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We calculate the mean free path of surface polaritons in tunnel junctions, in the presence of
roughness on the surface of the outermost film. When these results are combined with our ear-
lier theory of light emission from roughened junctions subject to a dc bias voltage, we discuss
the saturation of the intensity of emitted light with increased roughness amplitude. Also, the

probability that the surface polariton emits a photon into the vacuum during its lifetime is es-

timated and found to be very small for waves in the near infrared and visible frequency range.

I. INTRODUCTION

In the recent literature, Lambe and McCarthy have
reported' light emission by tunnel junctions
(Au:Alq03. 'AI and Ag:AI203. AI) biased by a dc vol-

tage, and which have roughened surfaces. In an ear-
lier paper, we have presented' a theory of this
roughness-induced radiation, and have found in addi-
tion a contribution of appreciable intensity that comes
from direct coupling between current fluctuations and
the radiation field outside the junction. This latter
contribution is present for a junction with perfectly
smooth surface.

In our theory, which is valid in the limit of small-

amplitude roughness, the roughness-induced radia-
tion arises from a second-order process, as suggested
by Lambe and McCarthy. ' An electron creates a sur-
face polariton as it tunnels through the oxide barrier,
and in the second step, the roughness induces the
surface polariton to radiate. The intensity of this por-
tion of the radiation scales as 5', the square of the
root-mean-square (rms) roughness amplitude 5. It is

also proportional to the mean free path l(cu) of the
surface polariton excited by the current fluctuations,
which subsequently radiates into the vacuum by vir-
tue of the roughness on the surface, The mean free
path of the surface polariton may be regarded as the
coherence length which controls the coupling
between the surface polariton and the emitted pho-
ton. '

In our earlier paper, ' where the roughness arnpli-

tude was assumed small, /(~) was finite by virtue of
the dissipation in the tunnel-junction structure pro-
duced by the surface polariton fields. We argued
there that as 5 increases, in fact /(cv) must drop
below the value /'0'(co) characteristic of the smooth
surface, with the consequence that the radiation in-

tensity must increase with 5 more slowly than 5', for
roughness amplitudes large enough for /(co) to be
significantly shorter than /' '(cu). In fact, if we as-
sume perturbation theory adequately describes the

damping of the surface polariton by roughness, then
/(co) —5 ' in the limit that roughness and not sub-
strate dissipation controls the mean free path. The
intensity of the emitted radiation should thus saturate
as 5 increases, within this simple picture. Such a
saturation effect was reported prior to our work by
Lambe and McCarthy. These authors also comment
that the saturation effect may have its origin in the
fact that, as roughness increases in amplitude, the
surface polariton fails to remain a well-defined ele-
mentary excitation of the structure.

The purpose of the present paper is to develop the
theory of the influence of roughness on the mean
free path of the surface polaritons that enter the
theory of light emission from these structures. The
analysis requires a nontrivial extension of an earlier
calculation, ' even though here, as before, we limit
our attention to a perturbation theoretic treatment of
the roughness. The reason is that the low-frequency
(i.e., optical frequency) waves of interest have fields
that extend throughout the structure. The oxide
layer, though very thin, plays an essential role in
binding the wave to the structure. We have thus car-
ried out a new analysis of the interaction of surface
polaritons with surface roughness, with the discussion
framed in language that is rather general. The results
of the numerical calcul'ations, when combined with
the analysis in the earlier paper, suggest that we can
indeed obtain saturation of the radiation intensity for
values of 5 we believe are physically reasonable. We
must append one qualification to this statement. In
the saturation regime, the values we require for 5 are
likely attained in real junctions but they are uncom-
fortably large for use with our perturbation theoretic
treatment of the roughness. It-is difficult to carry
through a more complete analysis, for these complex
structures. It is our view that the calculations offer
support for our earlier picture of the saturation
mechanism, though the quantitative features of the
results may be modified by a more complete theory,
for the largest values of 5 we use.
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The calculation also provides insight into the physi-
cal picture that underlies the phenomenon of
roughness-induced emission stimulated by the dc
tunnel current. We write the surface polariton mean
free path as a sum of three terms, which we denote
here as

