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In this work the scattering theory associated with the differential equation 
i(a'I/Jlat) ( -!::. + e-eltlg(t)x l + q(x»)'I/J is considered, where x = (xl ,x1)eRXRz, E>O, 
UJ> 0, aeR, get), teR is continuous, periodic with mean value zero over a period, and q(x) 
approaches to zero sufficiently fast as Ixl ..... 00. In the case E > 0, it is shown that the usual 
theory is adequate; however, a limit does not exist when EW. A modified theory is developed 
where the limit does exist as EW. Furthermore, the concepts of bound states and scattering 
states for E>O are discussed. 

I. INTRODUCTION 

In this paper we will discuss the scattering theory asso
ciated with the Cauchy problem, 

i at'I/J = (-!::. + e-eltlg(t)xl + q(x»)'I/J, 
(1.1 ) 

where x = (XI,X
l )eRXRz, t, SER, E>O, get), q(x) are both 

real valued, g(t) is continuous and bounded, and q(x) has 
the form 

q(x) = ql(x) + qz(x), 
( 1.2) 

qleL:: (R3), q2eL2(R3). 

HereL:: (R3
) denotes the set ofjeL co (R3

) that tend to 
zero at infinity. Further assumptions on q and g will be intro
duced as we proceed. Under these conditions, the operator 
defined by 

oA e(l) = -!::. + e-eltlg(t)xl + q(x), D{oA E(t» 

= Co(R3
), (1.3) 

is essentially self-adjoint (see Sec. 3 of Ref. 1 and references 
therein). We denote its closure by AS (t) and write A g (t) for 
the case q = O. As is well known, ( 1.1 ) describes the interac
tion of a quantum-mechanical particle in the semiclassical 
approximation with a potential q(x) and the electric field 
e - el I Ig( t) (1,0,0). The case E = 0 was studied in Ref. 1 
where existence and uniqueness of solutions for (1.1) was 
proved assuming that ql is also continuous. As pointed out 
by Kat02 this assumption is not needed. It should be stressed, 
however, that the hypotheses in Ref. 1 already cover the 
Coulomb potential case, as far as existence and uniqueness 
are concerned. From now on we will assume that g(t) is 
periodic with period 'T> 0 and 

f' g(t)dt = O. (1.4) 

In this case a satisfactory scattering theory was estab
lished in Ref. 1 (see also Ref. 3) under the assumptions 

q(x) = (1 + IxI2)-P(WI(x) + W2 (x»), (1.5) 

p>!, Wl eL"'(R3), W2eL 2(R3), 

( 1.6) 

where the derivative in (1.6) is computed in the sense of 
distributions. More precisely, if UA 0 (t,s) is the propagator 
associated to (1.1) (withE = 0) and0(s) = UAo(s+'T,s) 
is the Floquet operator of the system, then 

L z(R3
) = Kac(0(s») t9Kp (0(s», (1.7) 

8fi(.fl± (A °,Ag;s») = Kac(0(s»), (1.8) 

where Kp (U) and Kac (U) are, respectively, the pure 
point and absolutely continuous subspaces associated with 
the unitary operator U, and the wave operators are defined 
by 

It can also be shown l that Kp(0(s)} and K ac (0(s») are 
precisely the bound state and scattering state subspaces in 
the time-dependent sense (see Sec. IV). In particular the 
"free" dynamics in this formulation is determined by the 
Hamiltonian A g ( t). Although this is a very pleasing theory 
from the mathematical point of view, physically one would 
expect to be able to compare the dynamics generated by A (t) 
with the one determined by Ho = -!::. [the Laplacian in 
L 2 (R3

) ] since, after all, the mean value of A ° (t) over a peri
od is simply H H o + q and there is a very well established 
scattering theory for the pair (H,Ho)' That this can in fact be 
done by suitably modifying the wave operators is shown in 
Sec. IV. This was one of the main motivations for this work. 

