beginning of photoexcitation and the
period of microrandomization, a suitable description
of the macroscopic state of LO phonons would be in
terms of the set of occupation numbers v-=b b-,

q q q'
with q running over the entire Brillouin zone. The
associated nonequilibrium MEF thermodynamic
parameters can be taken as F-(t)=%co-/k~T-(t),

q q q

defining a quasitemperature for each mode. ' A
second stage sets in at the time of the near thermali-
zation of LO-phonon modes and carriers, and then a
contracted description of the LO-phonon system can
be performed with its Hamiltonian P4 ——Hi 0 as the
relevant dynamical quantity and the inverse quasi-
temperature

F4(t) t Lo(t) [kB~LO(t)l

as the conjugated thermodynamic parameter. Typi-
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cal times for the realization of this second kinetic
stage are of the order of a few to tens of picoseconds
depending on experimental conditions. '

The contracted description based on
{H„N„Nt„HLo] can also be used to study the first
kinetic stage, but then it needs to be complemented
with the calculation of the correlation functions that
give the distribution functions v (t)=(vq

~
t), for

q

example, using the method of Ref. (7).' This com-
plementarity between GTE and equations for corre-
lation functions, in order to obtain a complete
description of the state of the system in the different
kinetic stages, has been discussed by Kalashnikov. '

We carry on the study of the nonequilibrium ther-
modynamics of the HEPS using the basis set

{H„N„Np„Ht o ] and its conjugated variables

{p(t), p(t)p—(t), —p(t)pt, (t),pLo(t)]

therefore given the description of the second kinetic
stage. However, we use the same basis for the first

I

4

g (PJ;Pk
~

t)Fk(t)= —((iA') '[P, ,H]
~
t)

y g(l)(t)
1=0

(17)

with j= 1—4, and the last term is an expansion in
terms of collision operators, where

kinetic stage also, and then it must be kept in mind
that the results thus obtained are a low-order ap-
proximation, whose merits will be discussed in each
case to be considered.

With the use of the aforementioned basis set of
dynamical quantities, the auxiliary MEF statistical
operator is

p =exp[ P —P(H—, p,—N, p&N—t, ) —Pr,oHt, o]
(16)

and we write, for GTE's

J)~ '=(iA') '([Ho, P)] [
t) ,o

J~"=(i') '([H', PJ] ~
t) ,o

(18a)

(18b)

J~' '= (if&) f dt'e" H'(t'), [H', PJ ]+ifiPk (18c)

Here H0 is the Hamiltonian of the free systems, and H is the interaction energy operator of carriers with the
phonon and radiation fields when P~ is H„N„and Ns, and interaction energy of LO phonons with carriers
and anharmonic interaction when P~ is Hzo. Scattering operators JJ ' and JJ" are null, and we truncate the
expansion in second order, i.e., we retain only the contribution I =2. This is the so-called quasilinear approxi-
mation in the relaxation processes: It is equivalent to take I'= 1 in Eq. (10b) keeping interactions up to second
order in the coupling strengths.

The scattering operator J'& contains contributions due to scattering by acoustic and LO phonons and in-
teraction with the radiation fields; the cross terms are null. These partial scattering operators are

I'('„'(t) = g g ~
U,"(k,q)

~

'(e-„+-—e-„){ (v"-+1)f-„-(t)[1—f-„(t)]
a k q

vq fk (t)[1 fk—+ ((t) ] ]5(ek+q —e—k —
typal ), (19)

where n =A or LO, and e is e or h. In these equa-
tions v" are the phonon distribution functions (k, q) ~'= (

' — ') 'e '( 't)
277e fK00

v = [exp(Poiritoq ) 1]—
v- =vLo(t) = {exp[P„o(t)ficoo]—I]

(20a)

(20b) [U (k, q)i
2p Vs

(21a)