1 1 1 1

l(co) Ip(a)) l,p(o&) IR(cu)

The piece lp(cu) ', called 2Q~t~" previously, ' comes
from dissipation in the substrate. Figure 2 of our
earlier paper provides calculations of Q~[", for a junc-
tion with smooth surfaces. (In the present paper, the
mean free path is defined to be the distance for the
energy density to drop to 1/e of its initial value, while
Q(~'t is the inverse of the distance for the field ampli-
tude to drop by the amount. )

Roughness limits the mean free path of the surface
polariton in two ways. First of all, a surface polari--(p)
ton of wave vector k]] is elastically scattered into a

~(p)
surface polariton state of wave vector k]] ~ k ]]

This contribution to the mean free path is 1„(~).
Then the wave may radiate its energy into the vacu-
um above the crystal, to give rise to l~(cu). We find
here that l„(co) and lp(o&) can be the same order of
magnitude for reasonable descriptions of the rough-
ness. However, la(ra) is many orders of magnitude
larger than l„(cu) or Ip(cu). Thus, the probability
that the surface wave emits a photon is very small
before its fields decay, or before its coupling to a par-
ticular radiative photon mode is interrupted by an
elastic scattering. The tunnel junctions are, in fact,
rather weak light sources, and it is this small radiative
decay probability that is the source of the problem,
since the fluctuations in tunneling current couple
quite strongly to the surface mode. The fact that the
roughness is an inefficient means of decoupling a
surface polariton from a surface, on that portion of
the surface-wave dispersion curve uninfluenced by

(p)
retardation (where ck

~~ » a&, with c the vacuum
velocity of light and cv the frequency of the surface
polariton) has been pointed out in the earlier litera-
ture, though the geometries explored are very dif-
ferent than the one of present interest.

Section II of this paper presents the theoretical dis-
cussion of the influence of roughness on the surface
polariton mean free path, and our numerical calcula-
tions are discussed in Sec. III.

II ~ THEORETICAL ANALYSIS

The geometry we consider is the one employed in

our earlier paper, and illustrated there in Fig. 1. We
consider a semi-infinite substrate with dielectric
e3(eo). The substrate is overlaid with an oxide layer
of thickness d, and this by a film of nominal thick-
ness L. The dielectric constants of the oxide layer
and of the film are ~2(fd) and ~~(co), respectively.

The coordinate system is chosen such that the z axis
is normal to the surface of the substrate. The surface
of the outermost layer is supposed to be roughened,
in such a way that the location of a point on the sur-
face is given by the relation z = L + d + (( x ]]) with

x [[-xx+yy". The function ((x [[) is defined so that
its average value (((xp)) vanishes. The root-mean-
square value 5 of the deviation of the outer surface
from perfect flatness is defined as g = [(('(x t~) ) ]'I'

To begin the discussion of the mean free path in

the presence of roughness, we begin by looking for
solutions of Maxwell's equations which vary harmon-
ically with time

E(x,r) =E(x, cu)e ' ', (2.1)

f(x, cd) =6 (z, 69) +b, e(x, M) (2.3)

The first term on the right-hand side is the dielectric
function for the three-layer structure with smooth
surfaces, therefore only a function of z, and the
second term is the change in the dielectric function
produced by roughness.

The equation for the Fourier component of the
electric field can be written in the form

P' x [V x E(x, cu)] —((o'/c') p"'(z, co)E(x, cu)

=(a)'/c')Ap(x, u))E(x, u)) . (2.4)

This can be converted into an integral equation
through use of the Green's-function matrix
D„'„'(x, x';co) constructed from Maxwell's equa-
tions

E„(x,co) =E„' '(x, cu)

x hp(x', cu)E, (x', ~) . (2.5)

Here E„' '(x, ~) is a solution of Eq. (2.4) with
he(x, co) zero, and D„&'( x, x ';~) are the Green's
functions for the structure with perfectly smooth sur-
faces. These are constructed as the solution of the
equations

