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Abstract

Inflammation enhances the peripheral analgesic efficacy of opioid drugs, but the mechanisms involved in this phenomenon
have not been fully elucidated. Crotalphine (CRP), a peptide that was first isolated from South American rattlesnake C.d.
terrificus venom, induces a potent and long-lasting anti-nociceptive effect that is mediated by the activation of peripheral
opioid receptors. Because the high efficacy of CRP is only observed in the presence of inflammation, we aimed to elucidate
the mechanisms involved in the CRP anti-nociceptive effect induced by inflammation. Using real-time RT-PCR, western blot
analysis and ELISA assays, we demonstrate that the intraplantar injection of prostaglandin E2 (PGE2) increases the mRNA
and protein levels of the m- and k-opioid receptors in the dorsal root ganglia (DRG) and paw tissue of rats within 3 h of the
injection. Using conformation state-sensitive antibodies that recognize activated opioid receptors, we show that PGE2, alone
does not increase the activation of these opioid receptors but that in the presence of PGE2, the activation of specific opioid
receptors by CRP and selective m- and k-opioid receptor agonists (positive controls) increases. Furthermore, PGE2 down-
regulated the expression and activation of the d-opioid receptor. CRP increased the level of activated mitogen-activated
protein kinases in cultured DRG neurons, and this increase was dependent on the activation of protein kinase Cf. This CRP
effect was much more prominent when the cells were pretreated with PGE2. These results indicate that the expression and
activation of peripheral opioid receptors by opioid-like drugs can be up- or down-regulated in the presence of an acute
injury and that acute tissue injury enhances the efficacy of peripheral opioids.
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Introduction

Clinical and experimental results have shown that the

peripheral analgesic efficacy of opioids is enhanced in the presence

of inflammation and tissue injury [1,2]. The mechanisms

responsible for this phenomenon involves the following events:

increases in the opioid receptor mRNA level and opioid receptor

expression level [3–5], an increase in the axonal transport and

accumulation of these receptors in the peripheral sensory nerve

endings [6], and an increase in the opioid agonist binding to their

corresponding receptor [7,8]. Moreover, inflammation induces the

release of endogenous opioid peptides [1]. Studies investigating the

molecular mechanisms involved in the enhanced effects of opioid

treatments in the periphery caused by inflammation mainly focus

on the m-opioid receptor and the chronic inflammatory processes

[2,5–7,9]. Inflammation enhances the axonal transport of opioid

receptors toward the periphery, which is preceded by an increase

in opioid receptor mRNA transcription [3,10].

Previously, we demonstrated that crotalphine (CRP), a struc-

tural analogue to a novel analgesic peptide that was first identified

in the crude venom from the South American rattlesnake Crotalus

durissus terrificus [11], induces a potent (0.008–25 mg/kg, p.o.) and

long-lasting (2–5 days) anti-nociceptive effect that is mediated by

the activation of the peripheral k-opioid receptor (prostaglandin

E2-induced hyperalgesia) and the k- and d- (chronic constriction

injury of the rat sciatic nerve) opioid receptors [11–13]. The

L-arginine-nitric oxide-cGMP pathway is involved in the periph-

eral anti-nociceptive effect of CRP [13] and opioid agonists [14–

17]. The activation of opioid receptors regulates a variety of

intracellular signaling cascades, including the PI3Kc/AKT

signaling pathway [18], as well as the activation of mitogen-

activated protein kinases (MAPKs) and protein kinase C (PKC)

[19–21].

The high efficacy and long-lasting peripheral anti-nociceptive

effects of crotalphine have only been observed in the presence of

inflammation, and the mechanisms involved in the enhanced

effects of CRP in the presence of inflammation are currently

unknown. In the present study, we used prostaglandin E2 (PGE2)-

induced hyperalgesia in a rat model to characterize the anti-

nociceptive effect caused by the peripheral administration of CRP

and compared this response with the responses induced by select

opioid receptor agonists. Furthermore, we also investigated the
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intracellular signaling pathways activated by CRP and the opioid

receptor agonists.

Experimental Procedures

Animals
Male Wistar rats (170–190 g) were used in this study. The

animals were housed in a temperature-controlled (2162uC) and

light-controlled (12 h/12 h light/dark cycle) environment. All of

the behavioral tests were performed between 9:00 am and 4:00

pm. Standard food and water were available ad libitum. All of the

procedures were conducted in accordance with the guidelines for

the ethical use of conscious animals in pain research published by

the International Association for the Study of Pain [22] and were

approved by the Institutional Animal Care Committee of the

Butantan Institute (CEUAIB, protocol number 386/2007).

Drug administration
The drugs [D-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin acetate

salt (1) (DAMGO, 5 mg/paw); [D-Pen2,5, p-Cl-Phe4]-Enkephalin

(DPDPE, 20 mg/paw); (2)-trans-(1S,2S)-U-50488 hydrochloride

hydrate (U 50,488, 10 mg/paw) [23]; Prostaglandin E2 (PGE2,

100 ng/paw) [23,24]; D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr

amide (CTOP, 20 mg/paw) [25,26], nor-binaltorphimine dihy-

drochloride (nor-BNI, 50 mg/paw) [25,27]; N,N-diallyl-Tyr-Aib-

Aib-Phe-Leu (ICI 174,864, 10 mg/paw) [25], methiodide naloxone

(1 mg/Kg, subcutaneously) were used in this study [28]. These

drugs were purchased from Sigma-Aldrich, Saint Louis, MO,

USA. The doses of the agonists and antagonists used in this study

were determined based on the doses used in previous studies

and preliminary studies [25].The peptide f-pseudosubstrate

([C]SIYRRGARRWRKLYRAN; amino acids 105–121 in f-
PKC) was synthesized at the peptide and nucleotide facility at

Stanford and fused to the cell permeable Tat protein transduction

domain peptide. The peptide CRP (,E-F-S-P-E-N-C-Q-G-E-S-

Q-P-C, where ,E is pyroglutamic acid and a disulfide bond is

located between 7C-14C) was synthesized by the American

Peptide Co, Sunyvalle, CA, USA (product number 331065, lot

number U07122A1, 98% purity, M.W. 1534,6 Daltons) using

Fmoc chemistry in the solid phase, as described by Konno et al.

(2008) [11]. Crotalphine (CRP) was administered using a dose of

0.6 ng/paw. The peptide was diluted in sterile saline, and the

opioid agonists and antagonists were diluted in water or saline. All

of the drugs were administered in a final volume of 50 ml by

intraplantar (i.pl.) injection.

PGE2 was injected into the hind paw to induce hyperalgesia.

CRP and the opioid agonists and antagonists were injected 2 h

after the PGE2 injection. Control animals were given the same

volume of sterile saline or water by i.pl. injection and were tested

following the same schedule described below.