We were also interested in the so-called adiabatic 
switching of the field which is often used in physics (see 
Refs. 4-6 and the references therein). Roughly speaking, 
this procedure consists in introducing a "regularizing fac
tor" depending continuously on some parameter E> 0 (in 
our case e - EI t I ), developing the theory in this situation and 
taking limits as E ! 0 in the hope of being able to handle the (in 
principle) more difficult case E O. In connection with this, 
one should note that Dollard7 has studied adiabatic switch
ing in the usual theory of scattering. More precisely, he in
troduces the Hamiltonian H(t) = H o + e - Ell Iq and shows 
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that if q(x) is a short range potential, the usual wave opera
tors with e> ° exist and are unitary and, in the limit, they 
coincide with the wave operators for the pair (H,Ho)' On the 
other hand, if q is the Coulomb potential the same result 
holds in the case e> 0, but the limit does not exist. Dollard 
also shows how to modify the theory in order to obtain the 
right wave operators as e W. Note that in both situations 
there are no bound states if e > 0. In the electric field case the 
situation is different. In Sec. III we show that if e > ° and 
H = Ho + q has a bound state then there are solutions of 
( 1.1) that behave as bound states as f -+ ± 00. We also prove 
that the usual wave operators exist. In the following section 
we show that these operators do not have a limit as e W. The 
definitions are then modified and a satisfactory scattering 
theory is obtained in the limit, as mentioned above. Section 
II contains some notation and various technical results that 
will be used in the remainder of this work. 

II. PRELIMINARIES 

We begin by introducing several auxiliary functions 
which will be needed in the next three sections. Assume that 
g: R -+ R is continuous periodic with period r> ° and satisfies 
( 1.4 ). In this case it is easy to see that we can choose hand G 
such that for all fER, 

h '(t) = g(t), G'(t) = h(t), 

h(t + r) = h(t), G' (t + r) = G(t), 

iTh(t)df = iT G(t)dt = 0. 

Moreover, we will also need k(t) such that 

k '(t) = h(t)2. 

(2.1 ) 

(2.2) 

Next, if e;>O, we define functions gE, hE, (;e, and ~ as fol
lows. If e = ° let gO, h 0, GO, k 0 be the functions just intro
duced. If e > 0, choose 

gE(t) = exp( - elt I )g(t), (2.3 ) 

{ 
- 1"" gE(s)ds, f;>O, 

h E(t) = t f- "" ~(s)ds, 1<0, 

(2.4) 

GE(t) = t t { 
- 1"" h E(s)ds, f;>O, 

f- "" h '"(s)ds, f < 0, 

(2.5) 

{ 
-fe (h E(s)f ds, f;>O, 

kE(t) = t f- 00 (h E(SW ds, I< 0. 

(2.6) 

Now assume that q(x) satisfies (1.2) and let f/!(x,f) be 
the solution of ( 1.1) with e;>O fixed (which exists globally 
and is unique; see Theorem 2.1 below), and introduce 

fP(x,t) = exp(ih E(t)xJ)f/!(x,f), (2.7) 

X(x,f) = exp(ikE(t»)fP(xJ - 2G E(t),Xl). (2.8) 

Then an easy computation shows that fP and X are solutions 
of the equations 
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i atfP = [( l/i)ax, - h E(tW - a1]fP + qfP, 

i atX = ( - a + q(XJ - 2GE(t),x1))X, 

(2.9) 

(2.10) 

where a1 denotes the Laplacian with respect to the xl vari
able. 

Let oA E(t), OBE(t), and OHE(t), be the Hamiltonians 
that occur on the right-hand sides of (1.1), (2.9), and (2.10) 
with domain CO' (R3

). These operators are essentially self
adjoint and we will denote their self-adjoint realizations in 
L 2(R3 ) by AE (t),BE (t), andJr (t) (see Ref. 1 and the refer
ences therein). In case q = ° we will write A ~ (t), B ~ (t), 
and Ho. Applying Kato's theory of existence and uniqueness 
for linear "hyperbolic" evolution equations,8 it was shown in 
Ref. 1 that the following theorem holds. 

