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Electronic structure of amorphous Si3;N, in the cluster-Bethe-lattice approximation
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We present a calculation of the electronic structure of amorphous SizN,, using a model tight-
binding Hamiltonian with a basis set of Si 3s and 3p, and N 2s and 2p orbitals. Clusters of 13
atoms, centered at either a Si or a N atom, are constructed using structural data from crystalline
B-Si3N,. These clusters are employed to generate a self-consistent transfer-matrix approximation
for an infinite effective medium (Bethe lattice). The local and average densities of states are evaluat-
ed using standard one-particle Green’s operator techniques. We also simulate photoemission spectra
by weighting orbitally decomposed partial densities of states with appropriate photoemission cross
sections. Our results are in good agreement with recent experimental data.

I. INTRODUCTION

The compound Si3;N, crystallizes in two forms, both of
hexagonal symmetry: «a-Si3N,, with four formula units
per primitive cell, and [3-Si;N,, with two formula units
per primitive cell.! Recently, several techniques have been
developed to produce amorphous, in general non-
stoichiometric (i.e., Si;_,N, ), alloys of Si and N, such as
glow discharge of silane and ammonia?® or chemical vapor
deposition.®  Effective intentional doping has been
achieved with phosphorus and boron, to control transport
properties yielding, respectively, n- and p-type samples.*
The origin of the interest for such materials lies in their
actual and potential applications in the electronics indus-
try, as nonvolatile memory devices, and solar cells.

The structural properties of amorphous stoichiometric
Si3N, have been investigated by Aiyama et al’ and
Misawa et al.’ These authors have been able to establish,
through x-ray and neutron scattering analysis, that the
short-range order (SRO) of a-Si3N, strongly resembles
that of the crystalline phases, in particular that of S-
SizN4. The vibrational properties, as established by Wada
et al.” offer further evidence for the similarities between
the local geometric configurations of crystalline and
amorphous SizNy. The electronic properties of the crys-
talline phases were investigated by Ren and Ching,? using
a first-principles orthogonalized combination of atomic
orbitals approach. Robertson® studied the electronic prop-
erties of silicon nitrides within a simple tight-binding
framework and obtained results for the densities of states
for a variety of compositions, using a crystallinelike ap-
proximation. More recently, Kircher et al.'” made a sys-
tematic experimental investigation of the photoemission
properties of hydrogenated and unhydrogenated amor-
phous SiN,, with x ranging up to 1.6.

The aim of the present work is to evaluate the partial
and average densities of states for stoichiometric amor-
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phous Si3N,, including the photoemission cross section
for the various orbitals, in order to compare our results
with those of Kércher et al.!®

In Sec. II we review briefly the relevant experimental
and previous theoretical results. In Sec. III we define our
model Hamiltonian and discuss our method of solution,
based upon the cluster-Bethe-lattice method. In Sec. IV
we present our results, and in Sec. V our conclusions.

II. STOICHIOMETRIC SILICON NITRIDE

Structurally, the SRO in amorphous Si3;N, strongly
resembles that of the local geometry of either a-Si;Ny or
B-Si3N,.:>¢ The average first-neighbor N-Si distances in
B-SizN, and a-Si3;N, are the same, equal to 1.729 A. The
coordination numbers of N and Si are, respectively, 3 and
4 in the crystalline and 2.78 and 3.70 in the amorphous
phases. There is a larger fluctuation in the nearest-
neighbor (NN) distances in the amorphous (0.07 A) than
in the crystalline phase (0.02 A). As far as next-nearest
neighbors are concerned, we have to consider N(Si)N and
Si(N)Si pairs. For the former, the average distances are
practically the same (B: 2.835 A; a: 2.83 A), whereas
for the latter they are slightly different (B8: 2.98 A;
a: 3.01 A). As far as the coordination numbers are con-
cerned, we have nyn(B)=9, nnn(a)=7.7, ng;si(B)=38,
ngsi(a)=6.5. The bond angles between any two adjoining
N—Si—N bonds are, on the average, 109°, and between
two adjoining Si-N-Si bonds are, on the average, 120°.
For these reasons, we have chosen as basic clusters in our
calculation the two 13-atom clusters shown in Fig. 1, one
centered on a N atom and the other on a Si atom.