PGE2-induced hyperalgesia
Sterile saline containing PGE2 (100 ng/paw) was injected into

both hind paws for the behavioral tests and into one hind paw for

the biochemical experiments. A stock solution of PGE2 was

prepared by dissolving 0.5 mg of PGE2 in 1 ml of absolute

ethanol. For injection into the rat paw, an aliquot of this stock

solution was diluted in sterile saline. The percentage of ethanol in

the solution injected into the hind paw was less than 0.1%. The

pain threshold was measured before and 3 h after PGE2 injection

[25,29].

The rat paw pressure test [30] was used to evaluate

hyperalgesia. An Ugo-Basile pressure apparatus was used to

determine the pressure pain threshold before and 3 h after PGE2

injection. The testing was conducted blind to the group

designation. Briefly, an increasing amount of force (in g, 16 g/s)

was applied to the hind paw. The force needed to induce paw

withdrawal was recorded as the pain threshold. To reduce the

stress level, the rats were acclimated to the testing procedure 1–3

days before the experiment.

Biochemical studies
For this study, ipsilateral and contralateral dorsal root ganglia

(DRG, L4-6, pooled 7–10 ganglia) and plantar tissue were

collected 3 h after the intraplantar injection of PGE2. To obtain

the plantar tissue, two longitudinal incisions were made through

the skin and muscle of the plantar aspect of the foot, from the

proximal edge of the heel to the toes, using a blade. The skin was

removed, and the adjacent subcutaneous tissue, including tendon,

was collected. Nnaı̈venaı̈ve animals were used as controls.

Reverse Transcriptase/Real-Time Polymerase Chain

Reaction. RNA was isolated from the DRGs and plantar tissue

using Trizol reagent (Gibco Life Technologies, Grand Island, NY,

USA). The RNA concentration and integrity were determined,

cDNA was synthesized using Superscript III RNase H-Reverse

Transcriptase (Invitrogen Life Technologies, Grand Island, NY,

USA) at 42uC for 50 min and real-time polymerase chain reaction

was performed. The following primers were used for gene

amplification: m-opioid receptor: sense GCCATCGGTCT-

GCCTGTAAT; antisense GAGCAGGTTCTCCCAGTAC, k-

opioid receptor: sense GTCAGAGGACAGCTTTGCAC, anti-

sense TAGCTCAGTGAAGGTACATGC, d-opioid receptor:

sense ATGGTCATGGCAGTGACC, antisense CACGCA-

GATCTTGGTCACAG, Cyclofilin: sense 5-AATGCTGGAC-

CAAACACAAA-3, antisense 5-CCTTCTTTCACCTTCC-

CAAA-3. The real-time PCR for the opioid receptors and

house-keeper gene cyclofilin were run separately, and the

amplification reactions were performed using the ABI Prism

7700 Sequence Detection System and the SYBR Green PCR

Master Mix (Applied Biosystems Life Technologies, Grand Island,

NY, USA). The results were quantified as Ct values, where Ct is

defined as the threshold cycle of the polymerase chain reaction at

which the amplified product is first detected. The expression levels

were normalized using the cyclofilin expression level as an

endogenous reference.

Immunoblot analysis. Frozen tissues were homogenized in

cold RIPA buffer (1% Igepal CA-630, 0.5% sodium deoxycholate,

0.1% SDS, 1 mM PMSF, 10 mg/ml aprotinin, 1 mM sodium

orthovanadate in PBS buffer, pH 7.4, 1:300 protease and

phosphatase inhibitor cocktail from Sigma-Aldrich, St. Louis,

MO, USA (cat. number P8340, P5726, P0044)). The samples were

centrifuged at 10,0006 g for 10 min at 4uC. The supernatant was

removed and centrifuged again. After centrifugation, the protein

concentration in the supernatant was determined using Bradford

assay [31]. Aliquots containing 80 mg of total protein were boiled

in Laemmli loading buffer (BioRad, Hercules, CA, USA) and then

loaded onto a 10% polyacrylamide gel. After separating by

electrophoresis, the proteins were transferred to a nitrocellulose

membrane (Bio-Rad, Hercules, CA, USA). The membranes were

blocked in TBST (20 mM Tris-HCL, 150 mM NaCl, and 0.1%

Tween 20) containing 5% non-fat dry milk for 2 h at room

temperature and then incubated in m-opioid receptor (C-terminus)

rabbit IgG, d-opioid receptor (C-terminus) rabbit IgG (1:1000,

Chemicon, Temecula, CA, USA, cat. numbers AB 5511, AB1560,

respectively) or k-opioid receptor-1 (N-19) goat polyclonal IgG

antibody (1:500; Santa Cruz Biotechnology, Dallas, TX, USA, cat.

number sc31779) overnight at 4uC. The membranes were then

incubated in the appropriate peroxidase-conjugated secondary
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antibody (1:5000; anti-rabbit and anti-goat, Sigma-Aldrich, St.

Louis, MO, USA, cat. numbers A0545 and A8919, respectively)

for 90 min at room temperature and developed using enhanced

chemiluminescence (Amersham GE Healthcare Bio-Sciences

Corp.,; Piscataway, NJ, USA). The signal was detected by

autoradiography. Quantification analysis of the blots was per-

formed using the Scion Image software (Scion Corporation based

on NIH image). Targeted bands were normalized to GAPDH

(1:5000, Advanced ImmunoChemical Incorporate, Long Beach,

CA, USA).

Opioid receptor activation studies: ELISA assay
In vivo studies. Naı̈ve and PGE2-sensitized rats were

injected with DAMGO (5 mg/paw), DPDPE (20 mg/paw), U

50,488 (10 mg/paw) or CRP (0.6 ng/paw). In the sensitized rats,

these drugs were administered 2 h after the PGE2 injection.

Approximately 1 h after the CRP or opioid receptor agonist

treatment, the animals were perfused through the heart with

phosphate-buffered saline and 4% paraformaldehyde (PFA) in

0.1 M phosphate buffer (PB, pH 7.4). The DRG (L5) and plantar

tissue were removed, post-fixed for 4 h in 4% PFA, and

transferred to a 30% sucrose solution in PB for 48 h to ensure

cryoprotection. The tissues were sectioned (14 mm) on a cryostat,

and the sections were mounted on histological glass slides covered

with silane. Two sections from each region were circled using an

ImmEdge PAP pen (Sigma-Aldrich) to form a water-proof barrier,

and the resulting well could hold approximately 80 ml of solution.

ELISA was performed in these wells using a 1:500 dilution of

primary antibody and a 1:500 dilution of secondary antibody. To

detect the activated receptor, we used antibodies that are able to

distinguish the conformational change in the N-terminus of the

opioid receptors following activation [32]. The antibodies were

purchased from Proteimax Brazil. The reaction product was

transferred to a 96-well plate, and the absorbance at 490 nm was

measured using a microplate reader (Molecular Devices, Sunny-

vale, CA, USA).2.4.3.2 Cell culture studies. These studies were

performed using cultured DRGs obtained from naı̈ve animals.