2 2—zp (z, co)gg„— +By„'7 D„„'(x,x;cd)
C Bx„8x

=4m 5„„5(x —x') . (2.6)

where the Fourier coefficient of the electric field
E(x, cu) obeys

'7 x ['7 x E(x, ~)] —(~'/c')p(x, ~)E(x, ~) =0

(2.2)

The dielectric function p(x, co) may be split into two

parts
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%'e proceed by calculating the scattered electric field, produced by the second term on the right in Eq. {2.5), at

point x in the vacuum above the sample. Upon taking into account the electromagnetic boundary conditions and

then taking the limit of small amplitude roughness as described in I, one can find the following form for the scat-

tered electric field:

2

'c(x. &=—,I ~, ( &
—()Xfd ,

»'„'",,', '( „, „'((+d&+. ; &(( „'&c,( „'. ( c+d &—;
4vrc

(2.7)

If we replace the electric field on the right-hand side of Eq. (2.'7) by that of the surface polariton in the limit all

surfaces are presumed smooth, then we obtain the amplitude of the scattered electric field to first order in rough-

ness. %e presume here the incident surface polariton propagates parallel to the x axis, so the expression for the

scattered field assumes the form

EIg (X, QJ) =
(

2

, I. ~)((u) —1)E"' d'x)(' D„"„'{x ))z, x IL'(L + d) +;o))
4mc2

k (0)
+ I D (x f(z, x )) (L +d) +;~) p ' (( x ~~')

P06~ ( Qj)
(2.8)

In this expression, E' ' is the amplitude of the x
component of the electric field in the surface polari-

ton, evaluated just inside the surface of the upper
(0)

film. %'e have, with k
~~

the wave vector of the sur-
face polariton parallel to the surface,

P = (k 0)2 — 2/C2)1 2 (2.9)

where on the surface polariton dispersion curve,
k))

' ) cu /c always.
Following the procedure employed in I, we take ad-

vantage of translational invariance in the two direc-
tions in the surface, for the smooth structure, by

(2.10)

d„'„'(k ~)z)cu(L +d) +) =e ' y„„(k)),cu), (2.11)

so when these results are assembled, we find Eq.
(2.8) in the form

I

writing
n (0) i-(X, X icv) =

(2 )
&c d„"„'(k))cu~zz')

The functions d„'„' (k „cu~zz') are given explicitly in

the Appendix of I, for the structure employed in the
present paper. Moreover, if we look at the scattered
electric field in the limit z ) L +d, then it is possible
to introduce a new matrix y„„(k ~~, ~) such that

cull)(cu}1]()&)2)k&)0)2 . (0)

F. ' '
t d k))e'" ' "((k))—k)) ) yu&((k)), cu) +) y„,(k)), cu) (2.12)

where in Eq. (2.12), k = k~~+zk, and

(cu2/c2 k2)l/2 lm(k ) )Q (2.13)

and (( k ~~) is the Fourier transform of f( x ~~), defined
by the same convention as that used in I.

The integral over k ~~ covers all possible values of
the two-dimensional wave vector. %'e confine our at-
tention to two distinct regions of the k~~ plane. In the
region where k)) ( cu/c, the quantity k, is real (and
chosen positive). This portion of the integral
describes radiation emitted into the vacuum above
the substrate. In the remainder of the k~~ plane,
where k)) ) cu/c, k, is purely imaginary with positive
imaginary part. The contribution of this region
describes electromagnetic fields localized near the
surface of the tunnel-junction structure. This portion

of the scattered field comes from roughness-induced
elastic scattering of the incident surface polariton into
a final surface polariton state with wave vector

(0)
k ~~+ k

~~
. The former part of the integral contributes

to 1/I'"' in Eq. (1.1},while the second part contri-
butes to 1/I'"'. We consider each region separately.