The clusters in Fig. 1 do not have, despite their sizes,
any closed rings of bonds. The smallest closed ring in
crystalline Si;N, has eight bonds and extends out to the
fourth-nearest neighbor. In a model Hamiltonian with
NN hopping only, we thus have an “open” structure,
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FIG. 1. Schematic representation of 13-atom clusters used to
evaluate density of states: (a) N centered and (b) Si centered.

since in the Bethe lattice there are no closed rings of
bonds. However, these clusters are sufficiently large to
contain important structural information about the local
environment, the atomic positions being deduced from the
crystalline SB-SizN, modification. The validity of this
choice for the treatment of an amorphous alloy is con-
nected to the use of the Bethe-lattice approximation'! and
is further discussed below. The photoemission results are
shown in Fig. 4, where they are discussed in comparison
with the theoretical curves. ‘

The results of Ren and Ching® for the electronic struc-
ture of B-SizN, predict an indirect-gap semiconductor,
with the top of the valence band off the center of the Bril-
louin zone. The value of the gap is dependent upon the
particular model potential and basis set employed, varying
between 4.72 and 7.77 eV. There are two valence bands,
separated by a gap which varies between 3.36 and 5.43 eV.
The upper band has a width from 8.65 (corresponding to
the larger valence—conduction-band gap). The lower
band has a width between 3.21 and 4.18 eV. The top of
the valence band is mostly N p-like, whereas the bottom
of the conduction band is mostly derived from Si s states.
The hole effective mass is fairly large (~3mg) due to the
flatness of the top of the valence band.

Robertson has made a molecular-orbital study of the
silicon nitrides, obtaining a parametrized tight-binding
description of these compounds.’ In our calculation we
have used his parameters for Si;N,, as given in Table I,
neglecting a second-neighbor NN po interaction. The ef-
fect of this latter interaction is to introduce dispersion in
an otherwise flat N p-like “lone-pair” orbital band. For a
planar N site, corresponding to Si-N-Si angles of 120°, as

TABLE 1. Tight-binding parameters employed in our calcu-

lation (from Ref. 9).

Tight-binding parameters (eV)

Si E,=— 84 E,=— 20
N E,=—25.1 E,=—115
Vo= —2.28
Viso=—4.76
Vs =—2.73
Vopo=—4.76
Vppr=—1.30

adopted in our clusters, he finds an energy gap of 4.3 eV.
He also obtains, as Ren and Ching, two valence bands; an
upper one of width of the order of 13 eV, separated by a
3-eV gap from a narrow lower valence band (width: 2
eV). He finds basically the same symmetry and atomic
characteristics for valence and conduction bands as Ren
and Ching.®? The hole effective mass would be infinite in
the absence of the second-neighbor interaction mentioned
above. .

III. MODEL HAMILTONIAN AND EVALUATION
OF THE DENSITY OF STATES

We take as our basis set atomiclike Si 3s and 3p, and N
2s and 2p orbitals. To each site in the structure there cor-
respond, thus, four orbitals: one s-like and three p-like.
Only nearest-neighbor hopping matrix elements, as given
in Table I, are considered in the tight-binding model

“Hamiltonian. To evaluate the density of states we use

zG(z)=14+HG(2), (3.1

where z =E +i0% is the (complex) energy, G(z) is the
Green’s operator, and H is the Hamiltonian. As is well
known, the local, orbital decomposed, density of states of
the vth orbital at the ith site is given by

piv(E)=—%Im(iv|G(z)|iv) . (3.2)
The local density of states at a Si(N) site is defined by

pSi(N)(E)z_;%__ImE<V|G(Z)lv>si(N) ) (3.3)

where the angular brackets indicate a configuration aver-
age over all Si(N) sites and the sum is over the s and p or-
bitals. The total density of states is

p(E)=2psi(E)+ +py(E) . (3.4

We evaluate also an energy distribution of photoemitted
electrons using the approximation

D(E)=3Dg(E)++Dy(E) , 3.5)
where
D(E)= ——11; ImS ov|G() [ v)s, (3.6)

and similarly for Dy(E). In (3.6), o, is the photoemission
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cross section for the vth orbital assumed energy indepen-
dent.