Rats were decapitated, and all of the DRGs (45650 DRGs) from

the cervical, thoracic, lumbar and sacral levels were aseptically

removed and collected in Earl’s balanced salt solution (5 mM

KC1, 116 mM NaCI, 1 mM NaH2PO4, 8 mM Na2HPO4,

1.46 mM KH2PO4, 8 mM NaHCO3 and 1% glucose). Next, the

DRGs were digested in 0.5% collagenase (Sigma, Saint Louis,

MO, USA) in EBSS at 37uC for 45 min. The tissue was then

incubated for 15 min in EBSS containing 1% trypsin (Sigma,

Saint Louis, MO, USA), washed in 2.5% trypsin inhibitor (Sigma,

Saint Louis, MO, USA) and then triturated using a thin fire-

polished pipette in Dulbecco modified Eagle medium (DMEM,

Gibco Life Technologies, Grand Island, NY, USA) containing 1%

HEPES buffer solution, penicillin/streptomycin (1:200, Gibco,

Life Technologies, Grand Island, NY, USA) and 10% heat

inactivated fetal bovine serum (Sigma, Saint Louis, MO, USA).

Next, the cells were subjected to density gradient centrifugation at

2006g for 1 min. The resulting pellet was resuspended in DMEM,

and the cell suspension was filtered through a cell strainer (75 mm,

Becton Dickinson Labware, Franklin Lakes, NJ, USA). The DRG

cells were seeded onto 24-well culture plates at a density of

15,000 cells/well. The cells were cultured in a humidified

incubator at 37uC with 5% CO2 and 95% air. Two days after

seeding, the culture medium was changed. The cells were treated

with PGE2 (1 mM) for 15 minutes for sensitization. Vehicle was

used as a control. Cells were then treated with CRP dissolved in

medium at three different concentrations (0.001, 1 and 100 mM)

or DAMGO, DPDPE or U 50,488 (1 mM) for 15 minutes. In the

yoked control wells, only culture medium was added (vehicle

treatment). Three separate experiments were conducted on

different occasions. For each experiment, new primary cultures

were prepared under the same standard experimental conditions.

Each treatment was replicated in three different wells. In the pilot

studies, we determined the cell viability following the specific

concentrations of agonists, CRP and PGE2 used. No significant

increase in the number of trypan blue stained cells was observed

after these treatments when compared with the vehicle (data not

shown). ELISA was performed in each well as previously

described.

Intracellular signaling studies. These studies were per-

formed in DRG cell cultures obtained from naı̈ve animals. The

cells were obtained as previously described (section 2.3.3.2). CRP

(1 mM) or U 50, 488 (1 mM) was added to the cells untreated or

pretreated with PGE2 (1 mM) as previously described. In these

studies, Nor-BNI (1 mM) was added to the culture (30 minutes

before treatment). After treatment, the cyclic GMP content was

measured using a cyclic GMP enzyme immunoassay kit purchased

from Amersham Enzymeimmunoassay Biotrak (GE Healthcare

Bio-Sciences Corp, Piscataway, NJ, USA).The phosphorylation of

Akt, ERK 1/2 and JNK was evaluated by immunoblot analysis

using the previously described method. The DRG cells were

homogenized in a lysis buffer as previously described. The cells

were incubated in primary antibody, either phosphorylated (p)

AKT-T, pERK, pJNK, or non-phosphorylated forms of these

proteins (1:1000; Cell Signaling Technology, Danvers, MA, USA),

overnight at 4uC and then incubated in HRP-conjugated

secondary antibody (1:2000; Amersham Biosciences, Arlington

Heights, IL, USA). The blots were visualized using ECL solution

for 1 min and exposed onto hyperfilms (Amersham Biosciences,

Arlington Heights, IL, USA).

Statistical analysis
The results are presented as the mean 6 SEM. For figures 1,

Fig. S1–4 the statistical evaluation of data was conducted using a

two-way analysis of variance (ANOVA) with post-hoc testing by

Tukey. One way ANOVA was used to analyze figures 2, 3, 4, 5, 6,

7, 8, 9, 10, with post-hoc testing by Tukey. A value of P,0.05 was

considered significant.

Results

Acute sensitization improves the anti-nociceptive effect
of CRP and opioid receptor agonists

The intraplantar injection of CRP (0.6 ng/paw) or the opioid

agonists DAMGO (5 mg/paw), U-50488 (10 mg/paw) or DPDPE

(20 mg/paw), which were used as positive controls, did not modify

the basal nociceptive threshold of naı̈ve rats in the rat paw pressure

test (Fig. 1A). The intraplantar injection of PGE2 caused a

significant decrease in the nociceptive threshold, with a peak

response occurring 3 h after the administration (Fig. 1B, checkered

bar, and Fig. S1), compared with the basal values obtained before

any treatment, which is a characteristic sign of hyperalgesia. The

administration of CRP or opioid receptor agonists, in the same

doses previously used [11,25], blocked the PGE2-induced

hyperalgesia and increased the nociceptive threshold of the

animals when compared with the basal values (Fig. 1B). These

effects were only observed in the paw injected with CRP or

agonists. These treatments did not modify the PGE2-induced

hyperalgesia in the contralateral paw (Fig. 1C). In order to confirm

the peripheral CRP and opioid agonists effect, rats were treated

with naloxone methiodide, a peripherally acting opioid antagonist.

This antagonist blocked CRP and opioid agonists-induced anti-
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nociception (Fig. S2). In addition, the CRP or opioid receptor

agonists systemic injection, in the same doses injected intraplan-

tarly, did not alter PGE2-induced hyperalgesia (Fig. S3). Together,

these results indicate that CRP and the opioid receptor agonists, in

the doses used in this study, have a local anti-nociceptive effect in

the presence of the acute sensitization induced by PGE2.

Previously, we demonstrated that the anti-nociceptive effect of

CRP administered orally in this hyperalgesia model is mediated by

the activation of the peripheral (local) k-opioid receptor [11]. To

determine whether opioid receptors are involved in the local

(intraplantar) anti-nociceptive effect of this peptide, rats were

administered selective antagonists of the opioid receptors by i.pl.

injection. The anti-nociceptive effect of CRP was abolished in the

paw injected with nor-BNI, an antagonist of the k-opioid receptors

(Fig. 1B), but not by CTOP or ICI 174,864, m- and d-opioid

receptor antagonists, respectively (Fig. 1B). These results indicate

that the peripheral anti-nociceptive effect of CRP is mediated by

the activation of the peripheral k-opioid receptor. The opioid

receptor antagonists CTOP, ICI 174,864, and Nor-BNI blocked

the anti-nociceptive effects induced by their corresponding agonist

(DAMGO, DPDPE, and U 50,488, respectively), which confirms

the efficacy of the antagonist doses used (Fig. 1B). The antagonists,

per se, had no effect on the hyperalgesia induced by PGE2 (data not

shown).

