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The dynamics of an Ising system is studied assuming that a microwave radiation field is coupled
to the magnetic system through the transverse spin components. The transverse dynamic suscepti-
bility is calculated with the use of the Green-function formalism in an exact manner, without the
use of any decoupling scheme. The method yields an exact eigenvalue equation for the resonance
frequencies, valid for any dimension and lattice, and a physical meaning of these resonances can be
given in terms of the low-lying excitations for an Ising system. Those excitations correspond to
spin-flip transitions in elementary clusters which represent all the possible spin arrangements of
nearest neighbors. The present method does not allow for a calculation of line intensities without
the help of statistical mechanics to evaluate correlation functions.

I. INTRODUCTION

A system described by a pure-Ising Hamiltonian has no
dynamic properties since all the spin operators commute
with the total Hamiltonian. On the other hand, an Ising
system can be considered as an extremely anisotropic
Heisenberg system, where all the three spatial components
of the spin are present but spin-spin interactions are only
realized along a given direction. Following the above idea
the transverse spin component can be coupled with an
external perturbation, e.g., microwave radiation as in a
typical electron-spin-resonance  (ESR)  experiment.
Proceeding in this way we obtain a dynamic model whose
low-lying excitations are in the form of localized spin
flips, in contrast to a truly Heisenberg system where the
response is monitored by spin waves encompassing the
whole system.

The transverse dynamic susceptibility of such a modi-
fied Ising model can be calculated through the
fluctuation-dissipation theorem using the Green-function
formalism developed by Zubarev.! Poles of the suscepti-
bility are identified as the resonant frequencies of the sys-
tem, since they contribute with 8-function singularities to
the power absorption. In this paper we want to show that
an exact eigenvalue equation for the resonance frequencies
can be formulated, valid for the general case, which does
not depend on the dimension or lattice, but just on the
coordination number when only nearest-neighbor interac-
tions are allowed. From the set of Green-function expres-
sions the eigenvalue equation can be isolated in the form
of a finite continuous fraction. In this paper we also give
an algorithm to generate the characteristic polynomials
for any coordination number.

Although this result seems to have been suggested be-
fore by calculations on a particular problem,z_4 the au-
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thors have not been able to find a result of such a generali-
ty, as the one presented here in the published literature,
even when a calculation of this sort is an obvious one to
carry out. It is worth noting that, since the eigenvalues of
the Ising problem are known for any dimension (but not
the partition function), an exact account of the resonance
frequencies solves, in principle, the dynamical problem.

The fact that resonance frequencies can be exactly cal-
culated derives from peculiar characteristics of the
Green-function equations for an Ising system. The chain
of coupled equations is finite and closed, the order of such
a chain being equal to the number of nearest neighbors
when only nearest-neighbor interactions are taken into ac-
count.?

The line intensities can only be calculated through the
knowledge of several correlation functions. When the
number of nearest neighbors increases (for higher-
dimensional lattices) higher-order correlation functions
appear in the formalism. As noted in Ref. 2, the number
of such correlations is larger than the independent equa-
tions obtained for the different Green functions, so the
method does not allow for a solution concerning the line
intensities, and an approximate scheme should be devised,
or alternatively, correlations have to be taken from statist-
ical mechanics calculations.

When an external magnetic field is applied, the only
correlation functions which are known in exact analytical
form are those corresponding to the one-dimensional Ising
problem (the results are presented in the Appendix). The
authors have proposed in a recent work an approximate
approach based on the cluster-variation method* to calcu-
late the temperature dependence of the different line in-
tensities. In the present calculation we have found that
resonances can be interpreted as spin-flip transitions em-
bedded in different cluster configurations, and in agree-
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ment with the results of Ref. 4, it can be realized that pro-
cesses occurring in clusters of nearest neighbors are the
only ones contributing to the macroscopic response.