(21b)

where we use a dispersionless frequency for LO pho-
nons, and coq

——sq, with s the sound velocity,

fk(t)=(exp{P(t)[ek p(t)]]+1) ' — (20c)

are Fermi-Dirac functions, and e'k =EG+A' k /2m,
and eg=fi k /2m'. The interaction matrix ele-

ments are

where V is the active sample volume, e0 and e„are
the static and high-frequency dielectric constants,
E is the deformation potential interaction cou-
plings, e0 is the dispersionless LO-phonon frequen-
cy, p is the material density, and e(q;t) is the q-
wave-number static dielectric constant. The latter
accounts for the screening of the bare Frolich in-
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4„,2 afk(t)
qo(t)= (22)

Note that qo is dependent on the thermodynamic
I

teraction, and we use for it the random-phase ap-
proximation result

qo(t)
k(q;t)=1+

q

with

parameters p(t) and t2(t) and, therefore, needs to be
determined self-consistently. In the numerical ap-
plications presented in the next section, this is au-
tomatically incorporated in the computer program;
an explicit analysis of the effects of screening due to
polarization of the photogenerated carrier gas on the
rate of energy relaxation is underway and will be re-
ported elsewhere.

The partial scattering operators involving the in-
teraction with luminescence and laser radiation are,
respectively,

(23)

and

~1L(t)=
& g I

U'(k q) I
'(e'~ +~k )[1—fk(t) —fk(t)]'5«flL —~k &k)

k

The interaction matrix elements are

e BEG
I

U"(k q) I'=
2e„Vm„cq

and Eq. (24) is rewritten as

a 1IL ( t) /ECOL

~1L(t)= V[ 1 —fL(t) —f& (t)Y&& X OI2
s.

where EG is the energy gap, IL is the flux of laser power,

(24)

(25a)

(25b)

(25c)

fL(t)= exp I3(t) (A'QL EG)+ EG —p, (t) —+1 .
me

fL(t)= ~ exp p(t)
mp

($QL EG) —Pk(t) +1

(27)

and a1 and az are the one-photon and two-photon absorption coefficients, whose experimental values are used
when numerial applications are done. QL is once or twice the laser frequency coL in one- or two-photon ab-
sorption processes, respectively.

Furthermore,

Z'2" (t) =I',"= g I
U"(k, q) I

'f'-(t) f"-(t)&(«„'"q—~'-„—~"-„)+(«&) '~IL(t), (26)
k, q

4 (t)= —JILo(t)+&' ' (t),

where the first term on the right-hand side is minus
the contribution to the partial scattering operator
for variation of carrier energy due to collisions with
LO phonons, and

IyI2(1+ A + A
)

X5(NO co~, N~ „)6~—~,—A A
q q'+q"'

H4AN(t) =Nr ficoo[&LO(t) vLO]—(28)

is the contribution due to anharmonic effects in
lowest order, with v&0 being the equilibrium distri-
bution function N is the number of unit cells
( V/V„11 ), and

(29)

Here P are the matrix elements for anharmonic pro-
cesses involving three phonons (one LO decaying
into two A phonons). Relaxation time r is the only
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free parameter in the theory.
The different elements of the correlation matrix

that appear on the left-hand side of Eq. (17) are

(H, ;H,
~

t)= g (eq ) f q (t)[l —f q (t)],
k,a

(30a)

(H, ;N
~

t)= pe-„f'-„(t)[I—f'-„(t)]=(N;H,
~
t),

(N;N
i
t ) = gf-„(t)[1—f-„(t)],

(30b)

(30c)

(HLO&HLO
l

) N( tco0) +Lo(t)[1++Lo(t)]

(30d)

IV. NONEQUILIBRIUM THERMODYNAMICS
OF GaAs

Let us consider a GaAs sample under intense laser
illumination with photoinjected carriers being pro-
duced in one- or two-photon absorption processes.
This applies to the situations when %col )EG and
fuel &EG, but 2%col &EG, respectively; two-photon
absorption allows for excitation in the bulk of the
sample and it shows to be an efficient excitation pro-
cess. ' In Table I we present the values of different