Theorem 2.1: Let K (t) denote anyone of the three oper
atorsA E (f), ne (f), Jr (f). Then there exists a unique evolu
tion operator (propagator) UK (t,s) , (t,s)ER2, solving 

i dO = K(t)O(t), O(s) = OsEY, (2.11) 
df 

where 

Y = {fEL 2(R3 ) laf, (1 + xi) JI2jEL 2(R3 )} (2.12) 

in the case of (1.1) and Y = D(Ho) = H 2(R3
) for the other 

two equations. Moreover 

UK(t,S)(Y)~Y 

in all three cases and the propagators are related by 

Uj(£(t,s) = TE(t)-JUB£(t,s)TE(S) 

(2.13 ) 

= TE(t)-JV'"(t)-JUH,(t,s)V'"(s)P(s), (2.14) 

with TE (t), V E (t), fER, given by 

(P(t)j)(x) = exp(ih E(t)xIlf(x), (2.15) 

(VE(t)f)(x) = exp(ikE(t»)f(xJ - 2GE(t),xl), (2.16) 

for alljEL 2(R3 ). 

Finally in the remainder of this paper we will need the 
following limiting properties of the auxiliary functions intro
duced at the beginning of this section. 

Lemma 2.2: Let g, h, G, k, ~, hE, GE, ~ be as above. 
Then, (i) for each fixed e> ° we have 

lim h E(t) = lim G E(t) = lim k E(t) = 0; 
1_ ± 00 1- ± co t_ ± 00 

(ii) for each fixed fER, we have 

lim h E(t) = h(t), lim G£(t) = G(t), 
£)0 £)0 

lim (k E(t) - k £(s») = k(t) - k(s), 
E/O 

if t>O, 

if 1<0. 

(2.17) 

(2.18 ) 

(2.19) 

(2.20) 

Proof: We will concentrate on the case f;>O. Similar ar
guments hold for f<O. The limits in (2.17) and (2.18) fol
low by combining (2.3) and (2.4) in order to obtain the 
estimate 

Ih E(t) I <e-Je - £t IIgll 00 , Vf;>O, 

where 11'11 00 denotes the L 00 norm. 

M. A. G. Scialom and R. J. 16rio. Jr. 
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Next, using h' = g, G' = h, and integrating by parts 
twice we obtain 

h E(t) = - J,'" exp( - £s)h '(s)ds 

= e-Bth(t) + £ J,'" exp( - £s)G'(s)ds 

= e-Bth(t) + £e-EtG(t) 

+ £2 J,'" exp( - £s)G(s)ds 

= e-Eth(t) + Ee-EtG(t) 

+ £ i~ e - 9G ( ~ ) d8. (2.22) 

Since G is a bounded function, the integral in the last mem
ber of (2.22) can be estimated by IIG II", exp( - £t) and the 
first limit in (2.18) follows at once. In order to prove the 
second, note that since G' = h the fourth equality in (2.22) 
implies 

GE(t) =e-EtG(t) +c J,'" ds f.'" duexp( -£u)G(u) 

= e-EtG(t) + £2 J,'" du(u - t)exp( - £u)G(u), 

(2.23) 

and the result follows in the same way as the previous one. 
The only difference is that to control the integral of 
u exp( - £u)G(u), we must use another function H, period
ic with mean value zero such that H' = G, and integrate by 
parts in order to get the factor ~ where we need it. Equation 
(2.19) is an easy consequence of the dominated convergence 
theorem. We now turn to (2.20), which is by far the hardest 
part. From the third equality in (2.22) we get 

h B(t)2 = e- 2Eth(t)2 + 2£e- Eth(t) J,'" exp( - Es)h(s)ds 

+ £2(J,'" exp( - £S)h(S)dS) 

xU'" exp( - £U)h(U)dU). (2.24) 

It is easy to see that after integration the last two terms of the 
right-hand side of (2.24) tend to zero as £ lO. Thus it remains 
to show that 

J,'" e- 2ES(h(s)f ds--+ 00, as ElO. 