A. Region k~~ & cu/c

If we imagine the roughness is confined to a finite
area of the surface, then in the limit

~
x

~

—~, the
method of stationary phase may be used to evaluate
the integral in Eq. (2.12). This method is described
in I, and gives us the following expression for the
scattered electric field in the vacuum:

cu (ei(tv ) —1) .
( )

-(s) -(0) -(s)3 (0)
E„'"'( x, o)) =+i E'"(""" " (( k ii

—k ii ) costs y~( k ii ~ ~) + v~z( k ii

k ii (s) (2.14)
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(s)
Here k(( =(p)/c) sing, [xcos@,+ysin(t, ] is the pro-
jection of the wave vector of the scattered radiation
onto a plane parallel to the surface, while 8, and @,
are the standard polar angles that describe the direc-
tion of the outgoing wave.

The next step in forming an expression of 1/I(a) is

d' W' "' ~'I a)( ~ ) —1I' , ( ) —(p)
zI (p)Iz

d Qdt 32m c
cos'8»I((k)) —k)( )I

to calculate the energy per unit time per unit solid

angle carried away by the radiation field. This can be
done-by evaluating the time-averaged Poynting vector
with the radiation field in Eq. (2.14), then multiply-

ing by I
x I'. In this way we obtain, with

(d'W' '/d 0 Ct) d 0 the energy per unit time radiat-

ed into solid angle dA,

x [ I
cos@ +I (k(()p)/e(pp) tang Iz( I

r ( k I~', (p) I
cos 8 +

I
r ( k Ii', p))

I
sin 8) +

I r» ( k ()' cu) I' sec'g, sin'd, ]

(2.iS)

-(s)
where the functions r ( k ((, p)) are the same as those
defined in I.

The calculation of the total energy per unit time ra-

diated off the surface requires one integral over solid

angle to be performed. The integral over the azimu-
thal angle $, can be performed analytically if it is

noted that the functions Ir (k)), p))I depend on

only H„and if we describe the surface roughness by

the Gaussian distribution function commonly
employed in theories of surface roughness phenorn-

ena

(((x(()((0))=5'exp(-x((/a') (2.i6)

where 5 is the rms amplitude of the roughness, and a
is the transverse correlation length, which is a mea-
sure of the distance between adjacent peaks on the
rough surface. The use of Eq. (2.i6) combined with

the definition of
I ](k I)

—k)(' ') I', with»t the area of
the rough patch on the surface, gives for the total en-
ergy per unit time radiated by the junction,

dW( ~ 5 a p) Ie)(p)) 1I i (p)iz ) z (p)z)~E ~
exp( ——a k[I )

dt

m/2 2 2

x de, sine, cos'H, exp —'
"2 sin'8,

4c2

I) (z) k)) z I r»(k))' ~ p)) I'I) (z)
[ I r„(k)), p))

I
cos g +

I
r (k)), (p)

I
sin 8, ] lp(z) — ' + tan t), lp(z) +

z ~]Po z

dW( & L„dW(P&
dt IR( p)) dt

(2.18)

where 1/I)) (p)) is the distance required for the ener-
gy stored in the surface polariton to decay to 1/e of

where z = a'p)k)I ' sing, /2c, and we are assuming k)('P'

as well as ~~(cv) is purely real, an approximation that
introduces little error.

To form an expression for the contribution 1/I(a)
to the mean free path of the surface polariton from
radiation into the vacuum, we note the factor of
IE(»I renders (dW( '/dt) is proportional to the en-
ergy per unit time (dW' '/dt) in the surface polariton
which flows over the rough patch on the surface. Let
the patch be a rectangle with sides L„and Ly, with
the side Ly oriented perpendicular to x, the propaga-
tion direction of the incident prolariton. Then
(dW'p'/Ct) is proportional to L», so Eq. (2.17) may
be rewritten

(2.17)

its initial value, from roughness-induced radiation of
its energy density into free space.