Acute sensitization interferes with the opioid receptor
levels

To elucidate the potential mechanisms involved in the anti-

nociceptive effect of CRP and the opioid agonists observed in the

presence of prostaglandin E2 sensitization, we investigated

whether this eicosanoid treatment alters the mRNA expression

levels of the opioid receptors. PGE2 treatment significantly

increased the mRNA expression levels of the m- and k-opioid

receptors in the ipsilateral (2.5- and 3.6-fold, respectively) and

contralateral (0.8- and 2-fold, respectively) DRGs compared with

the DRGs obtained from naı̈ve animals (Figs. 2A, 2B). An increase

in the mRNA expression level of the d opioid receptor was only

detected in the ipsilateral DRGs (3.7-fold) (Fig. 2C).

To determine whether the changes in the mRNA levels resulted

in changes in the opioid receptor protein expression levels, we

Figure 1. Intraplantar injection effect of crotalphine (CRP) or opioid receptor agonists in the rat nociceptive threshold. Pain threshold
was obtained in the rat paw pressure test, before (dotted line) and 1 h after intraplantar injection of CRP (0.6 ng/paw), DAMGO (m opioid receptor
agonist, 5 mg/paw), DPDPE (d opioid receptor agonist, 20 mg/paw), U-50488 (k opioid receptor agonist, 10 mg/paw). CRP or opioid agonists were
injected in naı̈ve rats (Panel A) or in rats injected with PGE2 (100 ng/paw) 2 h before opioids or peptide administration (Panel B). CTOP (20 mg/paw),
ICI 174,864 (ICI, 10 mg/paw) or nor-Binaltorphimine (NOR, 50 mg/paw), m, d and k opioid receptor antagonists, respectively, or vehicle (50 ml/paw)
were injected by the intraplantar route immediately before the opioid agonists or CRP administration. Panel C represents PGE2-induced hyperalgesia
in the contralateral paw. Data represent mean values 6 S.E.M. for six rats per group. * significantly different from baseline (dotted line), # significantly
different from control (saline = SAL). Data were analyzed by two-way analysis of variance (ANOVA) with post-hoc testing by Tukey.
doi:10.1371/journal.pone.0090576.g001
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performed immunoblot assays using the DRGs and plantar tissue.

The intraplantar injection of PGE2 increased the m- and k-opioid

receptor protein expression levels in the ipsilateral DRGs (79%

and 168%, respectively) and the plantar tissue (43% and 75%,

respectively) compared with the tissues obtained from naı̈ve

animals (Figs 3A and B). In contrast, a 30% decrease in the d-

opioid receptor protein expression level was detected in the plantar

tissue from the PGE2 injected animals (Fig. 3C). Despite the

changes detected in the ipsilateral DRGs mRNA levels, no PGE2-

related changes in the m-, k-, and d-opioid receptor protein

expression levels were detected in the contralateral DRGs (Fig. 3).

PGE2-induced hyperalgesia was confirmed in all animals used for

mRNA and immunoblot (Fig. S4).

PGE2 sensitization enhances the CRP and
agonist-mediated opioid receptor activation

It has been well established that GPCRs undergo conforma-

tional changes in the N-terminus following receptor activation

[32]. To determine whether PGE2 activates opioid receptors, we

performed an ELISA assay (in plantar tissue and DRG slices) using

conformation state-sensitive antibodies that recognize activated

opioid receptors according to the methods published by Gupta et

al. (2007). To determine the total expression level of the opioid

receptors, the same antibodies used for the immunoblot assays

were also used in these assays.

Consistent with the immunoblot assay results, the intraplantar

injection of PGE2 increased the expression levels of the m- and k-

opioid receptors in the plantar tissue (43% and 72%, respectively)

(Fig. 4A) and the DRG (43% and 97%, respectively) (Fig. 4B) and

decreased the expression level of the d opioid receptor in the

plantar tissue (30%). No changes in opioid receptor activation,

however, were detected using the conformation state-sensitive

antibodies compared with the levels observed in the tissues from

naı̈ve animals. This result indicates that PGE2 does not activate

opioid receptors.

Because PGE2 altered the expression profiles of the opioid

receptors without altering their activation, we investigated whether

CRP or opioid receptor agonists increase the activation of the

opioid receptors in PGE2-sensitized plantar tissue. The results

show that the intraplantar injection of DAMGO (5 mg/paw), U

50,488 (10 mg/paw) and DPDPE (20 mg/paw) into naı̈ve animals

results in conformational changes in the m-, k- or d-opioid

receptors, respectively, when compared with the untreated rats

(Fig. 5A). Interestingly, CRP (0.6 ng/paw) caused k- but not m- or

d-opioid receptor activation (Fig. 5B). These results indicate that

these opioid receptors have been activated and confirm the

involvement of the k-opioid receptor in the CRP-mediated anti-

nociceptive effect. The intraplantar injection of PGE2 increases

the opioid receptor activation caused by CRP and the m- and k-

opioid receptor agonists (32%, 42% and 36%, respectively)

compared with the values obtained without sensitization

(Figs. 5A, 5B). In contrast, PGE2 inhibited the activation of the

d- opioid receptor compared with the values obtained from the

tissues collected from the animals that were only treated with the

d-opioid agonist. Our results suggest that acute sensitization

increases the activation of the opioid receptors by CRP and,

depending on the type of opioid receptor, by selective agonists.

To confirm our in vivo findings, the effect of CRP and opioid

receptor agonists on opioid receptor activation was evaluated using

primary neuron cultures isolated from the DRGs of adult naı̈ve

rats. CRP added to the cell culture medium did not result in

conformational changes in the m-, d- or k-opioid receptors

compared with the naı̈vecontrols (Fig. 6A). Conversely, treating

PGE2-sensitized DRG cells with CRP this peptide now induces

conformational changes in the k-opioid receptor but not in the m-

or d-opioid receptors when compared with the cells treated with

CRP but not PGE2 (Fig. 6A). These results indicate that

PGE2triggers the CRP activation of the k-opioid receptor.

Incubating the DRG cells in the opioid receptor agonists

DAMGO, U 50,488 and DPDPE resulted in the activation of

their corresponding m-, k -, and d-opioid receptors (70%, 72% and

143%, respectively, Fig. 6B). The activation of the m- and k-opioid

receptors increased significantly when the cells were pretreated

with PGE2. Interestingly, pretreating the DRG neurons with

PGE2 inhibited the DPDPE activation of the d-opioid receptor

compared with the cells treated with the agonist alone (Fig. 6B).

