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Limits of weak damping of a quantum harmonic oscillator
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In this Brief Report we analyze the limit of very weak damping of a quantum-mechanical Browni-
an oscillator. It is shown that the propagator for the reduced density operator of the oscillator can
be written as a double path integral of the same form as that obtained in the high-temperature limit.
As a direct consequence, we can write a Fokker-Planck equation for the reduced density operator of
the weakly damped oscillator (at any temperature) involving only the damping and a generalized
diffusion constant in momentum space.

As has already been shown in the literature, the quantum dynamics of a Brownian harmonic oscillator can be ob-
tained from the knowledge of its reduced density operator, which can be written as

p(x, y, t)= f fdx'dy'J(x, y, t;x', y', 0)p(x', y', 0) (1)

where

J(x,y, t;x', y', 0) = f f 2)x(t')2)y(t')exp —'S,fr[x (t'),y(t')]exp ——
P[x (t'},y (t')]

x' y'

with
l'

S,s[x(t',y(t')]= ( ,'Mx —,'—My —,'—Mcoox + —,'—Mcooy —myxx+Myyy —Myxy+Myyx)dt'

(2)

(3)

P[x(t'),y(x')]= f vcoth f dr f dcr[x(r) —y(r)]cosv(r —o. )[x(cr)—y(cr)] .2M' & Av

o 2kT o o
(4)

Here, y, coo, and 0, are the relaxation, the natural, and a
cutoff frequency, respectively. T is the temperature of
the environment of the oscillator. For alternative ways to
express the function J(x,y, t;x', y', 0) the reader is re-
ferred to. '

The functional P[x (t'),y(t')] can be simplified when
we want to consider temperatures much higher than
Acro/k. In this case, we can first perform the frequency
integration in (4) using the approximation
coth(irtv/2kT) =2kT/Rv (since the typical frequencies of
motion are of the order of coo and y) and reduce (4) to

y[x(~),y(r)]=, f [x(r)—y(r)]'«.2M@kT

In this limit it has been shown' that the double convo-
lution (1) is equivalent to a Fokker-Planck (FP) equation
for the Wigner transform of p (see below). Moreover, the
functional P[x,y] as written in (5} is responsible for the
presence of the diffusive term in that equation.

Our main goal in this Report is to show that the kernel
in (4) can also be reduced to an instantaneous contribu-

tion when we have y «coo regardless of the temperature.
In other words, P[x,y] can be written as a single integral
either when kT))iricoo (for any y) or when y «coo (for
any T). Consequently we can also write a FP equation
for the signer transform of p when y «coo with a gen-
eralized diffusion constant due to this new instantaneous
form of (4). For regimes not described by the two limits
above, a generalization of the FP equation is necessary
(see Ref. 4).

Evaluating the path integral (2) within an infinitesimal
time interval ft, t +e] and using this result in (1) we can
show that the equation of motion obeyed by p(x, y, t) is
(see Ref. 1)

Bp fi 8 p irt B p &p

Bt 2Mi gx 2Mi Qy ax
—y x —y

+y(x —y) + Mcoox p
— . Mcooy p

ap

2MykT x —y p.
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Now, defining new variables q =(x +y)/2 and g=x —y
we can write (6) as

Mgp g a'p ap ~o 2MykT,
at M aqag

'y a(+
(7)

W(q, p, t)= f exp p q+~, q
—~ dg

1 ip (8)

we end up with

BW (j (pW)+ (McooqW)+2y (pW)+Da 2 a'w
at aq ap Qp Qp

2

(9)

which is the well-known Fokker-Planck equation with

where p(q, g) =p(q +g/2, q
—g/2).

Multiplying (7) by (1/2vrfi)exp(ip glori), integrating
over g, and remembering that the Wigner transform of
p(x, y) is given by

ACO0
D =Mycopk coth

2kT
(10)

which clearly reduces to D =2MykT when Scop«kT.
Actually this result is in agreement with what is usually
obtained in quantum optics. There one treats a harmon-
ic mode very weakly coupled to a bath of noninteracting
oscillators in the Markovian approximation. The equa-
tion obtained for the reduced density operator of that
mode is a FP equation with a diffusive term which only
depends on T. This is exactly what is written in (9) and
(10).

Equation (10) is not so easy to show as it was for
D =2MykT. In order to achieve this result we must
solve the path integral (2) which results in (see Ref. 1)

D =2MykT. Since we are working in the classical limit
we expect W(q, p, t) to become the density of points in the
phase space of the Brownian particle and, therefore, the
classical limit is properly recovered.

What we are going to show from here onwards is that
for a very weakly damped oscillator the double functional
integral in (2) generates an equation of the same form as
(9) with the diffusion constant in momentum space given
by

J(q, gt;q', g', 0)= exp —[[E(t) My]qg+[K—(t)+My]q'g' L(t)q'g N—(t)qg—'I
N(t) i

Xexp ——[A'''(t)g + A' '(ting'+ A' '(t)g'' ]

where Ic (t) =Mco cotcot,
N(t) =Mcoe~'/sin(cot),

L (t)=Mcoe ~'/sin(cot), are proportional to 5(v —coo) with multiplicative factors
given by

—
(

2 y2)1/2 C"I(t)=, f 'sin'co, t dr,
sin supt

(16)

A "(t)= dv vcoth A '„'(t)n Rv

0 2kT
(12) (17)

2' t .C' '(t) = sincoor sincoo(t r)dr, —
sin ~pt

with

e 2yr
A',"(t)= sincor cosv(r —o )

sin cot

Xsincoo. e~( + )d~do. , (13)

A „(t)= z
sincor cosv(r o)—(p) 2e

sin cot

C' '(t) = sin coo(t —r)dr,
sin mpt

and therefore

AQ)p
A "(t)=My~, coth C"(t) .

2kT

(18)

(19)

Xsinco(t —a. )e~'+ 'drdo, (14)

A (t)=(3) sinco( t —r)cosv(r —cr )
sin cot

X sinco(t —o )e r'+ 'dr da. . (15)

Now, evaluating one of the double integrals in (13)—(15)
and taking the limit y~0 we can show that all A "(t)'s

1 'ACOp

P[x (t'), y (t')]= Myiticoocoth
2kT

x f [x(t') y(t')] dt'—
0

(20)

With this form for A I'(t) the expression (11) is exactly
the same we could have obtained had we started from the
path integral (2) with P[x (t'),y (t')] replaced by
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which leads us [see (5)—(9)] to a FP equation with
D =Myiitcoocoth(A'coo/2kT). This result was con)ectured
in a previous paper' but it was not properly shown in that
occasion.

In conclusion, we have shown that in the two regimes,
kT ))ficoo (for any y) or y (&coo (for any T), one can al-
ternatively describe the quantum dynamics of a Brownian
particle by a FP equation for the %igner transform of p.
The diffusion constant in momentum space is given
either by D =2MykT (first case) or by

D =Mykcoocoth(iricoo/2kT) (second case).
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