To evaluate (3.3)—(3.6) we need to compute configura-
tion averaged values for the diagonal matrix elements of
the Green’s operator. We do this in the standard way,'?
by attaching to the dangling bonds at the surface of the
clusters in Fig. 1 effective fields (Bethe lattices) deter-
mined in a self-consistent way. The procedure, although
cumbersome because of the number of atoms and
geometry of the cluster, is straightforward. Since the po-
sitions of all equivalent atoms in the clusters are related
by rotations, it is possible to show that there are only two
inequivalent effective fields, one coupling N to Si and the
other Si to N atoms. The calculation details are presented
in the Appendix.

As shown in the Appendix, the solution described above
is valid for the ‘“crystalline” cluster, assuming identical
Si—N bond lengths throughout. Otherwise, we cannot ex-
ploit symmetries which render the numerical solution of
the problem manageable. The question then arises of the
relevance of such a cluster to describe an amorphous ma-
terial. Bond lengths and angles fluctuations in a-SizN,
seem to be small, with regard to the structural data
presented in Sec. II. Their main effect must be to wash
out detailed structure in the density of states. This is
achieved in our calculation by introducing a finite imagi-
nary part of the energy, of the order of the experimental
resolution. Hence, fine details in the density of states are
lost, which is, in practice, the same effect as that of taking
into account short-range structural fluctuations in the
evaluation of the electronic states. Obviously, this is ade-
quate only for such “macroscopic” quantities as the densi-
ty of states, which are coarse-grain averages. Concerning
the cluster-Bethe lattice approximation itself, its limita-
tions are well known, as well as its advantages.12 We have
not attempted to evaluate charge transfers, since our
Hamiltonian is not self-consistent. Self-consistency can
be introduced within a tight-binding scheme, but before
an evaluation of microscopic properties is undertaken we
will need a better structural model as well as to take into
account defects and impurities present in the amorphous
state.

IV. RESULTS

We start by presenting, in Table II, a comparison be-
tween some of our results, experimental data, and previ-
ous theoretical results. We concentrate only upon gross
features of the valence bands and the semiconducting gap.
The latter is predicted by the Bethe-lattice approximation
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FIG. 2. Orbitally decomposed partial density of states. Si
states: (a) 3s, (b) 3p, and 3p,, (c) 3p,. N states: (d) 2s, (e) 2p,
and 2p,, (f) 2p,. The densities have been multiplied by the
respective photoemission cross section for photon energy of 87
eV and broadened by 0.3 eV (see text for details). The curves
are all plotted in the same (relative) scale. Note different scales
between left and right panels.

SPECTRAL DISTRIBUTIONS (Arb. units)

to be 40% larger than the measured one. The valence-
band gap is also overestimated by about 70%. On the
other hand, valence bandwidths are underestimated.
These are all well-known features of the approximation,
which can be corrected by renormalizing the tight-binding
parameters. Our results are, however, in reasonable agree-
ment with previous-theoretical calculations. The degree
of precision with which the electronic structure of such a
complicated material as Si;N, can be evaluated should not
lead us to expect agreement with experiment to better
than 1 or 2 eV. For this reason we have not renormalized
the tight-binding parameters entering into our model
Hamiltonian.

In Fig. 2 we present the orbitally decomposed partial

TABLE II. Comparison between the main features of the valence band of Si;N, obtained from dif-
ferent calculations and experiment. (All energies in eV.)

Experiment Ref. 8 Ref. 9 This work
Semiconducting gap 4.552 4.7—6.7 4.3 6.6
Upper valence bandwidth 12° 8.7—10.6 13 10.6
Lower valence bandwidth 4.5 3.2-4.2 3 2.2
Valence-band gap 3® 34-5.4 2 5.3