We note however, that the GTE involve the quasi-
chemical potentials is, h(t), but a more accessible ex-
perimental data is the carrier concentration n(t).
The quasichemical potentials are related to it and
quasitemperature T(t) by the known relations

n(t) =n, (t)F&y2(p(t)[p, (t) —EG])

=nt, ( t)+&~q(p( t)ps ( t)), (31)

where n a(t)= 2(2mm a/ PA' )
~ and F is the Fermi

function of index —, .
The coupled system of nonlinear integrodifferen-

tial GTE's (17) can now be solved for each given ex-
periment using correlation functions (30) and
scattering operators (23) to (28), and considering Eq.
(31). A unique solution of the GTE's follows once
the initial conditions are given, in the present case
the values of T, Tt o, and n at the time when ran-
domization of microprocesses has occurred, and the
method can be applied, as discussed in Sec. II.
From then on the GTE's describe the irreversible
evolution of the nonequilibrium HEPS, and compar-
ison of theoretical and experimental results should
provide the physical picture of the kinetics of relax-
ation processes in the system. In the next section we
applied the results thus obtained to the study of
several experimental situations, namely optical mea-
surements in photoexcited GaAs samples.

TABLE I. Characteristic parameters of GaAs used in
the numerical calculations.

%coo——37 meV' a~ ——0.02 cm/MW
60= 12 E,=7.0 eV'
e„=11' E~ ——3.5 eV'

me =0.068mo V„~~
——1.8)& 10 cm b

ma ——0.5mo" p=5. 31 g/cm
Eg(0) =1.52 eV' s =5.22)& 10 cm/s

'J. D. Dow and D. Redfield, Phys. Rev. 8 2, 594 (1972).
S. M. Sze, Physics of Semiconductor Deuices (Wiley-

Interscience, New York, 1969).
'Dependence of gap on temperature EG( T)=EG(0)
—5.8y10 ~T (T+300 K)
J. M. Ralston and R. K. Chang, Appl. Phys. Lett. 15,
164 (1969).
'C. Jacoboni and L. Reggiani, Adv. Phys. 28, 493 (1979).
tB. R. Nag, Theory of Electrica! Transport in Semicon
ductors (Pergamon, New York, 1972).

characteristic parameters of GaAs which are used in
the numerical calculations. We consider in all cases
a rectangular pumping laser pulse of very short
duration (in the picosecond scale) with a single pulse
isolated from the train of pulses, and we follow the
evolution of the HEPS during pulse action and after
pulse relaxation to equilibrium.

We consider the system in the conditions of the
experiments of Refs. 22—24, where fast-time-
resolved spectroscopy measurements are reported.
In all of them we exclude from the analysis an ini-
tial interval of time from laser-pulse application up
to the moment to when carrier concentration is
roughly 10' cm, so that the system is on the me-
tallic side of the Mott transition, and can be treated
as an internally thermalized two-component
(electron-hole) Fermi liquid.

(a) For the case of Ref. 22 we introduce a rec-
tangular profile laser pulse of 1-ps duration and in-
tensity of 1.0&& 10' photons per cm and photon en-

ergy Acoz of 4 eV. Lattice temperature is 300 K and
excess energy per pair is 2.6 eV. Taken the initial
time at 0.1 ps (zero time at the beginning of the
pulse), estimating a production of 20 LO phonons
per pair up to to and using energy conservation in
the form 3k~ [T,„„„—T(to)] =20ficoo, we find
T(to)=7130 K. Tto(to) is practically unaltered
compared with the equilibrium value, since the
number of phonons produced in excess of equilibri-
um is much smaller than N,q-2)&10 ' cm . For
the LO-phonon energy relaxation time, due to
anharmonic processes, we take ~=30 ps; this value
allows for a good fitting of experimental data at
long delay times. All other parameters are given in
Table I. The thermodynamic evolution of the semi-
conductor plasma is described by Figs. 1 and 2. The
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FIG. 1. Evolution of carrier (solid line) and LO-
phonon (dashed line) effective temperatures calculated in
the conditions given in Sec. IV, case (a).