Thus, we require a form for dW(P)/dt. This in-

volves integrating the Poynting vector of the incident
surface polariton from " = —~ to +~. The calcula-
tion is straightforward, but tedious, so we only quote
the result here. %e write it in the form

» {1 )IE(»Iz
dt 8vrPo3

(2.19)

where the term proportional to f describes the frac-
tion of the energy in the incident wave stored within
the tunnel-junction structure, and remainder is the
fraction which resides in the vacuum above the struc-
ture. The expression for f is quite complicated in

form, and is reproduced in the Appendix. Recall that
IE(p)I' is the x component of the electric field of the
incident polariton, evaluated at the outer surface
z = L +d of the tunnel-junction structure.
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hen these results are combined, for 1/I'"' we find

5 c) cd Polo((

Ig() 2c k (I+ f) exp( ——a'kII )

w/2 a co
d8, sinH, cos'8, exp —,sin'8,

4c2
c )

k)) z li(z) ) rr(k)), cd) ) li(z)
[Ir,(k))', cd) )'cos'(), + ) r, (k))'. cd) I'sin'(), I 1+ tan'1), l()(z) — ' +

&iP0 z z

In an earlier paper on the interaction of surface po-
laritons with surface roughness, ' where the surface
polariton propagated on the interface between a
semi-infinite dielectric and vacuum, extensive use of
the dispersion relation of the surface wave was used
to simplify the expressions for the two contributions
to the mean free path. This is difficult to do here,
since the dispersion relation is given by a rather com-
plicated equation displayed in I, which must be
solved numerically save in certain special limits.

We turn next to evaluation of the contribution to
Eq. (2.12) from the region k)) & cd/c.

B. RegiOn kII & ao/C

We again use the method of stationary phase, as
outlined in I and in earlier work, to evaluate the con-

(2.20)
I

tribution to the scattered field from the region
k)) & cd/c. Here it is the limit ) x ))) ~, for fixed
z(z & L + d ) that is of interest, where x II is the pro-
jection of x onto the plane parallel to the surface.
After evaluating the expression for the scattered field
in this manner, we take the limit c oo, so retarda-
tion effects are ignored here. In I, and also in the
earlier work by Davis, ' it was pointed out that retar-
dation has been negligible influence on the properties
of surface polaritons in tunnel junctions, since the di-
mensions of the various elements are very small
compared to the wavelength of light.

(s) .If k II is the wave vector of the scatter polariton~ (s) (0)
(the magnitude of KII equals k II, the wave vector
of the incident surface polariton), the procedure
above gives for the scattered field, in the region
z &L+d,

k '
E~(s) { )

- x

k( )
II

()
+y ' +iz '

exp[ —k,', "(z L —d)]E'*'—,
k (s) 1/2

II

(2.2l)

where
I c

(,) 242[o)(cd) —1 lkii ' f, (()) -(c) .-(o)E ' =—,l if, cosct), —i '(*
)

E' 'g(k)) —xk)) )
l i

(2.22)

The quantities .f and f, are given by

,f„=exp[—2k[I (L +d)] cosh(kII d) cosh(kII L) + cosh(k[I d) sinh(kII L)
e2(CO)

+ cosh(kII 'L) sinh(kII 'L) + sinh(kII 'd) sinh(kII 'L)E3(~) . E2(~)
~2(O))

II

( )
(2.23a)

and

f, =exp[ —2k)) '(L +d)1[op(cd) cosh(k)) 'd) cosh(ki)o'L) +o)(cd) cosh(kiio'd) sinh(kii 'L)

+ t2(citP) sinh(kII d ) cosh(kII L )

+ [o)(«))o3( )/tz(cd)I sicndh(k)) d) sinh(k)) L ) ) (2.23b)

while the function D(k[I, co) whose derivative appears in the demoninator of Eq. (2.22) is
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I 't r

~2(Cu) ~3( O))
D(ks, &u) =[I+a~(co)] I+ I+ +[I+a~(~)] I+ I — exp( —2k~id)

~)(co) ~2( ) e, (O)) .2(Cu)
t i ! t

r

63(03)+[1—e)(o))] 1+ 1+
~2(~)

't

~2(~}
exp( —2k~~L )

ei(~)

~2( O)) ~3((u)+[I —e)((u)] 1+ 1— exp[ —2k]](L + d) ]
et(cu) ez(«u)

(2.24)

The dispersion relation of the surface polariton is
given, in the absence of retardation, by the zeros of
D(k]], co). To evaluate the scattered field in Eq.
(2.21), we have used a "pole approximation" and ex-
tracted only the contribution from the surface polari-
ton pole in the integration over the magnitude of k]]
which remains after the method of stationary phase is
used to perform the integration over the direction of
k]] in Eq. (2.12). (See Ref. 2 for an expanded
description of this procedure. ) In Eq. (2.22), it is the
derivative of D(k~~, a&) evaluated at the surface polar-
iton pole that appears in the denominator.