In what follows we only deal with the case of ferromag-
netic exchange coupling when an external static magnetic
field is applied in the longitudinal direction, which we
shall choose as the z axis. The incident microwave radia-
tion is polarized in the x-y plane, thus reproducing the
typical geometry of an ESR experiment. The Ising anti-
ferromagnet can be treated analogously, the resonance fre-
quencies being the same than those of the corresponding
ferromagnetic problem. Temperature dependence of line
intensities are of course different in both cases.*

II. GREEN-FUNCTION CALCULATION

The unperturbed Ising Hamiltonian including the Zee-
man contribution is written as
ﬁo—_a—JEO'fO';—‘hCOozU;, (1)
() J
where J>O0 is the ferromagnetic exchange constant and
fiwg is the Zeeman energy. The parentheses (i,j) means
summation over nearest neighbors. The total spin com-
ponents are defined by
S§’= 3 o7, (2)
J
S*= 3 of=3 (of+io?). (3)
J J

For absorption of microwave radiation polarized in the x-
y plane, the transverse dynamic susceptibility is propor-
tional to the Fourier transform of the retarded Green

function given by
(S* (18~ Nr=—iOW([SH(1),S71),
=3 Kot ()07 & , @)
k.j

where the notation of Ref. 1 has been used and the symbol

[S*,S8 ] stands for the commutator
|

(ﬁw_zﬁmo)makj(w)=5%(45kj<af,,az)_2amj<a;az>)+yak,-(m)+y > Koformot;o7 Vo -
!

In relation (8) the sum 3, is performed over all the
nearest neighbors of site k different from m. It is ap-
parent from the general structure of Egs. (6) and (8), that
the relevant quantities to be calculated are

[1lj= 3 m,Gxj(@),
¢y

[Z]kjE 2 mlszkj(w) s
()

9)

b

[n_l]kjE 2 mlmz,...,mn_lej(w) ’
Cn—l

["]kjEmlmz, ... ,mnij(w) ’

[ST(@®),S~]1=ST (S~ =S~ S*(1).

From relation (4) we note that the relevant Green func-
tion to be calculated is

Gi(=Kok(th07 Vr (5)
or, equivalently, its Fourier transform

Gyj(@)=(of;07 N, -
Using the standard commutation relations among the spin

operators we obtain the following equation of motion for
Gijw):

(ﬁw—Zﬁwo)Gk,(w)=—2;_ﬁ8k,<Ui>+2Jz «0’;0’2-;0'_,'— »a) ’

(m)

(6)

where the sum over m is performed over all the nearest
neighbors of site k.

All the new generated Green function have operators o
inserted in the left part of the bracket. So we define, in a

short-hand notation,
mGij(@)=(omot;07 N,y

mlej((U)E«Ufnaiaz;af »m ’ (7)

m ij(w)E«afnl e ofn"a-lt;aj_ »w ’

n being the coordination number or number of nearest
neighbors. It will be noted that no higher-order Green
functions are needed, since the system of coupled equa-
tions closes for the functions listed above.

New correlation functions are also generated once the
equations of motion of the whole chain are written down,
but the calculation of those correlations are not relevant
for obtaining the resonance frequencies.

As an example let us show the equation of motion cou-
pled to Eq. (6), m being a nearest neighbor of k as follows:

(8)

—
where the C, are all the different combinations of nearest
neighbors of site k, taken r at a time. Of course we have

ml__ nl
T (n—r)r!

of such combinations. With the use of the adimensional
variable

filw —2(00)
27 >

E (10

the equations of motion of quantities defined by (9) can be
written as
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EGi(E)=R) +[1]); ,
E[11y;=Ri} +2[2]4j +nGy(E) ,
E[211;=Ri +3[31+(n —D[1]y; ,
., an
E[n—11;=Ri} " +n[nly+2[n 21y ,
E[n]y; =R} +[n -1y ,

where the quantities R(’") are the remainders containing
the correlation functlons For instance, we get from (6)

and (8)

o_ _#

Rij' =~k {0k} (12)
and

Rif'= o5 [ 3 (Ghob) =2 3 bnytonol)

(m)

(13)

The set of Egs. (11) can be written in the following
compact form:

E[v]yj —R(V)+(V+1)[V+1]kj+(n —v+1D[v—1]
(14)
for v=0,1, ...,
(01, =G, (E) ,
[n +1]=[—1]x,=0,

has been adopted. The general form of Eq. (14) displays
the fact that spin-spin interactions are included up to
nearest neighbors only.

