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Nitrogen states in Ga(As, p) and the long-range, short-range model: A systematic study
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The long-range, short-range model of the nitrogen isoelectronic impurity in Ga(As, P) is discussed in terms

of the results of recent photoluminescence and lifetime measurements. The predictions of the theory are

shown to depend sensitively upon the strength of the coupling among the states produced separately by the

long- and short-range parts of the potential: The strength of the coupling reflects the specific model of
potential used in all cases treated. Strong coupling yields theoretical energies whose general composition

dependence mirrors the features of the data. The effect of consideration of the L-conduction-band minima

is smaller. Determination of potential parameters from experimental energies indicates a range —20—25 A.
Luminescence calculations require an accurate treatment of the continuum contribution. Predictions of the

theory are in good agreement with available data. Inclusion of L indicates the existence of an excited

nitrogen state in GaP. No internal inconsistencies in the theory are found.

I. INTRODUCTION

Because it is strongly luminescent even in indi-
rect III-V mixed-crystal alloys [particularly
Ga(As, P)], the isoelectronic impurity nitrogen
has attracted wide interest in its optical proper-
ties. ' These properties have permitted commer-
cial production of yellow Ga(As, P):N light-emitting
diodes, ' for instance. More fundamentally, nitro-
gen in Ga(As, P) has been considered'~ to be a
classic example of a short-range impurity, as op-
posed to the common hydrogenic donors and ac-
ceptors in semiconductors.

More recent experimental data' "indicate that
the nitrogen potential in Ga(As, P) is more compli-
cated than in the simple short-range Koster-
Slaterxx mpdel treated jn prevjpus wprk 2~F2-n

Instead of the single state predicted by the Koster-
Slater model, "' "more than one state associated
with single nitrogen sites has been experimentally
identified. ' ' The energy E„ofthe lowest exper-
imental line N» decreases monotonically with de-
creasing ~, the mole fraction of phosphorus, and

is associated with the X conduction-band mini-
mum, ' as dempnstrated by pressure measure-
ments. ' The energy EN of the next higher line N„
follows' the I' minimum for g~0.42, bends over
for x= 0.42, and then follows the ~ minimum for
~a 0.42 until ~= 0.47; there has been no observa-
tion of N„ for ~a 0.47.

Photoluminescence data for as-grown Ga(As, P):N
are illustrated in Fig. 1.' ' In addition to the two
states discussed above, these data manifest the
existence" of a third state N„', which had been pre-
dicted theoretically. Corresponding data for
samples in which nitrogen ions were implanted
seem to show no evidence of N~. This discrepancy
may be the result of the difference between as-
grown and ion-implanted material.

Interpretations of features of the data in limited
ranges of g have been made in terms of the tradi-
tional models of impurity potentials: That is, ei-
ther short-range models whose electronic states
are nonlocal in k space, or long-range models
whose states are localized in k space about conduc-
tion-band minima. (i.e., the effective-mass approx-
imation holds). "~ Attempts to interpret the single

N» state observed for xa 0.47 in terms of the in-
fluence of the newly measured" ~ z dependence of
the L, conduction-band minimum upon a two-level
version of the Koste r- Slater model produc ed good

agreement with experimental data. ' It was demon-
strated, ' however, that uncertainties in the band

structure (or density of states) vitiate the physical
significance of any such agreement. A long-range
model impurity potential, on the other hand, was
exploited to interpret the data fpr 0.30' x~ 0.42,
where N„ follows I" and N» follows ~. Even though
good agreement with experimental energies was
again achieved, ' this model localizes N» about X
in k space and cannot explain the strong lumines-
cence of N», which implies large k =0 wave-func-
tion components.

It is clear from the foregoing discussion that the
nitrogen potential must be intermediate between the
short- and long-range limits in order to corres-
pond to experiment. That is to say, it must have
a short-range part to provide the large k =0 com-
ponents and a more extended part to account for the
multiple states observed. ' ' It is equally clear
that care must be taken to account for gal the ex-
perimental features consistently from the model
potential considered: E ither considering only the
strong luminescence and neglecting the description
of the rest of the spectrum' ' pr treating only the
independent ~ dependences of N„and N» and neg-
lecting the luminescence4 leads to inconsistencies.

