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In this paper the so-called Feynman-Vernon influence functional theory has been generalized in

order to include the possibility of dealing with initial conditions of the system plus environment
other than the factorizable one. It has been shown that the new influence functional can now be
written in terms of paths which represent the coupling of quantum-statistical to quantum-
dynamical eff'ects. Once the thermal paths are integrated out of this new influence functional, a
generalization of the original Feynman-Vernon expression is obtained.

The problem of the quantum dynamics of a dissipative
physical system is still an open question in physics. How-
ever, among many attempts to settle this issue, there is
one which is very satisfactory, namely, the system-plus-
reservoir approach. Although this approach does not
answer all the fundamental questions related to the main
problem it, at least, helps us to solve many practical ques-
tions of general interest such as dissipative quantum tun-
neling or dissipative quantum coherence. In particu-
lar, the method of applying path integrals to the system-
plus-reservoir approach, fIrst proposed by Feynman and
Vernon (FV), 6 has been very useful in solving the quan-
tum dynamics of a Brownian particle' or the dissipative
quantum coherence problem.

In the FV approach it is assumed that the system and
its environment are decoupled at t =0 (factorizable initial
condition). This particular choice was modified by Hakim
and Ambegaokar when they solved the problem of a free
particle coupled to a bath of oscillators. Nevertheless, the
method they used exploited the translation invariance of
the total Hamiltonian, which cannot be generalized to any
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Therefore, we can write the reduced density operator of
the particle at time t as

system.
Our intention in this short note is to propose a path-

integral formulation (in the same spirit as FV) which al-
lows one to use nonfactorizable initial conditions. The
model we shall employ is the standard one for dissipative
systems (see, for example, Refs. l or 4 )
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where the set of harmonic oscillators has the spectral
function
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where R, R', and Q' are general configurations of the bath
of oscillators and K is the propagator of the particle-plus-
reservoir composite system. In the usual FV approach one
takes the last term on the right-hand side of Eq. (3) as

po l(x', y')p~q (R', Q') which results in the traditional
FV formalism used in Refs. 1, 5, and 6. We shall consider
three different possibilities in this work:

p( o'x, 'y; RQ')=p(~)"(x', y')p, ',"'(x',y';R', Q'),
po(x ',y ';R', Q') =p, q (x ', y ';R', Q'),
po(x ',y ';R', Q') =po '(x ',y ')p,', '(x ',y ';R', Q '),

(4)

(5)

(6)

where pol )(x ',y ') is chosen in such a way that trpo = l.
The first initial condition Eq. (4) means that the parti-

cle and its environment are in equilibrium at t =0 and at
this same time one performs a position measurement on
the particle only. The second initial condition represents

(7)
where
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I

the particle and its environment in equilibrium, but the
particle is subject to a potential Vo(q) (VpWV) which is
abruptly changed to V(q) at t =0+ (Vo is the "prepara-
tion potential" ). Finally, the third initial condition is a
combination of Eq. (4) and Eq. (5). Since the latter is the
most general of the three cases we shall explicitly deal
with it throughout this work (the other two cases can be
trivially obtained from the most general result).

From Eq. (3) and Eq. (6) we can write

P(x,y, t) = „dx'dy'J(x, y, t;x', y', 0)
x p' '(x' y')
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In our notation, variables within brackets are paths con-
necting the appropriate end points (variables without
brackets) and D (variable) is the properly normalized
variation of those paths. The functionals S~, S~, SI, and
So are the actions of the particle subject to V(q), the envi-
ronment, the interaction, and the particle subject to
Vo(q), respectively. Notice that we include the counter-
term action [the last term in Eq. (1)] into S~ and So.

As Eq. (10) involves purely Gaussian path integrals it
can be easily evaluated (see, for example, Ref. 6) and the
result reads
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On the other hand, the equilibrium density operator has the following path integral representation

1 (E)ptq )(x', R';y', Q') = J Dzexp So [z] G(R', Q', [z]) (i2)
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and S is the Euclidean version of the corresponding action which means that we must replace all the potentials (in-
cluding the interaction) by minus its value. G also involves only Gaussian integrals which can be easily evaluateds as
(U=—eP)

Q2m ro,
G =II

~
.

h
exp

~ J J exp( —ro.
~

u —u'~ ) (u) (u')dudu'
2+k sinh to U 4hm, o),

x exp — . [(R,' +Q,' )cosh(to, U) —2R,'Q,'+2B,(R,'e" Q,')—2hsinh to,U

+2M, (Q,' e —R,')+(A, +B, )e ' 2A,B,]— (i4)

where

t U

e '"z (u)du
2m m,

pUCa —m(U —u) ( )
2m~cog

(is)

Now, substituting Eqs. (14), (12), and (11) into Eq. (9) and integrating over R', Q' and R [integrate first over R, and
then define new variables of integration g,':—R,' —Q,

' and X,'=—(R,'+ Q,')/2 to make things simpler] one finally obtains
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where 7[x,y] is the original influence functional as obtained by FV. Using Eqs. (2), (15), and (16) and completing
squares of the exponent involving z(u)z(u '), Eq. (17) reduces to
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and So( [z] contains no contribution due to the counter-
term action. Actually there also appear terms in 2[x,y]
which naturally cancel the counterterm actions in Sz[x]
and S~[y] in (8) (see, for example, Ref. 1). Notice that
since the product +,csch(co, U/2) is only a multiplicative
factor we shall include it in an overall normalization con-
stant for expression (7).

Expression (18) shows us that the generalized FV
influence functional can be obtained by multiplying the
original one by a functional integral over a thermal path
which describes the equilibrium of the particle (subject to
the preparation potential), with its environment. As one
can easily see, the dynamics of the particle at t & 0 is
influenced by this equilibrium state through the "force"
f(u) which is a functional of x(t ') and y(t ') and a func-
tion of the thermal parameter u.

Notice that expression (18) is solely written in terms of

path integrals, therefore making no use of specific sym-
metries of the composite system as in Ref. 7.

In conclusion, we have been able to generalize the FV
theory for diferent choices of initial conditions only in
terms of functional integrals. Although the evaluation of
the integral over paths z(u) [see Eq. (18)] might not be
an easy task for general potentials, we believe this form
for F is very useful once one decides to solve the dynami-
cal problem within a given approximation, such as the
semiclassical limit. A more extensive work containing ap-
plications of Eqs. (18) and (19) is in preparation.
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