To form an expression for I/l„(ru), we proceed as
follows. We can calculate the total energy per unit
time fed into the surface polaritons noncolinear with

the incident wave by forming the Poynting vector
fom Eq. (2.21), then finding the total energy per unit
time that flows through the walls of a cylinder of
large radius erected with axis parallel to the surface
normal. If we calculate this for the region z & L +d,
the contribution from the region z & L + d is found
by simply multiplying the above by the same factor f
that enters Eq. {2.19}. The above procedure gives
the total energy per unit time transported away from
the rough patch on the surface by energy carried in

the form of surface polaritons bound to the surface.
Upon dividing by dW' '/dr, we obtain an expression
similar to Eq. (2.18), which leads us to an explicit
form for I/l„(cu)

II

, .fg
&iPo

(2.25)

{2.26)

I 4Pokll le t(«u) —I I' " — -(«)
i„( ) a (aD/ak~ ~«)'

Upon recalling that (g(k ~~

—k
~~ ) (z is proportional to the area A of the roughened region of the surface, we see

that l,„(ao) is in fact independent of the area A.

If the Gaussian form of the surface roughness correlation function (((x ~~)((0) ) is used to evaluate the in-

tegral on $, in Eq. (2.21), we then find a closed analytic expression for i„(«u) '

Beg a [e (cv) —I] k(I P 4k k( )

f '[/«( )+zl, (z) ] — f f, lt(z) +2 fzl«(z)
i,u(~) (BD/aks, ) ~i(co)Po

" '
&iPo

1 2 (0)2where we have z = —a k]]o' .
The results displayed in Eqs. (2.15) and (2.20)—

(2.22) are the principal results of the present paper.
Section III is devoted to discussion of numerical cal-
culations of lq(cv) and l„(co), and the implications of
these calculations.

III. RESULTS AND DISCUSSION

In this section, we describe calculations of
I/i„(ru), and I//R(~) for a junction fabricated from
an Al substrate and an Ag overlayer. In all the calcu-
lations, the thickness L of the Ag film was taken to
be 200 A, that of the AI203 oxide layer 30 A, and the
Gaussian correlation function in Eq. (2.16) was used
to characterize the roughness on the surface.

In Fig. 1, we show I/l„(cu) calculated for the case

0
where the rms amplitude of the roughness is 35 A.
For the transverse correlation length a, we have

0
chosen a =35, 60, and 100 A, respectively.

The most striking feature of these curves is the
prominant peak in the scattering rate in and near the

0
visible, for the curves with a =60 and 100 A. As the
transverse correlation length increases, the peak
shifts toward the infrared. If one consults the disper-
sion relation for the surface polariton calculated and
displayed in Fig. 2 of I, then one sees the peak in

I/l„(«u) occurs at that frequency where k~~~«'a = 1.
At this frequency, the wavelength of the surface po-
lariton approximately matches the distance between
adjacent maxima on the rough surface, and the wave

is scattered strongly by the roughness. At lo~er fre-
quencies, where its wavelength is much longer, the
wave sees the average profile of the surface and
scatters weakly, and at high frequencies it tends to
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both interfaces become rough. The result depends
on how the roughness on the inner interface is corre-
lated with that on the outer interface. If the inner in-
terface has a surface parallel to the oxide-vacuum
surface, the result is a modest enhancement of the
effect calculated with the AI:AI203 interface smooth,
but the A1203.'vacuum interface rough, If, however,
the oxide is "lumpy", with thickness that varies with

position, there is a dramatic one order of magnitude
enhancement of the influence of roughness with

given magnitude on the optical reflectivity. In the
tunnel junctions, the oxide overlayer likely replicates
roughness on the substrate, but the outer film eva-
porated later most probably has an outer surface with
small scale features (steps, terraces) uncorrelated
with those on the oxide. In this circumstance, the
present calculation very likely underestimates the in-
fluence of roughness on the surface polariton mean
free path, and provides a picture of the saturation
mechanism that is unduly pessimistic, though the
qualitative picture of the frequency variation we be-
lieve would be unaffected if all interfaces have
roughness described by approximately the same
transverse correlation length.