Two theories involving extended nitrogen poten-
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tials have been proposed '2 to describe the
data. ' " One" of these theories associates the
nitrogen impurity mith an intermediate-range ex-
tended part V', as well as a short-range part V,.
More specifically, the strain field is presumed to
induce an attractive impurity potential in the first
shell of nitrogen nearest neighbors as well as at
the nitrogen site. This model predicts taboo sym-
metric states (i.e., with large k =0 probability am-
plitudes}. In the calculations reported, ~' these
states are decoupled and fitted independently to N„
and N~ near x-= 0.35. The limited range of the po-
tential causes neither of these states to be local-
ized in k space about a conduction-band minimum.
The association of one state (arising from the ni-
trogen site) with X and the other (arising from the
shell} with I' is, therefore, a result of fitting the
data and is not an intrinsic consequence of the
model. "

It would seem that this intermediate-range mod-
el' is consistent with experiments '" on ion-im-
planted material as well as mith conventional intui-
tion regarding the problem. In a recent study, "
homever, it was demonstrated that the fundamental
decoupling of the two states upon which all the sub-
sequent calculations and predictions rest ' is un-
tenable: In fact, there are no parameters for
which the energies calculated from this model can
be fitted to the experimental data in Ga(As, P}.27

These conclusions were extended to more gener-
al intermediate-range models" (i.e., restricted to
finite regions of the crystal). From basic quan-
tum-mechanical considerations, it mas showd'
that no monotonic potential of range less than 20-
25 A (i.e., no intermediate-range potential) is con-
sistent with the experimental energies.

'The other theory, "~ based upon an extended ni-
trogen potential, attributes a long-range potential
V, as mell as the conventional short-range poten-
tial V, to the nitrogen. The long-range potential
is presumed to arise from deformation of the lat-
tice induced by strains associated with the pres-
ence of nitrogen. To account for the data, the only
property mhich is required of V', is that it be
strong enough to bind one state associated with X
and one with 1", the short-range potential V, is
presumed to produce a bound state which is deloc-
alized in k space as in the conventional Koster-
Slater picture. Since the observed lines are assoc-
iated with eigenfunetions corresponding to V= V,
+ V„ the predictions of the theory can be inter-
preted6~4 as arising from hybridization of the
states associated mith V, and V, separately and re-
sult from the intrinsic nature of V independent of
specific values of potential parameters. These
predictions are in agreement with all the general
features of the data: That is, the theoretical en-

ergies display the same general x dependences as
the experimental data in Fig. 1.

The physics of the luminescence of the states
produced by this theory can be readily understood
by appeal to the one-band, one-site Koster-Slater
model of nitrogen. '~ " The short-range of the
potential causes an eigenstate to have components
for all k within the first Brillouin zone (BZ). The
state is derived from the conduction band of the
perfect crystal so that one such component is pro-
portional to the Bloch-function representation of
the perfect-crystal Green's function, mhieh is pro-
portional to [E„-E,(k}] ', where E„is the energy
of the state and E,(k) is the conduction-band dis-
persion relation. Therefore the localized impurity
state has strong k =0 components (i.e., strong lum-
inescence) even in indirect crystals, and this lum-
inescence increases as E„-E,(k =0) —= E„(this in-
crease incorporates the phenomenon of band-struc-
ture enhancement or BSE').

Within the long-range, short-range model, ""me
can represent V, by a Koster-Slater potential and

again find that the momentum amplitudes are pro-
portional to the Bloch representation of a Green's
function. The Green's function in this case, how-
ever, involves not the conduction-band states but,
rather, the eigenstates arising from the presence
of V, . This means that each of the eigenstates cor-
responding to V, + V, has contributions from the
strongly luminescent bound state produced by V,
associated with I' as well as from the continuum
states (which correspond to the ordinary Koster-
Slater result). This model, therefore, gives rise
naturally to multiple impurity states, all of which
are strongly luminescent.

In earlier work, ~~4 the general consequences of
the model mere discussed and the results of sim-
plified numerical calculations (in which only f' and
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FIG. 1. Photoluminescence data indicating the concen-
tration dependence of 1", X, L and the peaks associated
with electronic states of isolated nitrogen impurities in
Ga(As, P) (aSer Refs. 10 and 23).
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& were considered) mere presented" in order to
illustrate the degree of agreement with available
experiment' which could be achieved. The quanti-
tative agreement mas adequate '~~ considering the
simplicity of the calculations. The potential pa-
rameters which were extracted24 from experiment-
al data were consistent with fundamental require-
ments: For instance, the radius of the square mell
used to model P, was 20-25 A in accord with the
long-range nature of V, (i.e., the effective-mass
approximation is valid).