The solution of system (11) or (14) is straightforward
and can be done in a recursive form: several continued
fractions are generated in this process. The general solu-
tion can be obtained in a compact form if we introduce

_J

n, where the convention

(15)

FPEn —vl=(v+D[n —v—11+R® 4 (n —v+1)————

where we have omitted the site indices (kj). Relation (18)
can be considered valid for v=0,1,2, . .., n provided that
convention (15) is adopted again. In partiular, for v=n
we obtain the solution for our Green function Gy;(E) in
the form

n 1
Vi (v)
2 e Rij" -

Gi(E)=
W A F N (B) - £ ()

(19)

Facing the above result we would like to note the fol-
lowing.

@) Dependence on site indexes (kj) only enters through
the remainders Rk]

(n—v+1)

f(n)
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FIG. 1. Coefficients for the continued fraction appearing in
the theory can be arranged in a “magic” triangle where columns
are multiples of natural numbers, the first column being the
coordination number. Relation (17) implies, for a given row, a
mirror symmetry.

the following set of continued fractions:

fi(E)=E

(16)
m
fPE)=E W’ v=1,2,...,n
where the coefficients A" are given by
AP =4 =vn—v+1). 17

Different sets of A numbers for different coordinations are
shown in Fig. 1. The recursive process now proceeds in
the following form:

(E)n]=R™+[n—11,

(n) m—1), _nR™
(E)[n —1]=2[n —2]+R +—,
fl [ ] [ ] fg,)(E)
yielding the general expression
+__.+(n—V+1)(n—V+2)' (n—l) nRm

(n) E)f(")z(E) f(n)

(18)

(ii) Since resonance frequencies are poles of the suscepti-
bility, the only task left is the reduction of the continued
fractions f\" (E) into rational fractions.

(iii) For obtaining the line intensities a partial fraction
decomposmon must in turn be done and the remainders
Y Ry} have to be calculated. The present method
offers no solution to this latter problem.

Fortunately, concerning point (ii) a well-known algo-
rithm can be devised to solve that problem. Writing the
continued fractions in the form

Qv+l(E )

n(gy==Y+___ (20)
[y (E) OE) ’

for a given coordination number n, the Q,(E) polynomials
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can be generated by the following recursion relation:

QE)=EQ, (E)—A"" 0, ,(E), 1)
forv=2,3,...,(n +1), with the initial values
Qo(E)=1, Q(E)=E . (22)

This algorithm is of common use in numerical methods
and follows from recursion relation (16). Sets of these Q,
polynomials for different coordination numbers are shown
in Fig. 2. Coefficients in relation (19) can now be written
as rational fractions. The following result is then easily
obtained:

L OnE)
Gy (E)= —

! Eo Qn +1(E)
which shows that resonance frequencies are solutions of
the equation

Q, +1(E)=0. (24)

In Fig. 2 we display the corresponding roots of the
characteristic polynomials for several coordination num-
bers. All the solutions are integers associated to the local
field of the different elementary clusters of nearest-
neighbor spins. Figure 3 is an illustration of this fact for
coordination number n=4.

Following the procedure of Ref. 2, spectral theorems al-
low us to find some exact relations between several corre-
lation functions. Unfortunately, the number of these
equations is less than the number of correlation functions
we have to solve. Ultimately we have to rely on approxi-
mate method to estimate the line intensities. The linear
chain is an exception which can be determined in exact
analytical form with the help of statistical mechanics (see
the Appendix).

VIR, (23)

ACKNOWLEDGMENTS

The authors want to acknowledge stimulating discus-
sions with Dr. Y. Kurihara and Professor M. Foglio.
They are also grateful to Professor L. M. Falicov for con-
stant encouragement. This work was supported in part by
the Brazilian agency Conselho Nacional de Desenvol-
vimento Cientifico e Tecnolégico (CNPq) through a
research scholarship (A.M.S.) and a research fellowship
(G.G.C)).

ot i
2 E(EZ-4) 0,2
3 E*-I0E%+9 1,23
4 E (E*20E%+ 64) 0t2t4
6 E (ES-56E% 784 E%2304)| 0£2,*4 %6

FIG. 2. Characteristic polynomials for different coordination
numbers, along with the corresponding resonance frequencies.