Figure 2. Intraplantar injection effect of prostaglandin E2 (PGE2) on gene (A, C, E) expression of m (A), k (B) and d (C) opioid
receptors. The changes in mRNA levels of opioid receptors were determined by real time PCR, in dorsal root ganglia (DRG) obtained 3 h after PGE2

injection (100 ng/paw). Dotted line represents the values obtained in naı̈ve animals. Data are presented as mean of 7 animals 6 SEM and expressed
as % of control (naı̈ve) animals. * Significantly different from mean values of naı̈ve animals (p,0.05). Data were analyzed by one-way analysis of
variance (ANOVA) with post-hoc testing by Tukey.
doi:10.1371/journal.pone.0090576.g002
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PGE2 sensitization enhances the CRP-mediated k-opioid
receptor intracellular signaling

Effect on cyclic GMP level. Because the anti-nociceptive

effect of CRP is mediated by the L-arginine-nitric oxide-cGMP

pathway [12], we investigated the effect of CRP on the cyclic

GMP (cGMP) level in DRG cell cultures. CRP (1 mM) increased

the cGMP level compared with the control cells (Fig. 7), and

pretreating the cells with PGE2 (1 mM) significantly increased

(30%) the CRP-induced cGMP release. Nor-BNI, a k-opioid

receptor antagonist, blocked this effect. The k-opioid receptor

agonist U 50,488 (1 mM) was used as a positive control and

increased the cGMP level. Pretreating the cells with PGE2 further

increased (33%) the cyclic nucleotide level compared with the cells

that were treated with only the agonist (Fig. 7).

Effect on AKT activation. AKT phosphorylation is involved

in the peripheral anti-nociceptive effect of opioids, such as

morphine and U 50,488 [18,33]. Therefore, we evaluated whether

CRP increases AKT phosphorylation in PGE2-sensitized cells.

Treating DRG cells with PGE2 (1 mM) increased the AKT

phosphorylation level compared with the saline-treated (control)

cells (Fig. 8), and CRP (1 mM) did not interfere with AKT

phosphorylation compared with the control cells and the PGE2-

treated cells (Fig. 8). The k-opioid receptor agonist U 50,488

(1 mM) was used as a positive control and activated AKT (Fig. 8).

Effect on MAPK activation. The activation of the k-opioid

receptor increases the phosphorylation of MAPKs (ERK1/2 and

JNK) in neuronal and non-neuronal cells [34]. Therefore, MAPK

phosphorylation may be a useful indicator of opioid receptor

activation in DRG cells. CRP increased ERK1/2 phosphorylation

in DRG cells (Fig. 9A), and pretreating the cells with PGE2

significantly increased (1.5-fold) the CRP-mediated ERK1/2

phosphorylation (Fig. 9A). PGE2 alone, however, does not appear

to induce ERK1/2 phosphorylation. The k-opioid receptor

antagonist Nor-BNI inhibited the CRP-mediated ERK1/2 phos-

phorylation, which suggests that the k-opioid receptor is involved

in this process. Nor-BNI alone does not appear to cause ERK1/2

phosphorylation. Based on these results, we further evaluated the

Figure 3. Intraplantar injection effect of prostaglandin E2 (PGE2) on protein expression of m (A), k (B) and d (C) opioid receptors. The
changes in protein levels of opioid receptors were determined by immunobloting, in dorsal root ganglia (DRG) and plantar tissue obtained 3 h after
PGE2 injection (100 ng/paw). Data are presented as mean 6 SEM and expressed as % of control (naı̈ve) animals. *Significantly different from mean
values of naı̈ve animals, n = 6 per group (p,0.05). Data were analyzed by one-way analysis of variance (ANOVA) with post-hoc testing by Tukey.
doi:10.1371/journal.pone.0090576.g003
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effect of the k-opioid receptor agonist U 50,488 on ERK1/2

activation. Treating neurons with U 50,488 increased the level of

phosphorylated ERK1/2, and the phosphorylated ERK1/2 level

was further increased in cells that were pretreated with PGE2

(Fig. 9A). Treating neurons with either CRP or U 50, 488 also

induced JNK phosphorylation (9- and 2,5-fold, respectively).

Similar to the ERK1/2 expression profile, pretreating the cells

with PGE2 increased the CRP- and U 50, 488-mediated JNK

phosphorylation (10.5- and 3.5-fold, respectively). PGE2 alone

does not appear to induce JNK phosphorylation. Nor-BNI did not

interfere with this CRP effect, but this antagonist did increase the

level of phosphorylated JNK (13-fold) (Fig. 9B).

PKC f is involved in CRP-induced MAPK

activation. Because CRP appears to activate ERK and JNK,

we further investigated the potential mechanisms involved in this

effect. Previous studies indicate that PKCf is involved in the

activation of ERK1/2 by the k-opioid receptor agonist [20]. To

examine the direct role that PKC-f plays in the activation of the

MAPKs by CRP, we used the PKC-f pseudosubstrate, which

selectively inhibits the atypical PKC f isozyme [35]. Pretreating

the DRG cells with the PKC f pseudosubstrate abolished the

CRP-mediated ERK1/2 phosphorylation in both the PGE2-

sensitized and unsensitized cells (Fig. 10A). In contrast, the f
pseudosubstrate did not affect the CRP-mediated JNK phosphor-

ylation but did inhibit the increase in CRP-induced JNK

phosphorylation observed in the presence of PGE2 (Fig. 10B).

The TAT carrier was used as a negative control.

Discussion

We previously reported that CRP, a 14-aminoacid peptide

isolated from C. d. terrificus venom, has a potent, long-lasting and

peripheral opioid receptor-mediated anti-nociceptive effect [11–

13]. In this study, we demonstrated that the potency and long-

lasting anti-nociceptive effect of CRP depends on tissue inflam-

mation. It has been well established that the local efficacy of opioid

drugs is enhanced in the presence of tissue injury/inflammation,

but the mechanisms involved in this phenomenon remain under

investigation [6,7,9]. In the present study, we also elucidated some

of the mechanisms involved in the increased peripheral anti-

nociceptive efficacy of CRP and opioid receptor agonists in the

Figure 4. PGE2, per se, does not activate opioid receptors. The plantar tissue (A) and dorsal root ganglia (ipsi and contralateral) (B) were
obtained 3 h after PGE2 injection (100 ng/paw). Tissues obtained from naı̈ve animals were used as controls. The tissues were sectioned and probed
with anti-m, k or d antibodies. (A) The black bar represents the results obtained with the conformation state-sensitive antibodies whereas the white
bar represents the results obtained using the control antibodies (western blotting assay antibodies). (B) The first couple of bars represents the results
obtained using the control antibodies (western blotting assay antibodies). The second one represents the conformation state-sensitive antibodies.
The dotted line represents the values obtained for naı̈ve animals. * Significantly different from mean values of naı̈ve animals (p,0.05). Data were
analyzed by one-way analysis of variance (ANOVA) with post-hoc testing by Tukey.
doi:10.1371/journal.pone.0090576.g004
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presence of hyperalgesia. We observed the following results: (a) the

local intraplantar (i.pl.) injection of a low dose of CRP or selective

opioid receptor agonists, which are ineffective at increasing the

nociceptive threshold in naı̈ve animals in the rat paw pressure

testnaı̈ve, produced anti-nociception in a PGE2-induced hyperal-

gesia modelPGE2. In this hyperalgesia rat model, the CRP effect

was mediated by activation of the k-opioid receptor. (b) The i.pl.