To do this let a = SUP ... R h(S)2 and write 

Xe = {se[t, (0) Ih(s)2 <a/2}, 

Xr = {se[t,oo) Ih(s)2>a/2}, 

(2.25) 

(2.26) 

so thatXe nx, is empty and [t,oo) =Xe UX,. Then, 

i
eo 

e-ES(h(sW ds> { e- ES(h(s»)2 ds>~ ( e- ES ds. 
t Jx, 2 Jx, 

(2.27) 

But as £ lO the integral in the right-hand side of (2.27) tends 
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to the Lesbegue measure IX, I of X" which is infinite since 
(h(S»)2 is periodic, non-negative, and nontrivial. This com
pletes the proof. Q.E.D. 

III. SCATTERING THEORY WITH £>0 

The purpose of this section is to relate the asymptotic 
behavior of UA,.(t,s) and exp( - i(t-s)H) as t-+ ± 00, 

with both £ > 0 and seR kept fixed. In order to accomplish 
this it is convenient to establish a series of preliminary re
sults, the first one of which is the following theorem. 

Theorem 3.1: Assume thatq(x) satisfies 

q(x) = (1 + IxI 2)-Pql(x) +q2(X), p>~, 

qleL 00 (R3), q2eL 2(R3). (3.1 ) 

Then the wave operators 

nE± (AE,A~;S) = s-lim UA,,(t,s)tUA,£(t,s) (3.2) 
t_ ± ~ 0 

exist, where the right-hand side of (3.2) denotes, as usual, 
the strong limit in L 2(R3

). 

Proot We will consider only the limit as t -+ 00. The exis
tence of the other follows from similar arguments. Further
more, since the main idea involved here, namely the Cook
Kuroda method, is by now standard, we will just indicate the 
estimates involved. Note that in order to prove (3.2) (with 
t --+ + (0), it is enough to show that 

(3.3 ) 

for some a > s (which is fixed) and all ¢E.C 0 (R3
). To do this 

we use (2.14)-(2.16) to write UA,~(t,s) in terms of 

exp( - ;(t - s)Ho) as follows: 

UA, £ (t,s) = exp[ - i(h E(t)XI + k E(t»)] 
o 

X exp( - i(t - S)HO)S2G£(t) _ 2G£(s) 

X exp(ih E(S) (XI»)' 

If qeL 2(R3
), (3.4) implies that 

(3.4) 

Iq(x)(UA,ij (t,s)~)(x) I <Cit - sl-3/211~IIL I Iq(x) I, (3.5) 

where C> 0 is a constant. Integrating this inequality over R3
, 

we obtain the estimate needed to prove (2.3) in this case. 
Next if q(x) = (1 + IxI2)-Pql(x), qleL oo (R3

), it is 
enough to consider! <p<~, since otherwise qeL 2(R3

) and 
there is nothing to prove in view of the previous remarks. 
Using the fact that the first factor on the right-hand side of 
(3.4) commutes with multiplications and choosing p, p, r 
suchthatre (3/2p,3),P-1 + r- I = 2- I ,p-1 + p-I = 1, we 
can apply the Riesz-Thorin theorem9 to conclude 

"qUA,ij(t,s)~IIz<C"ql"L~ It - sl-3/"~lIp' (3.6) 

where C> 0 is again a constant. Since 3/r> 1, the result fol
lows also in this case and the proof is complete. Q.E.D. 

Note that the estimates in (3.5) and (3.6) are indepen
dent of E, and therefore they also hold in the case E = 0 [in 
particular the wave operators n ± (A 0,A g;s) exist under the 
assumptions made in Theorem 3.1; this result is stronger 
than the corresponding existence theorem in Sec. 5 of Ref. 
1]. This remark will be used in Sec. IV. 
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Next we prove a technical lemma that will be useful in 
the remainder of this section and has some interest of its 
own. 

Lemma 3.2: Assume that q(x) satisfies (1.5) and let 
H=Ho+q. Then 

(3.7) 
t_ ± 00 

for all seR, where 1 denotes the identity operator in L 2 (R3
). 

Proof: Without loss of generality we will assume that 
s = O. It is well known that under assumption (1.5) the fol
lowing decomposition holds'o.