FIG. 3. Elementary clusters for coordination n=4. Spin up
is represented by a closed circle while spin down by an open cir-
cle. The local effective field induced at the central site is also in-
dicated. In an ESR experiment the static applied field must be
added to the effective field shown here. The above configura-
tions (some of them degenerate) give rise to five resonance lines,
whose resonance frequencies are 2w, 2wot4J /A, 2w0+8J /%,
respectively.

APPENDIX: SOLUTION FOR THE LINEAR CHAIN

For an infinite linear chain (or finite with periodic
boundary conditions) with ferromagnetic exchange cou-
pling, the following correlations do not depend on site in-

dices:

(ok)=M (A1)
for magnetization,
(0% _10%)=(0k110%) =1 (A2)
for short-range—order parameter, and
(A3)

(0% _10%0%+1) =t

for three-spin correlation. ‘
The remainders appearing in formula (11) can be writ-

ten as

©) #M
Ry;j =‘1_r78kj ,
(1y_ 2%
R j = s Skj ’ (A4)
it
RP¥P="-8,,,
kj .y kj

whereas the resonance frequencies are given by E =0, +2.
The Q polynomials can be readily generated yielding
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Qo(E)=1
QE)=E, (A5)
QZ(E)——_EZ_Z ’

Q4(E)=E(E*—4),

and the solution for the Green function is given by [see
Eq. ( 23) in the main text]

E*_2 M E
Gy(E)= | —=— | 2 |4 ——
& EE—4) |m | EE—9
2%y 2 it
— | |8k » A6
X\ E(E>—4) |mJ ||M (46)
and through partial fraction decomposition we obtain
Gkk(E)=«0;¢F;U;»E
| A | M-t i | M42n+t
" |2mJ | E 4nJ | E -2
i | M—2n+t
+ 47J E+2 (A7)

The correlation and the corresponding Green function
are related through the spectral intensity' by a well-known
spectral representation. Using this relation for the Green
function (A7) we obtain (with B=1/kgT)

n+5(M +1)

M —t
1+M=
* 1—e B0 * | _ o Phvo, —aps
1
M +1t)—nq
2
—_— (A8)
N 1—e PP 48

which allows us to calculate ¢ if M and 7 are known. The
magnetization and the short-range parameters can be tak-
en from the exact one-dimensional solution. Those for-
mulas are quoted in Ref. 4, where the following reduced
variables are used

1, fa

BJ’ J

An error has been detected in expression (A2) of Ref. 4.
The correct relation is given by

T=

2F1/2
77=1+EE—T [Fl/z——G cosh(/4 /1)

1—2G ~sinh(2/7)

M?*, (A9)
sinh®(4/7)

where
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FIG. 4. Line intensities for the Ising ferromagnetic chain as
functions of temperature. The applied magnetic field has been
chosen as £ ="%wy,/J=0.1, and the different lines are identified
by their resonance frequency with the convention Io=1I(2wy),
I, =[2wo+(4J /%)), and I _ =1[2wo—(4J /#)].

F=G%osh*(4/1)+1—G?,
G=e 2/T ,
and the magnetization is given by

_ sinh(4£ /7)
[cosh?(4/7)—2e ~*/"sinh(2/7)]'/?

The line intensities which follow from relation (A7),
when written in arbitrary units, are

Io=I[E=0]=2|M—1t]| ,
I, =I[E=2]=M+2n+t,
I_=I[E=—2]=|M -2+t |,

(A10)

and they are depicted in Fig. 4 as functions of the reduced
temperature for a particular value of the static magnetic
field.

As a general feature we note that the intensity which
dominates at low temperature is the one associated with
the cluster where all the spins are parallel to the applied
field. Intensities for all the other lines vanish in the limit
7—0. This is in complete agreement with the results
presented previously by the authors in Ref. 4.
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