administration of PGE2 increased the peripheral mRNA expres-

sion levels of the m-, d-, and k-opioid receptors and the peripheral

protein expression levels of the m- and k-opioid receptors within

3 h of the injection. The eicosanoid also increased the activation of

the m- and k-opioid receptors by their corresponding agonist. In

contrast, the PGE2 treatment decreased the d-opioid receptor

protein level and activation of the d-opioid receptor by its agonist.

(c) In cultured DRG neurons, the activation of specific intracel-

lular signaling pathways (MAPKs and PKCf) by CRP was

enhanced following PGE2 sensitization. The results presented here

provide evidence that tissue injury regulates the expression of

peripheral opioid receptors and their activation by CRP and

selective opioid receptor agonists and that tissue injury also

contribute to activation of specific intracellular signaling pathways.

In our study, we first evaluated the effect of an intraplantar

injection of CRP and selective agonists of the m-, k- and d-opioid

receptors on the nociceptive threshold of animals that were

sensitized or not by an i.pl. injection of PGE2. This eicosanoid

sensitizes the peripheral terminals of the neuron, which reduces

the threshold for activating the nociceptors [36] [37] [38]. The

i.pl. injection of CRP and DAMGO, DPDPE and U 50,488 (m-, d-

and k-opioid receptor agonist, respectively), in doses that are

ineffective at altering the mechanical nociceptive stimuli with-

drawal response in naı̈ve rats, blocked PGE2-induced hyperalge-

sia. Furthermore, we should mention that the doses of the agonists

and antagonists used in this study were chosen based on their

optimal effects as observed in previous dose-response studies

[13,23]. The doses used in the present study only had a local effect

because anti-nociception was only detected in the paw injected

with the drugs and not in the contralateral paw. Moreover, the

Figure 5. PGE2 improves agonist-mediated opioid receptor
activation. Naı̈ve or prostaglandin E2 (PGE2, 100 ng/paw) injected rats
were treated with DAMGO (5 mg/paw), U50,488 (10 mg/paw), DPDPE
(20 mg/paw), (Panel A) or crotalphine (CRP, 0.6 ng/paw) (Panel B). The
agonists, CRP, or vehicle (control) were administered 2 h after PGE2
injection. ELISA assay was performed in slices of plantar tissue, using
conformation state-sensitive antibodies (m, k, d activated). Tissues were
collected 3 h after PGE2 injection. *Significantly different from mean
values of control animals (dotted line), n = 6 animals per group
(p,0.05). #Significantly different from mean values of CRP or agonist
alone (p,0.05). Data were analyzed by one-way analysis of variance
(ANOVA) with post-hoc testing by Tukey.
doi:10.1371/journal.pone.0090576.g005

Figure 6. PGE2 improves agonist-mediated opioid receptor
activation in primary neuronal cell culture. Cells from dorsal root
ganglia were obtained from naı̈ve rats and incubated at 37uC, in a 5% of
CO2, for two days. On the third day, the cells were incubated with PGE2
(1 mM) or vehicle for 15 min and further incubated with 1 mM of
crotalphine (CRP, A) or DAMGO, U50,488, DPDPE (B) for 15 min. ELISA
assay was performed directly on fixed cells, using conformation state-
sensitive antibodies (activated). Three separate experiments were
carried out on different occasions.* Significantly different from mean
values of naı̈ve animals (dotted line) (p,0.05), # Significantly different
from mean values of CRP or agonist alone, average of 3 independent
experiments (p,0.05). Data were analyzed by one-way analysis of
variance (ANOVA) with post-hoc testing by Tukey.
doi:10.1371/journal.pone.0090576.g006
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agonists and CRP effects were reversed by naloxone methiodide, a

peripherally acting opioid antagonist. Additionally, the drug’s

effect seems to be restricted to the receptors in the injury site,

because a systemic subcutaneous injection of the equivalent dose

of drugs used intraplantarly did not induced anti-nociception. We

also demonstrate that the effect of CRP was inhibited by the i.pl.

injection of the k-opioid receptor antagonist but that it was

unaffected by the injection of the m- or d-opioid receptor

antagonists. These results are consistent with our previous results

showing that the effect of CRP administered orally is mediated by

the k-opioid receptor in acute pain models [11]. The efficacy of

the opioid receptor antagonist doses used was confirmed by the

results showing that the i.pl. injection of the antagonists blocked

the peripheral anti-nociceptive effect of their corresponding

agonist.

Taken together, these results provide evidence that the local

anti-nociceptive effects of CRP and opioids depend on previous

sensitization. These findings are consistent with the clinical and

experimental observations reporting that opioids are more potent

under inflammatory conditions [4,5,39–42]. The mechanisms

involved in this phenomenon have not been fully elucidated, but

biochemical assay studies have shown that inflammation/tissue

injury enhances the axonal transport of opioid receptors toward

the periphery, which is preceded by an increase in the opioid

receptor mRNA transcription level [3,10]. Importantly, peripheral

opioid receptor levels do not increase during the early stages of the

inflammatory process, but these levels do increase at later stages of

the inflammation [43,44]. Based on these findings and the lack of

experimental data showing the effect of PGE2 on the opioid

receptor expression levels, we next investigated whether this

eicosanoid affects the expression levels of the opioid receptors. Our

results indicate that PGE2 sensitization increases the mRNA and

protein expression levels of the m- and k-opioid receptors in the

dorsal root ganglia and plantar tissue of rats. Interestingly, PGE2

appears to increase the d-opioid receptor mRNA expression level

in the DRGs while simultaneously PGE2 decreasing the d-opioid

receptor protein level in the paw. This discrepancy may be a

consequence of protein degradation during axonal transport.

Further studies, however, are needed to investigate these

differences. Furthermore, despite an increase in the d-opioid

mRNA expression level in the DRGs, the protein level remained

unchanged in this tissue. An evaluation of the protein expression

level at later time points may explain whether this discrepancy is a

time point issue. Studies have shown that inflammatory substanc-

es, such as Freund’s complete adjuvant (FCA) and carrageenan,

increase the mRNA and protein expression levels of the m-opioid

receptor in the DRGs within 1 h after treatment [3,6]. These

discrepancies suggest that m- and d-opioid receptor require

different timing to be up or down regulated during inflammation.