2Reference 13.
bReference 10.
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densities of states for SisN,. Each curve has been multi-
plied by its relative photoemission cross section for
hv=287.1 eV, normalized to o(Si, 3s)=1; that is o(Si,
3p)=1.13, o(N, 2s5)=3.44, and o(N, 2p)=6.88.1° The
energy broadening is given by the imaginary part of the
complex energy set at 0.3 eV. The zero of the energy is at
the top of the valence band, and the curves are shown
only up to the conduction-band edge, which falls at 6.6
eV. Figure 2(a) shows the Si 3s orbital partial density of
states. The two-valence-band feature of SizN, is clearly
visible, with a gap of about 5.3 eV between them. As al-
ready mentioned, the Bethe-lattice approximation overes-
timates gaps (underestimates bandwidths) unless the pa-
rameters entering the tight-binding Hamiltonian are re-
normalized. Figure 2(b) shows the results for the Si 3p,
and p, orbitals, and Fig. 2(c) shows the results for the Si
3p, orbital. The contribution of the Si orbitals to the
valence bands is rather small (notice the change in scale
between the left and right panels of Fig. 2). The 3s orbi-
tal, as expected, contributes more strongly to the low-
energy features. The Si states, however, contribute strong-
ly to the bottom of the conduction band. Figure 2(d)
shows the contribution of the N 2s orbital. This is almost
completely confined to the lower valence band. Figure
2(e) shows the results for the N 2p, and p, orbitals, which
dominate the upper valence band. Finally, Fig. 2(f) shows
the N 2p, lone orbital band, concentrated at the top of the
valence band.

Figure 3 shows the partial densities of states, uncorrect-
ed for photoemission cross sections, broadened by an
imaginary part of the energy of 0.8 eV. All the main
features of Fig. 2 are still visible, in particular the large
density of states of the lone orbital band at the top of the
valence band. We can also see that the contribution of the
Si states is small in the lower valence band, being slightly
more important near the bottom and the middle peak of
the upper valence band. Again, the very strong Si charac-
ter of the bottom of the conduction band is clearly visible.
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FIG. 3. Partial density of states broadened by 0.8 eV.
Dashed line: Si states. Solid line: N states. The top of the
valence band is at zero eV.
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FIG. 4. Theoretical (solid line) and experimental (dashed line)
energy distribution curves for photon energy 1487 eV. The ex-
perimental results were obtained by Karchner et al. (Ref. 10).

Finally, in Fig. 4 we compare the total-energy-
distribution curve obtained using (3.5) at a photon energy
of 1487 eV, with the experimental results of Kircher
et al.'® Our calculation was performed for stoichiometric
a-SizN,;, whereas their results were obtained for SiNj s.
This should not be very important, except perhaps for a
slight enhancement of the N-derived features of the exper-
imental spectrum in relation to the theoretical curve. The
broadening of the latter was obtained using an imaginary
part of the energy of 0.8 eV, in accordance with the exper-
imental resolution of 0.86 eV. We aligned the experimen-
tal peak A4 and the theoretical peak due to the N 2p lone-
pair band. Peak B corresponds thus to N 2p, and p,, and
Si3p—derived states, whereas peak C is mostly N 2p, and
Py With some admixture of Si 3s. There is no evidence for
a fourth peak in the upper valence band, as deduced by
Kircher et al. from Robertson’s calculation.! There-
fore, the cluster Bethe-lattice approximation yields results
in better agreement with experiment than previous calcu-
lations. The lowest peak is, as discussed before, N 2s.
There are two obvious discrepancies between theory and
experiment, as shown in Fig. 4. First, the relative posi-
tions of the peaks are different, the theoretical ones being
further apart than the experimental ones. This could be
corrected, for instance, by a different choice of parameters
than that of Table I. However, given the nature of our
model and the approximations we employ, we did not at-
tempt this fit. What we have shown is that a relatively
simple calculation can account for some of the main spec-
tral features of the experimental curves. Second, the rela-
tive intensities of peaks A, B, and C are quite different.
This is due, in part, to the underestimation of the lone-
pair orbital bandwidth in our calculation, which leads to
an enhancement of the height of the peak 4. It is also
due to the Bethe-lattice approximation, which is not
designed to reproduce precise features of the density of
states. In addition, there are matrix-element effects which
have not been fully taken into account.