In view of the recent criticism" of intermediate-
range models, however, it is interesting to inquire
if the conclusions based upon the long-range model
remain unchanged after a more complete numeri-
cal study [in which the effects of L (Refs. 19 and

20) are examined], or if there is, perhaps, an in-
consistency which has escaped notice. Further-
more, criticisms apparently arising from the re-
sults of the early numerical applications of the
model have been leveled25 against the supposed dif-
ficulty in reconciling this model with the conven-
tional picture ' of nitrogen in GaP, the presumed
requirement of the theory that there be multiple
bound states even for x&0.5, and the seeming un-

derestimation of the predicted Nx luminescence
strength: It would be interesting to see if a strict
numerical application of the theory could provide
answers to these criticisms. Finally, the avail-
ability of a larger and more complete body of
data' """than that treated previously ' makes it
desirable to present the numerical results of a
systematic study of the model in a form ready for
comparison with data.

In this paper we report the results of such a
study of the long-range, short-range model in its
applications to Ga(As, P):N. This study is consid-
erably more complete than that presented previ-
ously. 24 In Sec. IIA we neglect the effect of L for
the moment and examine the consequences of in-
creasing the coupling between the states produced
by V, (which we model by a square well) and V,
separately and demonstrate that, in the more real-
istic case of strong coupling (as opposed to the
weak coupling considered previously" ), the states
of V, + P, exhibit all of the characteristics of the
data in Fig. 1. In particular, the presence of
strong coupling produces only one state in the gap
for large ~ and there is no difficulty in relating the
results for GaP with those for the alloy. In addi-
tion, we show that it is necessary to take into ac-
count the influence of V, when calculating the con-
tinuum contribution to the k =0 momentum ampli-
tudes instead of using only Bloch states for the
continuum. 2~ Finally, me show how inclusion of the
effects of strong coupling changes the values of the
parameters extracted from the data for this case

and that these parameters are still consistent with
both the fundamental restrictions of the model and

the conventional picture of GaP:N.'
In Sec. 0 8 me investigate the effects of both

strong coupling and the inclusion of the large dens-
ity of states associated with the 1. conduction-band
minima upon the spectrum of states and the k =0
momentum amplitudes. Potential parameters ex-
tracted from the data in this case are also consis-
tent with the long-range nature of the potential al-
though the results for GaP suggest a modification
of conventional2 notions. Vfe discuss comparison
with experiment in Sec. III for the cases where I.
is considered and where it is not, and in Sec. IV
we present the conclusions.

In brief, it appears that the long-range, short-
range {or Kleiman '~) model is the only one which
describes all of the experimental data without in-
ternal inconsistencies. The consequences for other
impurities in other semiconductors should be care-
fully investigated.

II. SYSTEMATICS OF THE LONG-RANGE
SHORT- R ANGE MODEL

A. Influence of strong coupling

~ j)=g(R, c)(R, c[j), (2a)

where in the Koster-Slater approximation,

(R~, c(j) =VoG(R, Ro, E&)(RO, c~j) ~ (2b)

The quantity E~ is the energy eigenvalue of
) j) and

Q is the retarded conduction-band Green's function
in the Wannier representation, which obeys the
following equation:

(2c)

In this part, we consider only the I' and & mini-
ma, demonstrate the effects of increased coupling
upon the states, and show that the parameters ex-
tracted from the data are consistent mith the long-
range nature of the potential. As in previous
work, "4 we model the impurity potential by the
sum of a short-range part p, and a long-range
part V, . We employ the one-band, one-site Koster-
Slater modelii-is to represent the short-range part
of the potential V„so that its matrix elements be-
tween Wannier states ~R„, s) associated with lattice
site 8 and band .s are given by

(R., f( V, )R„,s) = V,u.„() (l)

where Ho =0 denotes the impurity site, c repre-
sents the lowest conduction band, and V, is the
Koster-Slater" parameter. Since we consider cou-
pling to conduction-band states only, a bound state
(j) can be written as
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[E,(V/i)+ V, (r) —W, ]fo(r) =0. (2d)

'The quantity 5-0' in our treatment. Equation
(2d) results ' from the assumption that V, (r) is
sufficiently slowly varying that the effective-mass
approximation holds true [i.e. , (R, cl V, lR„, c)
= V, (R )5„„], and we have made the extension to
continuous r values instead of the. discrete lattice
points for which Eq. (2d) is strictly valid. We de-
note the energy eigenvalues of fo as IVo and the star
denotes complex conjugation.