,,
: 

L 2(R3
) = Kp(H) eKac(H), (3.8) 

where Kp (H) [resp. Kac (H)] denotes the pure point 
(resp. absolutely continuous) subspace of L 2(JR3) with re
spect to H (for the definition ofthese objects see Refs. 11 or 
12). In order to prove the results we will show that the limit 
exists in the two subspaces on the right-hand side of (3.8). 
We start withKp (H). Letfe,@(H) = ,@(Ho) be such that 
Hf = Af for some AeR. Then 

lIejIHP(t)e-jIHf-fIlL2 = IITE(t)f-fIlL2, (3.9) 

and the right-hand side of (3.9) tends to zero as t- 00, since 
by the dominated convergence theorem we have 

s-lim TE(t) = 1. (3.10) 

Using a simple approximation argument we obtain the result 
inKp (H). Next we turn toKac (H). We will consider only 
t - + 00. The other case can be treated similarly. Recall 
from usual potential scattering that givenfeKac (H) there 
exists a unique <(J+eL 2(JR3) such that 

lim lIe- jlHf - e- jIH°<{J+IIL2 = O. (3.11) 
1- 00 

For a proof of this statement we refer the reader to Ref. 10 
and/or Ref. 11. Adding and subtracting the appropriate 
quantities, using the triangle inequality and the unitarity of 
eitH and TE(t) for each teR, we obtain 

lIeiIHTE(t)e- jlHf - fllL2 <21Ie- jlHf - e- itHo<{J+IIL' 

+ II(TE(t) - l)e-itH°<{J+IIL2. (3.12) 

In view of (3.11) it remains to show that the second term on 
the right-hand side of (3.12) tends to zero as t - 00. Let 8 
denote the Fourier transform of 0eL 2(R3

) (for details, see 
Ref. 9). Given 6> 0 choose BeC a (R3

) such that 

110 - <(J+IIL' <6. Then 

II(TE(t) l)e - itH,'<{J + IIi, 
«II(TE(t) -1)e-iIHoOIIL' +6)2, (3.13) 

so that it suffices to prove that II ( T E (t) - l)e - jlHoO ilL' 
tends to zero as t - 00 • Applying Parseval's identity9 we ob
tain 

II(TE(t) l)e- itH,'Blli, 

= L, IE(g,-h E(t),gl,t)-E(g,t)1 2 dg, (3.14) 

whereE(g,t) = exp( - itg 2 )O(g). Since he (t) is a bounded 
function, it is easy to see that the integrand in the rhs of 
(3.14) has compact support. But then the dominated con
vergence theorem implies the result because according to 
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(2.21) both he (t) and the (I) tend tozeroast ..... 00. Q.E.D. 
As a consequence of Lemma 3.2 we obtain the following 

important result which relates the asymptotic behaviors of 
the propagators UA,~ (t,s) and exp( - i(t - s)Ho). 

Corol/ary 3.3: Let UA,t (I,s) and Ho be as in Theorem 2.1 

(with q = 0). Then 

OE± (Ag,Ho;s) = s-lim UA,,(t,s)*e-i(t-s)Ho 
1- ± (XI 0 

= VE(S)-ITE(S)-I 

= exp( - ik E(s»)exp( - ih "(s)XI)SWE(S) ' 
(3.15) 

where Sa, aeR, is given by 

(SaI)(x) =f(x1 + a,xl), feL 2(R3
). (3.16 ) 

In particular the operators 0 ± (~,Ho;s) are unitary. 
Proof.' Applying (2.14) with q = 0 and noting that 

V" (t) commutes with exp( - i(l - s)Ho) we obtain 

UA,b (t,s) 'exp( - i(t - s)Ho) 

= TE(S) -I VE(S) -I V"(t)ei(t- S)HoTE(t)e - i(t- s)Ho, 

(3.17) 

and the result follows at once from Lemma 3.2 and part (i) 
of Lemma 2.2 which implies that s-lim t _ ± co VE(t) = 1. 