FIG. 3. Evolution of carrier (solid line) and LO-
phonon effective temperatures calculated in the conditions
given in Sec. IV, case (b). Closed circles are experimental
points.

first shows the time dependence of carriers and LO-
phonon quasitemperatures, and the second that of
the quasichemical potentials.

(b) For the case of Ref. 23, t~ =0.5 ps, laser inten-

sity is 3.8X10' photons per cm, ficoI ——1.64 eV,
excess energy per pair is 120 meV and Tp=10 K.
Using energy conservation and estimating a produc-
tion of 1 LO phonon per pair up to to ——0. 1, when

&(&0)=4.2X10' cm, we find T(to)=322 K and
TLo(to)=36 K. We take r=60ps. Figures 3 and 4
describe the thermodynamic evolution of this sys-

tem.
(c) For the case of Ref. 24 tz

——25 ps, laser intensi-

ty is =5&10' photons per cm, 2ficol ——2.33 eV

(two-photon absorption processes), excess energy per
pair is 0.811 eV, and Tp ——7.2 K. Estimating a pro-
duction of 6 LO phonons per pair up to Tp ——1 ps,
when n(to)=SX10' cm, we find T(to)=2283 K
and TLo(to) =37 K. Relaxation time r, same as in
(b). Figures 5 and 6 show the results for this system

Figures 7—12 describe the evolution of the rate of
energy transfer through the different relaxation
channels. Based on these results we proceed in the
next section to draw several conclusions on the
behavior of ultrafast transient relaxation phenomena
in polar semiconductors.

V. DISCUSSION AND CONCLUSIONS

The numerical results presented in Figs. 1—12,
however, specifically referred to GaAs, can be ex-
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FIG. 2. Evolution of electron (e) and hole (h) quasi-
chemical potentials calculated in the conditions given in

Sec. IV, case (a). Zero of energy at top of the valence
band.
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FIG. 4. Evolution of electrons (e) and hole (h) quasi-

chemical potentials calculated in the conditions given in

Sec. IV, case (b). Zero of energy at top of valence band.
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tion is described by Figs. 7 and 8. It can be noted
that the rate of energy relaxation of carriers due to
interaction with the LO phonon is a factor of 100
larger than that due to interaction with A phonons
during and immediately after the laser pulse, but
both become comparable a couple of picoseconds
after pulse completion. The rate of LO-phonon ex-
cess energy relaxation via anharmonic interaction in-
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FIG. 11. Rate of energy relaxation of carriers to LO-
phonon (1) and A-phonon (2) fields, and of LO-phonon
energy due to anharmonic processes (3) in case (c).

creases while the number of Lo phonons increases
up to the point of thermalization with carriers, to
slowly decrease next following the decreasing value
of TLo. Quasichemical potentials (Fig. 2) also show
a rapid variation during and roughly a picosecond
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after laser pulse due to the rapid variation of carrier
quasitemperature in this interval; the electron-hole
gas changes from an initially classical to a final de-
generate quantum gas. These results quite agree
with those derived through the study of time-
resolved reflectivity measurements.

(ii) When reservoir temperature To is low, under
high levels of excitation the number of LO phonons
in excess of equilibrium, produced by carriers cas-
cading down the band energies, is usually larger
than the equilibrium number. Tt o(to) is then larger
than To, and is increasing while carrier temperature
decreases during application of the laser pulse, and
both become equalized soon after pulse. From then
on the common quasitemperature decreases towards
the total equilibrium value To at a very slow pace.
This explains the long near plateau in the curve of T
vs t noted in several experiments. Figures 3
and 5 show the evolution of quasitemperatures in
the conditions of the experiments of Refs. 23 and
24; closed circles are experimental values obtained
through fitting of transmission and absorbence
spectra. Figures 4 and 6 show the quasichemical
potentials as a function of time; the initial rapid
variation accompanies that of T (t), and it can be ob-
served that in both cases the electron-hole gas is al-

ways a degenerate quantum gas. It has been ar-
gued that at high densities ( & 10' cm ') the car-
riers can no longer be described by a thermal distri-
bution, that seemed to be indicated by anomalies of
behavior in the high-energy side of the transmission
spectra. There is no reason to expect a deviation of
carriers from a thermalized distribution in energy
space; the reported anomaly seems to be an apparent
one due to LO-phonon assisted processes. This type
of effect has already been noted in other experi-
ments. "

Figures 9—12 describe the kinetic of relaxation in
both cases. The dependence on time of the rates of
energy loss via the different relaxation channels fol-
low a general pattern similar to that of (i) (Figs. 10
and 11). Agreement with experimental data is good
in the case of Fig. 5 but less satisfactory in Fig. 3.