V. CONCLUSION

We have presented a calculation of the local density of
states and energy-distribution curve for stoichiometric
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amorphous Si;N, based upon a model tight-binding Ham-
iltonian. The basis set includes Si and Ns- and p-like
valence orbitals, and nearest-neighbor hopping is con-
sidered. Clusters of 13 atoms, N and Si centered, are em-
ployed in conjunction with the Bethe-lattice approxima-
tion to determine the electronic structure. Our results for
the valence-band density of states are in good agreement
with recently published data. We have thus shown the
usefulness of the Bethe-lattice approximation to deal with
fairly complicated materials, which even in their crystal-
line form pose nontrivial calculational problems due to
their low symmetry and high number of atoms per primi-
tive cell. The same method can be employed to study the
amorphous SiN, alloys as a function of the composition
x, although the lack of structural information concerning
the Si and N local environment as x increases poses some
difficulties. We are investigating this problem.
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APPENDIX

Let us write (3.1) in matrix form:

ZGij=8,-j+2H,-kaj , (A1)
k

T =

3
z—Hg— > Hy
j=1

which is solved iteratively.

The simplest way to understand (A6) is to remember
that under a rotation, in the Slater-Koster formalism, H
transforms like a scalar, Hg, and H, like vectors, and
H,, like a second-rank tensor. The matrices S are then
simply:

1 0
0 R

¢

, (A11)
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—1 —1
2
—1
z _HN_kzlHlj,]ij(ij)leS(ij)h J H,j, l Hy ,

where G;; and Hy are 4X4 matrix representations,
respectively, of the operators G and H in the {|iv)}
basis, where i is the site index and v is the orbital index.
Taking a N-centered cluster, in the notation of Fig. 1, we
obtain

3
(Z —HN)GOO=1+ 2 Ho’kao y

(A2)
ket
2
(z —Hg)Gio=H;0Goo+ X, Hy;Gixo » (A3)
k=1
3
(z —Hy)Gyjo=H;;iGio+ X, Hyj;ixGixo - (A4)
k=1

In (A2)—(A4), Hy and Hyg; are the intrasite Hamiltonian
matrices and, otherwise noted, i,j,k =1,2,3.
We define the transfer matrices:

'

T(ij)k=Gijk,OGi;0l ) (A4)
Ti=G;oGx - (A3)
Since 7
Hy ik =SupwHo xSk » (A6)
where S is unitary, we can show that
Tupe=S (ij)‘k TiS Gk - (A7)
We also have
Ho =SH, S, 1=2,3 (A8)
so that
T;=8,T.S ", 1=2,3. (A9)

Finally, by requiring the identity of the solution of (A2)
with  Gro=TxGoo and of (A2)—(A4) with
Gijk,o=T(ijxGij0 we obtain a self-consisting condition for
Tl H

(A10)

where R is the 3 X3 rotation matrix which takes the unit
vector in the direction 0k into the unit vector in the direc-
tion (ij,ijk). Crucial to this symmetry argument is the in-
variance of the bond lengths.

Finally, we obtain

Goo= [z —Hn—3 HoiTx ]-‘ , (A12)
k=1

and similarly for a Si-centered cluster.




32 ELECTRONIC STRUCTURE OF AMORPHOUS Si;N, IN THE . .. 8337

IR. Wyckoff, Crystal Structures (Interscience, New York, 1964),
Vol. 2.

2L. Ley, R. Kircher, and R. L. Johnson, Phys. Rev. Lett. 53,
710 (1984).

3C.-E. Morosanu, Thin Solid Films 65, 171 (1980).

4F. Alvarez and 1. Chambouleyron, Sol. Energy Mater. 10, 151
(1984).

5T. Aiyama, T. Fukunaga, K. Niihara, T. Hirai, and K. Suzuki,
J. Non-Cryst. Solids 33, 131 (1979).

6M. Misawa, T. Fukunaga, K. Niihara, T. Hirai, and K. Suzuki,
J. Non-Cryst. Solids 34, 313 (1979).

7N. Wada, S. A. Solin, J. Wong, and S. Prochazka, J. Non-
Cryst. Solids 43, 7 (1981).

8S.-Y. Ren and W. Y. Ching, Phys. Rev. B 23, 5454 (1981).

93. Robertson, Philos. Mag. B 44, 215 (1981).

I0R. Kircher, L. Ley, and R. L. Johnson, Phys. Rev. B 30, 1896
(1984).

1R, B. Laughlin and J. D. Joannopoulos, Phys. Rev. B 20, 5228
(1979).

123 D. Joannopoulos and M. L. Cohen, Solid State Phys. 31, 71
(1976).

133, Bauer, Phys. Status Solidi A 39, 411 (1977).