Q.E.D. 
Combining Theorem 3.1 and Corollary 3.3 it is easy to 

prove the following Corollary. 
Corollary 3. 4: Let q be as in Theorem 3.1. Then the wave 

operators 

O"± (A E,Ho;s) = s-lim UA,,(t,s)*e-i(t-S)Ho (3.18) 
t_ ± co 

exist. 
We are now in position to state and prove the main re

sult of this section, namely, the following Theorem. 
Theorem 3.5: Assume that q satisfies condition (1.5). 

Let H = Ho + q and A" (t) be as in Theorem 2.1. Then the 
limits 

r ± (A E,H;s) = s-lim UA,,(t,s)*e- i(l-s)H 
t __ ± 00 

(3.19) 

exist and are unitary. Moreover the following intertwining 
relations holds: 

UA,,(t,s)r ± (A E,H;s) = r ± (A ",H;t)e-i(t 'lH. (3.20) 

Proof: In view of the first equality in (2.14) we may 
write ret) = UA£(t,s)*e- i(t-s)H as 

(3.21) 

where.BE (I) is as in Theorem 2.1. Due to Lemma 3.2 [and 
the uniform boundness of all the factors in (3.21) with re
spect to t], it is enough to show that the limits 

r ± (BE,H;S) = s-lim UB,(t,s)*e-i(t-s)H 
t_ ± 00 

(3.22) 

exist and are unitary, since, in this case, 
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lim r(t) = r ± (A E,H;S) = TE(s)-lr ± (BE,H;s), 
t_ ± 00 

(3.23) 

which are obviously unitary. In order to obtain (3.22), we 
remark first that, as is well known (Sec. 3 of Ref. 1), we have 

(3.24) 

for all tER. Let ~ denote D(Ho) provided with the graph 

norm III/III = II/Iii, + IIHo/lli' and let fJj 
= B (~ ,L 2 (R3 ») denote the set of all bounded operators 
from ~ into L 2(R3

). Then it is easy to verify that 

L IIBE(t) -HII£>9 dt< 00, (3.25) 

Var (B('») = sup L IIBE(tj+ 1) - BE(tj )11£>9 < 00, 
R O<j<n - 1 

(3.26) 

where the supremun is taken over all finite real sequences 
to < tl < t2 < ... < tn' Under these conditions Theorem 6 of 
Ref. 13 implies that the operators in (3.22) exist and have 
the stated properties. The proof of the intertwining relations 
is standard and will be omitted (see Chap. X of Ref. 12, 
where the proof is presented in the case of time-independent 
Hamiltonians; the same idea works in our case). Q.E.D. 

A few remarks are now in order. Let fPEKp (H). Then if 
/± = r ± (AE,H;s)qJ, we have 

lim IIUA,(t,s)/± _e-/(t-S)HqJIIL' =0, (3.27) 
t- ± 00 

and it is easy to see that the wave functions 
f/J ± (t) = UA e (t,s)/ ± behave as bound states as t - ± 00. 

More precisely, the probability of finding the particle in 
{Ixl >R} at time t can be estimated as follows: 

P(t,{lxl>R};f± ) = II/± 11- 2 L, IX{lxl>R} (x) 

X (UA e (t,s)/ ± )(x) 12 dx 

<Ilf ± 11-2(lIx{lxl>R}e- /(t-s)HqJ II 
+ IIUAe(t,S)/ ± - e-/(t-s)HqJ IW, 

(3.28) 

where Xs is the characteristic function of the set S. Thus, 
given", > 0, there exist to> 0 and Ro > 0 such that if I t I > to 
and R > Ro then P(t;{lxl >R}/ ± ) <",. This means that the 
particle is asymptotically (as t- ± 00) in a bound state. 
Moreover, it can also easily be shown that if fPEKac (H), 

then/± = r ± (AE,H;s)qJ are such that f/J± = UAe(t,s)/± 
behave as scattering states as t - ± 00. 