We further examined whether PGE2 induces opioid receptor

Figure 7. Effect of crotalphine on cyclic GMP levels in primary
culture of DRG cells. Cells from DRG were obtained from naı̈ve rats
and incubated at 37uC in a 5% of CO2, for two days. On the third day,
the cells were incubated with Nor-BNI (1 mM) for 30 min and PGE2

(1 mM) or vehicle (saline - Sal) for 15 min, and further incubated with
1 mM of crotalphine (CRP), U50,488, or saline, for 15 min. Cells were
lysed and subjected to enzyme immunoassay.*Significantly different
from mean values of control cells (p,0.05), # Significantly different
from mean values of CRP alone (p,0.05), Significantly different from
mean values of U 50,488 alone (p,0.05). cGMP levels were analysed by
one-way analysis of variance with a post-hoc Tukey test. Data were
analyzed by one-way analysis of variance (ANOVA) with post-hoc testing
by Tukey.
doi:10.1371/journal.pone.0090576.g007 Figure 8. Effect of crotalphine (CRP) on AKT phosphorylation in

primary culture of DRG cells. Cells from DRG were obtained from
naı̈ve rats and incubated at 37uC in a 5% of CO2, for two days. On the
third day, the cells were incubated with PGE2 (1 mM) or vehicle (saline -
Sal) for 15 min. and further incubated with 1 mM of CRP, U50,488, or
saline, for 15 min. Cells were scrapped and homogenized, and the total
homogenate was subjected to western blotting. (A) The ratio of
phospho-protein to total protein is expressed as percentage from
control (Sal+Sal). Three separate experiments were carried out on
different occasions.*Significantly different from mean values of control
cells (p,0.05). AKT levels were analysed by one-way analysis of variance
with a post-hoc Tukey test. (B) Representative blots showing the levels
AKT in the total lisate of DRGs.
doi:10.1371/journal.pone.0090576.g008
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activation by performing ELISA using plantar tissue slice

preparation and conformation state-sensitive antibodies specific

to activated opioid receptors (the N-terminal region of GRPCs

undergo a conformational change following receptor activation

that can be selectively detected by these specific antibodies

[32,45,46].). Our results show that PGE2 did not alter the

activation state of these receptors, though the opioid receptor

expression levels increased.

Next, we determined whether sensitization by this eicosanoid

improves the agonist-mediated receptor activation. Using the

state-sensitive antibodies we detected a higher level of m- and k-

opioid receptor activation by their corresponding agonists in

PGE2-sensitized cells.

Pretreating the cells with PGE2 inhibited d-opioid receptor

activation by its agonist. This result could be the consequence of

the PGE2-mediated d-opioid receptor down-regulation. Zollner et

al. (2003) showed that despite increasing the number of m-opioid

receptor binding sites on the DRG cell membrane, the

intraplantar injection of FCA does not affect the affinity of the

full and partial m-opioid agonists in rats [7]. Furthermore, one

important finding from their study is that there was a significant

increase in the DAMGO-stimulated G-protein activation in FCA-

treated animals.

The results from the present study demonstrate that CRP

treatment is sufficient for activation of the k-opioid receptor in the

presence of PGE2. CRP, however, may not directly activate opioid

receptors [11]. Another study showed that the anti-nociceptive

effect of CRP can be reversed by dynorphin A anti-serum, which

indicates that endogenous opioids are involved in this phenom-

enon (Machado et al., in press). We still cannot dismiss, however,

that CRP may have a direct effect on opioid receptors.

Nevertheless, the involvement of an opioid mechanism in the

CRP anti-nociceptive effect is supported by the results obtained in

this study and in previous studies [11–13].

Based on our in vivo findings, we next wanted to determine the

effect of CRP on opioid receptor activation in PGE2-sensitized

DRG cells isolated from naı̈ve animals. PGE2 increased the CRP-

mediated k-opioid receptor activation. This result is consistent

with our in vivo result showing that the CRP anti-nociceptive effect

in the PGE2-induced hyperalgesia model is mediated by k- opioid

receptor activation.

Because inflammation increases the frequency of interactions

between opioid receptors and G proteins and activates specific

intracellular signaling pathways [7,47], we decided to investigate

the molecular pathways activated by CRP in the presence or

absence of PGE2 sensitization. It has been shown that the opioid

receptor-mediated anti-nociceptive effect is regulated by the

cGMP, AKT, and MAPK signaling pathways [20,48–50].

Furthermore, we recently showed that cGMP is involved in the

CRP anti-nociceptive effect [12]. In the present study, we

demonstrated that CRP increases the cGMP level and that this

effect is enhanced by PGE2. AKT activation is also involved in the

peripheral anti-nociception induced by opioids, such as morphine

and U 50,488 [18,33]. Our cell culture results indicate that the k-

Figure 9. Effect of crotalphine (CRP) on phosphorylated form of ERK (A) and JNK (B) in primary culture of DRG cells. Cells from DRG
were obtained from naı̈ve rats and incubated at 37uC in a 5% of CO2, for two days. On the third day, cells were incubated with Nor-BNI (1 mM) for
30 min and PGE2 (1 mM) or vehicle (saline - Sal) for 15 min and further incubated with 1 mM of CRP, U50,488, or saline, for 15 min. Cells were scrapped
and homogenized, and the total homogenate was subjected to western blotting. The ratio of phospho-protein to total protein is expressed as % of
control (sal+sal). GAPDH was used as the internal loading control. Three separate experiments were carried out on different occasions.*Significantly
different from mean values of control cells (p,0.05). (A) p-ERK1/2 and (B) p-JNK levels were analysed by one-way analysis of variance with a post-hoc
Tukey test. Representative blots showing the levels p-ERK1/2 and p-JNK in the total lysate of DRGs. # Significantly different from mean values of CRP
alone (p,0.05).
doi:10.1371/journal.pone.0090576.g009
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opioid receptor agonist (U 50,488), used as a positive control, and

not CRP, phosphorylates AKT. Interestingly, recent findings

obtained by our group indicate that the PI3-AKT signaling

pathway is not involved in the CRP anti-nociceptive effect in the

PGE2-induced hyperalgesia model (Pedroso and Cury, unpub-

lished data). CRP and the k-opioid receptor agonist activated

ERK1/2 and JNK. It is important to mention that in all of the

experiments, PGE2 increased the phosphorylation levels of MAPK

caused by CRP. The role that MAPKs play in the CRP-mediated

anti-nociceptive effect is currently unknown. It is possible that the

activation of these kinases support the expression of the receptors/

channels and/or transcriptional factors involved in anti-nocicep-

tion [51–54]. For example, the phosphorylation of MAPK

activates transcription factors, such as CREB, which regulates

dynorphin gene expression [53,55]. Our results are consistent with

the previously reported results showing that the k-opioid receptor

agonist U 50, 488 activates MAPKs, such as ERK1/2 and p38

MAPK [20,50]. Furthermore, we propose that the effect of CRP

on ERK phosphorylation is mediated by activation of the k-opioid

receptor because the selective opioid receptor antagonist Nor-BNI

blocked this effect. We also found that Nor-BNI activates the JNK

pathway. These results are consistent with previous results showing

that Nor-BNI increases the level of phospho-JNK in the HEK293

cell line [56]. It has been well established that the pharmacological

effects of Nor-BNI, such as the antagonistic effect on agonist-

induced anti-nociception and intracellular signaling, are long

lasting [56,57] and involve an interaction between k-opioid

receptors and JNK phosphorylation [56]. Therefore, the JNK

pathway may play an important role in k-opioid interacting

substrates and may contribute to the long lasting activity of

CRP[11].