In Fig. 2(a), we show the variation of the emission
intensity at 2.S eV with rms roughness amplitude 5,
for the model junction considered here. The satura-
tion effect is clearly visible, though we have yet to
achieve full saturation at 5=200 A. We believe this
calculation establishes the plausibility of the proposed
saturation mechanism, particularly in view of the re-
marks above on the role of roughness on more than
one interface.

One might expect a substantial frequency variation
of the saturation effect, since from Fig. 1 we see that
as one moves from visible frequencies into the in-

frared, l„(cv) lengthens appreciably. However, at the
same time lp(m) increases also, and the ratio
r(ru) = l„(co)/[Ia(a&) + l„(a&) ) that controls the
saturation effect does not display a strong frequency
dependence as a consequence. [One is to multiply
Eq. (3.4) of our earlier paper' by r(~) to include the
effect of roughness on the mean free path in the ex-
pression for the emission intensity. ] We illustrate
this point in Fig. 2(b), where we plot r(co) as a func-
tion of photon energy for a =100 A and 5 =200 A.
This ratio does depend on frequency, but not in a
dramatic or particularly striking way. This suggests
that a study of the saturation phenomenon as a func-
tion of frequency from the infrared through the visi-
ble should show no great dependence of this
phenomenon on frequency.

%'e conclude with a discussion of our calculation of
I/la(cu), the mean free path from radiation into the
vacuum. For 8=35 A, we display our calculations of
I/IR(u&) in Fig. 3. From the numbers and a compari-
son with Fig. 1, it is evident that I/lz(cu) is smaller
than I/l, ~(cu) and also 1/la{co) by roughly five orders

M
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FIG. 2. (a) For tee and the junction considered in Fig. l,
we plot the variation of the emission intensity at 2.5 eV with

0 0
rms amplitude 5. (b) For 5=200 A and a =200 A, N/e plot

as a function of photon frequency the ratio «(~) Isp(~)/
[Ip(cc)) + I p(fa)) ] that controls the roughness-induced

saturation effect.

of magnitude. This says not only can we neglect
I/IR{ru) in our discussion of the saturation effect,
but also it is extremely improbable that the surface
polariton will emit a photon into the vacuum, before
its energy is dissipated by the currents induced in the
substrate.

Upon elaborating on the preceding remark, we may
see that the reason why the tunnel junctions are weak
light emitters is that roughness is an inefficient
means of decoupling energy stored in the surface po-
lariton from the substrate. Indeed, a very short cal-
culation allows us to understand the quantum effi-
ciencies calculated in I.

An electron incident on a metal from the outside
with velocity up normal to the surface has a probabili-
ty P = rre /2tuo of exciting a surface plasmon. '

Since the surface polariton fields inside the metal are
quite comparable in strength with those outside, an
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static normal modes of the structure, influenced only
very slightly by retardation. If we adopt, in a heuris-
tic sense here, language introduced with more preci-
sion elsewhere, " the "photon strength" of these
modes is very small, with the consequence that they
couple weakly with the radiation field, even if the
perturbation they encounter is large (i.e., roughness
with k]] 'a = 1 and amplitude 5 large enough that
g/L is not small). Such perturbations scatter the
wave strongly [i.e. , l„(cu) can become short and
comparable to Ip(o)), thus leading to saturation of the
emission], but they are unable to "trigger" the surface
polariton, and induce it to radiate an appreciable frac-
tion of its energy into the vacuum before its fields
decay by other processes.