(iii) Relaxation of carriers to final equilibrium
occurs mainly through the indirect channel of
carriers —LO phonons —acoustic phonons. The re-
laxation of LO phonons to the lattice is mediated by
anharmonic interaction, which plays here an impor-
tant role because of the departure of the LO-phonon
field amplitude of the equilibrium value. Relaxation
of carriers through a direct channel mediated by de-
formation potential interaction is much slower, be-
ginning to be relevant only after mutual thermaliza-
tion of carriers and LO phonons. In the absence of
anharmonic effects there results a strong bottleneck
of the carrier relaxation due to the high excitation of

optical phonons. The more effective this channel,
i.e., shorter values of ~, the more rapid the relaxa-
tion of the HEPS system towards final equilibrium.

We recall the shortcomings of the calculation: (a)
use of a rectangular pulse profile; a more realistic
one should smooth out the curves for the different
quantities during and after pulse (end of pulse indi-
cated by an arrow in all figures), (b) uncertainty con-
cerning the initial values of the nonequilibrium ther-
modynamic parameters, and (c) use of a common
temperature for all LO-phonon modes at the very
early stages of relaxation processes. Further, it must
be borne in mind that at not too short delay times,
typically when approaching the nanosecond scale,
other contributions, neglected in the present calcula-
tion, need to be incorporated in the scattering opera-
tors, e.g., self-absorption and induced recombination
become relevant when n approaches the equilibrium
value at temperature To. The hypothesis used in the
calculation —the A phonons remain constantly in
equilibrium at reservoir temperature To—also
deserves a comment. A phonons are warmed up as
a result of energy transfer from, mainly, the relaxa-
tion channel governed by anharmonic interactions
with LO phonons. For GaAs samples with an ac-
tive volume with average linear dimensions of a few
micrometers, and using typical values for thermal
conductivity and specific heat, we find that cooling
by heat diffusion occurs in the (10—100)-nsec scale
for lattice temperatures ranging from 10 to 300 K.
Hence, in principle, A-phonon heating needs to be
considered. However, if TA(t) is the instantaneous
A-phonon effective temperature, and CA and CLQ
are the contributions to the instantaneous specific
heat from A and LO phonons, respectively, then

dTA

dTLP

TA

TLP

CLQ J1A J4AN

CA J1LQ +~4AN

and since the absolute value of the ratio of collision
operators is less, or at most of the order of 1, and
considering that CLQ/CA is much smaller than 1 at
low temperatures, or near 1 at room temperature,
two situations can be distinguished. At low tem-
peratures and not too long delay times, TA should
increase less than TLQ, while at intermediate to
room temperature both effective temperature in-
crease in a similar way, but only slightly above
reservoir temperature, for the reasons already dis-
cussed in the main text. Consequently, the approxi-
mation used, TA=TO, does not significantly alter
the relaxation pattern described here.

In conclusion we may say that techniques of ul-
trafast laser light spectroscopy in conjunction with
nonequilibrium statistical mechanics methods, yield-
ing nonlinear transport equations for the description
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of kinetic and relaxation processes, provide a very
powerful tool for the study of picosecond responses
of semiconductor systems. Besides the interest in
the comprehension of the basic physical problems
involved, there exists a parallel technological interest
since performance of semiconductors electronic de-
vices is ultimately determined by how fast they
operate. Development of this high-speed technology
requires one to explore semiconductor behavior on
picosecond and subpicosecond time scales.
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