In view ofthe remarks just made, Theorem 3.5 and Eq. 
(3.8) imply two decompositions of L 2(R3

) into (asympto
tic) bound state and scattering subspaces, namely, 

L 2(R3
) = r ± (A E,H;s)(JYac (H») 

EB r ± (A E,H;s)(JYp(H»). 

It should be remarked, however, that, as far as we know, it is 
an open question whether or not the above decompositions 
coincide. 
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IV. THE ADIABATIC LIMIT 

In this section we will be concerned with the asymptotic 
behavior (in time) of the solution (1.1) as elO. The first 
thing to notice is that it is hopeless to take the "limit of the 
theory" established for e> O. This is already apparent in 
Corollary 3.3. Indeed, in view of (3.15) and the behavior of 
GE (s), hE (s), and ~ (s), described in Lemma 2.2, it follows 
that 0 ± (A g ,Ho;s) does not have a limit as e lO. This also 
indicates what the problem is and points the way to the cor
rect definitions. Let e>O and introduce 

AE(t,s) =e/k'(S)TE(t)- I V E(t)-1 

= exp[ - i(kE(t) - kE(S»)] 

xexp[ - ih E(t)X1]S2G'(t)' (4.1 ) 

Define the modified wave operators for the pair (AE (. ),Ho) 
by 

W ± (A E,Ho;s) = s-lim UA,(t,s)*AE(t,s)e-/(t-S)H., 
t_ ± 00 

(4.2) 

if the limits exist. 
In what follows we will show that they indeed exist for 

e>O and that (4.2) is continuous in e up to e = O. We begin 
with the case q = 0, which is trivial. Applying (2.15) to 
write UA, (t,s) in terms of exp( - i(t - s)Ho) and using the 

o 

definition of A E (t,s) , we obtain 

U
A

, (t,s)*AE(t,s)e- /(t- s)H. 
o 

= TE(s)-I(e
ke

(S)VE(s»)-1 = TE(S)-IS -2G'(s)' (4.3) 

for all e>O. Note that this expression is independent of t ! This 
means that the modification just introduced cancels out the 
oscillations responsible for nonexistence of the limit of 
o ± (A g,Ho;s) as elO, uniformly in t.1t should also be noted 
that A E (t,s) e - /(t - s)H" is a "modified free evolution" in the 
sense that 

lim f IAE(t,s)e-l(t-S)H'f(xWdx=O, 
t_ ± 00 Js 

for all bounded measurable S~R3 and/EL 2(R3). 
In order to proceed, we will assume from now on that q 

satisfies (1.5) and (1.6). In this case, as shown in Sec. 5 of 
Ref. 1, the wave operators 

O± (A 0,Ag;s) = s-lim UA.(t,S)*UAO(t,s) (4.4) 
t_ ± 00 0 

exist and are complete in the sense of ( 1. 7) and ( 1. 8) for all 
SER, where 0(s) is the Ploquet (or period) operator of the 
system, namely, 

(4.5) 

With these remarks in mind, we have the following theorem. 
Theorem 4.2: Let q satisfy (1. 5) and (1. 6 ). Then 

O± (A°,Ag;s) = s-limO± (AE,Ag;S). (4.6) 
EIO 

Proof: We will consider the case of 0 + (A ° ,A g;s). The 
other limit can be handled similarly. Moreover, since all op
erators involved are uniformly bounded with respect to e>O, 
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it is enough to prove that the limit exists in CO' (R3
). Thus if 

q; is any such function, we have 

"0+ (A 0,A g;s)q; - 0+ (A E,A ~;s)q; IIL2 <110+ (A 0,A g;s)q; 

- UAo (t,S)*UA8 (t,s)q; IIL2 + IWAO (t,s)*UA8 (t,s)q; 

- U ,(t,s)*UA, (t,s)q; IIL2 + IWA,(t,S)*UA~(t,s)q; 
A 0 

-0+(AE,A~;s)q;IIL2, (4.7) 

for all tER. According to the remark following the proof of 
Theorem 3.1, the first and third terms in the right-hand side 
of ( 4. 7) can be estimated as follows: 

"0+ (A E,A ~;s)q; - UA £ (t,S)*UA~ (t,s)q; ilL' 