The above reasoning leads us to a pessimistic view
of the possibility of fabricating junction structures
with quantum efficiency substantially larger than the
figures reported to date. ' An interesting possibility,
not considered here in detail, would be absorption of

0
large molecules with size in the range of 50—100 A

onto the outer surface. Within the emission bands of
the molecule, it is possible intensities substantially
larger than those we estimate may be achieved.
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FIG. 3. For two values of a, 5=35 A, and parameters
used in the earlier calculations, we plot 1//R(co) as a func-

0
tion of photon energy. The curve for a =35 A has been
multiplied by a factor of 10.

electron that tunnels through the barrier excites a

surface polariton with about this probability. With

vp = 3 x 10 cm/sec characteristic of electrons at the
Fermi surface of a metal, we have P =1; i.e, , a tun-
neling electron couples very strongly to the surface
wave, and excites it with a probability rather close to
unity.

Once the surface plasmon is excited, it must radi-

ate a photon in the vacuum. The probability that this
happens before the energy stored in the surface po-
laritons is dissipated by losses associated with the
currents induced in the substrates is given by
Ip(cu)/la (cu), in the limit that the probability of pho-
ton emission is small. From the numbers displayed

0 0
in Fig. 3, we estimate (for 8-35 A and a =100 A)
that in the visible range of frequencies la(cu)/la(cu)
=4 x10, which with P =1 gives an overall quan-
tum efficienty quite close to that calculated in I.

We thus see very clearly from this example that
the tunnel junctions are rather weak light emitters
because the energy stored in the surface polariton
fields near the surface is decoupled out ineffectively
by surface roughness. The basic reason for this is
that in the relevant range of frequencies, these
modes have ck]] && 0), and are thus really electro-
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APPENDIX: EXPRESSION FOR THE ENERGY
DENSITY OF THE SURFACE POLARITON

STORED IN THE TUNNEL-JUNCTION
STRUCTURE

and

(+)
Ag = e;Pg + ejP] (A2)

Then

.f = (po/4aipc) 0 (A3)

Here we quote the expression for the quantity f
that enters the main text, in Eq. (2.19) and Eq.
(2.20). As remarked in the text, the derivation of
this quantity is straightforward but tedious, so we

quote only the final result, and we consider only the
case where the three dielectric constants e~(co),
62(M), and e3(eo) are all real.

We introduce, as in the text, Pp = (k]] "
—cu'/c') '~', and P; = [k(f"' —cu'a;(cu)/c']'" where

i =1, 2, or 3. Then we let

W,'p-' = ~,Pp+ P,
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and

D =(1/Pt)Ata' [1 —exp( —2PtL)] +(1/Pt)AIa+'t[exp(2PtL) —1] —4L AIo+tAItt t

+(1/4ataqPt) ([AJ~ Ata' exp( —2PtL) +A)~ ' Ata' exp(2PtL) +2A)~ At~ 'AItt'AItt'][1 —exp( 2—Pqd)]

+ [A), ' Ato' exp( 2Pt—L) +A]+"A "exp(2PtL) +2A)~ 'A)~ 'AIa'Ato'] [exp(2Ptd) —1] ]

—(d/ataqPt)[A)+'A) 'A ' exp( 2PtL—) +Aq~ 'Aq~ 'Ato exp(2PtL) +(A +' +A ' )A'+'A' ']

+ ( es/4at apP3) [ [ A/t+'AIo "exp( —2Pt L ) + Ap) "AItt "exp(+2/3t L ) + 2 A/t+'At) 'Atp 'AIa '] exp( —2Ptd )

+ [A)~ Ata exp( —
2PtL ) + A)t+ AIa exp(+2Pt L ) +2AIt 'Aj~ 'Ata 'Ata '] exp(+2Pqd)

+2[A)+'A) 'A' "exp( —2PtL) +A/t+'A)& 'AIo+"exp(2PtL) +(Azt+"+A' ")A'+'A' '] ]

(A4)
In the limit L 0 and d 0, the quantity reduces to

.
/' = as/3o/Ps ~

which, upon further use of the dispersion relation of a surface polariton which propagates on a semi-infinite
dielectric of dielectric constant e3(~) reduces to the frequently quoted result

.f = —1/(as(~) (' .

(AS)

(A6)
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