The energy eigenvalues of
l j) are given by the

solutions of"

V Re[G(O, O, E,.)] =1. (3a)

Normalization of the wave function to unity yields'4
- i/2

(R„cl j) = — Re[G(0, O, E&)] (3b}

Equations (2) and (3) specify a solution which is
exact, except for use of the effective-mass approx-
imation. If V, produces a bound state lf(fo) of en-
ergy IV, and amplitude

lf, l
associated with the q

conduction-band minima, whose energy is E, (i.e.,
q stands for either I', X, or L), then Eq. (3a) can
be written as

well potential has the smallest range and, there-
fore, the largest

I f(0) l' of all model potentials
which reproduce a given set of EV. From wave-
function normalization, we have Q„ lf(R„) l' =1, so
that, for slowly varying lf I', E =9, the numerical
value of the volume of a unit cell. We define the
strong coupling case, therefore, as corresponding
to F =0 and weak coupling is chosen arbitrarily as
corresponding to F =1.0. 'The latter case was
treated previously'4 and the former corresponds
roughly to a properly normalized state. For sim-
plicity in practice, we restrict ourselves to inte-
gral values of F, the highest being F =40.0 (i.e. ,
0 = [d(x)]'/4 =40.5 A' in GaP, where d(x) = 5.65
—0.20x is the lattice constant in A in Ga(AG, P)).

In order to appreciate the effect of varying the
strength of the coupling, we illustrate schematical-
ly in Fig. 2 the salient features of the solutions of
Eq. (4} for the weak and strong coupling cases in
direct Ga(AG, P) (neglecting L). The dotted curves
correspond to the left-hand side of Eqs. (3a) and

(4) and the solid curve represents VoReGo. We let
Go~ A (Ref. 28) so that V, ReG, (0, 0, W„)= 1 is the

Direct Go (Aa, P)

V, Re . +g, O, O, E, = j. .lf.(o)l'
(4) Wf I W„

The quantity Qo represents the continuum contribu-
tion to the Green's function.

A detailed analysis of the solutions of Eq. (4) and
a discussion of the prominent features of the model
were performed previously. " Since we are inter-
ested principally in the bound-state solutions as in
that work, we also make the approximation that
Go(O, O, EJ)—= A(E&), the perfect-crystal Wannier-
representation Green's function for EJ in the gap
where

T

Wx Wr Er Ex

(b)

Q Re ts(O, O,E)]

V'o Re [Go(O,O,E)]

WEAK
COUPLING

Direct Ga (As,P)

( )-=Q („-) (5)
k

The quantity N, denotes the number of unit cells in

the crystal.
At this point, the only information regarding the

details of the potential used to model V, which en-
ters Eq. (4) is incorporated in the probabilities
lf(0}l' of being located at R„=O and the energies

Given, therefore, a set of W we can completely
describe a model potential by substituting the ap-
propriate probabilities. Since it is not practicable
to account for all model potentials, we simulate
instead the effect of varying the model of V, by
multiplying lf, (0)l' calculated for a chosen model
potential (i.e., a square-well potential) by the same
constant, dimensionless factor F for all q, where
E= Jdeo. lf(r)l'. It -has been shown" that a square-

Wf
w W„

Vo Re [G(O,O, E)]

Vo Re [Go (O'O'E)l

STRONG
COUPLING

Wf Er Ex

FIG. 2. Schematic illustration in direct Ga(As, P) of
factors governing solution of the eigenvalue equation (4)
for 8'z =—5'N for (a) weak and (b) strong coupling. The
quantities Wz and Sz denote energies of bound states
produced by V& associated with I' and X, respectively,
and WN denotes the energy of the state arising from V, .
This figure shows how strong coupling Inodifies the so-
lutions.
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bound eigenvalue equation of the isoelectronic
state [N) (energy IVN) arising from Eqs. (3a) and

(4) when V, =0: In other words, we assume that
the usual Koster-Slater short-range state '~ ' is
unchanged except for the influence of the bound-
state terms in Eq. (4). The features of the solu-
tions of Eq. (4} shown in Fig. 2 have been discussed
in detail elsewhere24 for the weak-coupling case.
For our present purposes, it is sufficient to ob-
serve that the presence of strong coupling causes
the states to perturb each other strongly. Since
the situation is much more complicated than for
weak coupling, '4 we rely here on numerical calcu-
lations for insight. 'The general conclusions" re-
garding the properties of the solutions of Eq. (4)
remain valid, '4 although details change.