<i"" IIqUA" (r,s)q; ilL' dr 

<C (11q111L ~ 11q; lip i"" lu - SI-3I
r 
du 

+ Ilq2lbllq; ilL' i"" \ u - S\-3/2 dU) , (4.8) 

where E:;;'O, t> s, and C is a constant independent of E. Since 
the last member of (4.8) tends to zero as t -+ 00, it remains to 
show that the second term on the rhs of ( 4. 7) tends to zero as 
E W. In order to do this note that the differential equation 
satisfied by the propagators in question implies 

UA,(t,s)*q; = UA°(t,s)*q; + if UA,(r,s)* 

x(e- Er -l)·g(t)x l UA0(t,r)dr. (4.9) 

Before proceeding it should be remarked that Xl UA ° (t,r)q; 
belongs to L 2 (R3

) and depends continuously in t because of 
(2.13). Then 

IIUA,(t,s)*q; - UA,,(t,s)*q; II 

(4.10) 

and the rhs tends to zero as E!O by the dominated conver
gence theorem. This completes the proof. Q.E.D. 

We now turn to the main result ofthis section, namely, 
the following theorem. 

Theorem 4.3: Let q satisfy (1. 5) and (1. 6). Then the 
wave operators W ± (AE ,Ho;s) exist of all E:;;'O. If E > 0, they 
are given by 

W+(A E,Ho;s) = O± (A E,A ~;s)TE(S)-IS -2G£(s)' 
(4.11 ) 

while if E = 0, we have 

W ± (A o,Ho;s) = lim W ± (A E,A ~;s) 
EIO 

In particular, 

~(W ± (A o,Ho;s») = ~(O± (A 0, A g;s») = J¥'ac(0(s»), 
(4.13 ) 

where 0(s) is the Floquet operator defined in (4.5). 
Proot Due to (4.3), we can write 
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U
A 

£ (t,s) * AE(t,s)e - ;(1- s)Ho 

= UA£ (t,S)*UA~ (t,s) TE(S) -IS _ 2G£(s) ' (4.14) 

for all tER and E:;;'O. Taking the limit as t -+ ± 00, we obtain 
(4.11) and the second equality in (4.12). Next recall that in 
the proof of Theorem 4.2 we have shown that 

s-lim U £ (t,s) * UA £ (t,s) = UA" (t,s) * UA 0 (t,s) 
A 0 0 EIO 

[see the second term on the rhs of ( 4. 7) ]. Therefore 

s-lim s-lim UA,(t,S)*UA~(t,s)TE(S)-IS -2G£(s) 
1_ ± 00 elO 

= s-lim UA,,(t,s)*UAo(t,s)T(s)-IS_ 2G(S) 
1- ± 00 0 

=O± (Ao,Ag;s)T(s)-IS_2G(S) = W± (A 0,A g;s), 
(4.15 ) 

since we already know that the last equality in (4.15) holds. 
The statement about the Floquet operator and the ranges of 
the wave operators follows from (4.6) and the proof is com
~~ ~n 

We will now make some final remarks on the results 
presented above. First of all, it is natural to ask what is the 
relation between the modified and usual theories when E > O. 
The answer, which is not difficult to obtain, is given by the 
relation 

f ± (A E,H;s) = s-lim UA,(t,s)*AE(I,s)e-;(I-S)H 
t- ± "" 

= e - ;k£(s)r ± (A E,H;s), (4.16) 

where r (A E,H;s) is the operator defined in Theorem 3.5. 
Thus we ~btain two decompositions of L 2(R3

) into scatter
ing and (asymptotic) bound states which are exactly the 
same as before except for a phase [which does not have a 
limit as E !O; see (2.20)]. In particular, we do not know if the 
decompositions coincide. In the limit, however, the results of 
this section show that we can construct a satisfactory scat
tering theory. In this case we may have bound states in the 
usual time-dependent sense l

•
ll and the set of scattering 

states is exactly the same as those obtained in Ref. 1 using 
UA" (I,s) as the free evolution. 
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