Based on the results showing that CRP induces the phosphor-

ylation of MAPKs and considering that protein kinase C (PKC) is

involved in numerous intracellular signaling pathways in several

cellular models [58], we next investigated the role of PKC in CRP-

mediated signaling. A previous study by Belcheva et al. (2005)

using cultured astrocytes, showed that PKCf is involved in the

activation of MAPKs by opioid agonists [20]. To examine the role

of PKCf in the activation of MAPKs by CRP, we used the PKCf
pseudosubstrate, which selectively inhibits the atypical f- and l-

PKC isozymes [35]. Because PKCl is not expressed in DRGs, the

f pseudosubstrate should only selectively inhibit PKCf in these

cells. Our results show that PKCf activation is involved in the

CRP-induced increase in phospho-ERK1/2 and JNK in cultured

DRG cells; treating these cells with the f pseudosubstrate blocked

the activation of these kinases by CRP. These results are consistent

with the results obtained by Belcheva et al. (2005) [20] that showed

U 69,593, a k-opioid receptor agonist, stimulates the activation of

MAPKs via PKCf.

Figure 10. Involvement of PKCf on crotalphine-mediated ERK1/2 and JNK phosphorylation in DRG primary culture. Cells from DRG
were obtained from naı̈ve rats and incubated at 37uC in a 5% of CO2, for two days. On the third day, cells were incubated for 30 minutes with TAT
carrier (control) or f pseudosubstrate (1 mM) followed by incubation with PGE2 or vehicle (15 minutes). The neurons were then incubated with 1 mM
of crotalphine (CRP) and TAT or f pseudosubstrate for 15 minutes. Cells were scrapped and homogenized, and the total homogenate was subjected
to western blotting for (A) pERK1/2 and (B) pJNK. The ratio of phospho-protein to total protein isexpressed as % of control (Sal+Sal). GAPDH was used
as the internal loading control. Three separate experiments were carried out on different occasions.*Significantly different from mean values of
control cells (p,0.05). # Significantly different from mean values of CRP alone (p,0.05). p-ERK1/2 and p-JNK levels were analysed by one-way
analysis of variance with a post-hoc Tukey test. Representative blots showing the levels pERK1/2 or pJNK in the total lysate of DRGs.
doi:10.1371/journal.pone.0090576.g010
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In conclusion, we propose that CRP has a more potent

peripheral anti-nociceptive effect under conditions of acute

sensitization. The mechanisms responsible for this phenomenon

involve increased expression levels and the activation of opioid

receptors as well as increases in the cGMP levels, the phosphor-

ylation of MAPKs and the activation of PKCf in the periphery.

These results further elucidate the important peripheral molecular

mechanisms involved in pain control and identify interesting

therapeutic alternatives for inducing peripheral analgesia.

Supporting Information

Figure S1 Time-course for intraplantar injection of
prostaglandin E2 (PGE2) in the rat nociceptive thresh-
old. Pain threshold was obtained in the rat paw pressure test,

before (time 0) and 1, 3, 5 and, 8 h after intraplantar injection of

PGE2 (100 ng/paw) or saline (control). Data represent mean

values 6 S.E.M. for six rats per group. * significantly different

from baseline, # significantly different from control. Data were

analyzed by two-way analysis of variance (ANOVA) with post-hoc

testing by Tukey.

(TIF)

Figure S2 Effect of methiodide naloxone (MN) on the
local crotalphine (CRP) and opioid receptor agonists-
induced anti-nociception. Pain threshold was obtained in the

rat paw pressure test, before (dotted line) and 3 h after intraplantar

injection of PGE2 (100 ng/paw). CRP (0.6 ng/paw), DAMGO (m
opioid receptor agonist, 5 mg/paw), DPDPE (d opioid receptor

agonist, 20 mg/paw), U-50488 (k opioid receptor agonist, 10 mg/

paw) were injected 2 h after PGE2 administration. NM (1 mg/

Kg), were injected by the subcutaneous route 15 minutes before

the nociceptive threshold assessment. Data represent mean values

6 S.E.M. for five rats per group. * significantly different from

baseline (dotted line), # significantly different from control

(saline = SAL). Data were analyzed by two-way analysis of

variance (ANOVA) with post-hoc testing by Tukey.

(TIF)

Figure S3 Comparative effect between systemic and
local injection of crotalphine (CRP) and opioid receptor

agonists. Pain threshold was obtained in the rat paw pressure

test, before (dotted line) and 3 h after intraplantar injection of

PGE2 (100 ng/paw). CRP (0.6 ng), DAMGO (m opioid receptor

agonist, 5 mg), DPDPE (d opioid receptor agonist, 20 mg),

U-50488 (k opioid receptor agonist, 10 mg) were injected by

subcutaneous (systemic) or intraplantar (local) route, 2 h after

PGE2 administration. Data represent mean values 6 S.E.M. for

five rats per group. * significantly different from baseline (dotted

line), # significantly different from control (saline = Sal). Data

were analyzed by two-way analysis of variance (ANOVA) with

post-hoc testing by Tukey. The following bars CRP intraplantar,

DAMGO intraplantar, DPDPE intraplantar and U 50,488

intraplantar were re-drawn from the Fig. S2, since this

experiments were performed in the same day.

(TIF)

Figure S4 Intraplantar injection of prostaglandin E2
(PGE2) in the rat nociceptive threshold. Pain threshold was

obtained in the rat paw pressure test, before (time 0) and 3 h after

intraplantar injection of PGE2 (100 ng/paw) or saline (control).

(A) values for animals whose tissued were used for mRNA

extraction and (B) for protein extraction. Data represent mean

values 6 S.E.M. for 6–8 rats per group. * significantly different

from baseline, # significantly different from control. Data were

analyzed by two-way analysis of variance (ANOVA) with post-hoc

testing by Tukey.

(TIF)
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