As in a previous work, we model P, by a square
well of depth U and radius a. For the lowest bound

state associated with conduction-band minimum n,
this model yields for weak coupling (i.e. , F =1)

(6a)

A(E) =g n,.A, (E), (7a)

) m) A, )E) ) -=— ~,'),.e)E —K), ,

Re[A, (E)] —= — ', , ' 1+ ~ ln ' e(E —E, )
mQ. r1—y

~r ~tan ' e(E, —E)

r, =—s, /f), , s,'. =—2n&, (E —E,)/g'. .

(7c)

(7d)

In Eqs. (7), e denotes the step function [i.e., e(y)
= —,'(I+y/(y~)]. The quantity n,. represents the
number of nonequivalent i minima (i.e., nr =I, n»
=3, and n~=4), and p,. denotes a cutoff momentum
whose magnitude is related to the number of states
associated with i. In our calculations for Ga(As, P)

(6b)

(6c)

(6d)

The subscript n refers to either I', X, or I, (i.e. ,
we consider I. in Sec. IIB), e„ is the binding ener-
gy relative to minimum n, m„symbolizes the ef-
fective conduction-band mass at n (i.e., mr/m,
=0.068+0.052x, m»/mo =0.35, and m~/mo
=0.19,""where m, is the free-electron mass).

We specify the Green's function P by a mod-
el21~4 ' which describes the conduction band by
ellipses of finite extent associated with the mini-
ma. This model yields the following result for A:

we divide the Brillouin zone into three regions as-
sociated with the I', X, and I. minima as in pre-
vious work. """"""' These regions are, re-
spectively, 0 &Q„&0.125, 0.125 & Q„&0.50, and
0.50' Q„, where Q =—kd(x)/2v and r denotes a Car-
tesian coordinate. The resulting value for p, is
P, d(x) =(6v'V, o/n, .)'~', where V,.o is the volume in

Q space of the i region. We derive prd(x) =0.974,
P»d(x) =3.898, and p»d(x) -2.443. The values of the
energies of the minima which we use in our calcu-
lations are' ""in eV, E„=1.514+1.174~+0.186',
E~ =1.977+0.144~+0.2119, and E~ =1.802+0.77~
+0.16@ .

In a previous article, '4 the weak-coupling version
model was applied to N„and N» data' in Ga(As, P}.
Since there were only two experimental states ob-
served and there are three parameters P„U, and

a in the model, certain additional assumptions
were made. First, it was assumed that the con-
ventional2 Koster-Slater model applied for 0.9 & x
~1.0, so that V, was zero. Second, in the region
~ s0.9, a linear form for U and a constant for a
were chosen, U = Uo(1.4 —1.15x) with Uo = -0.2623
eV and a =24.8 A. 'This choice of parameters gave
a good agreement with observed energies and a
binding energy Ex —Wx=0.005 eV in GaP.

The more complete set of data"" illustrated in

Fig. 1 allows us to relax these assumptions. Here
we treat the whole range of z as one system and try
to determine the extent to which the potential pa-
rameters can be extracted from the data for all ~.
As before, '4 we assume that all the composition de-
pendence of the impurity potential resides in V,
and that t/', is the same in GaP and in the alloy. In
principle, this separation is always possible. In
practice, Vo is taken to be x independent and the
square-well parameters are allowed to vary: 'This
is physically reasonable" but only an approxima-
tion to the true composition dependence of the ni-
trogen potential.

In Fig. 3, we exhibit energies calculated with the
same potential parameters used previously" as a
function of g for a series of coupling strengths I'.
The Koster-Slater parameter Vo =-2.677 eV was
calculated by adjusting the binding energy Ex- W~
to 0.011 eV in GaP (see Ref. 30) in the eigenvalue
equatiOn2 y 12 18 I2 1 P4

Vo = I/Re[A(IVN)] .
Figure 3(a) displays the energy eigenvalues IV»,

W~, a»d g N calculated with these parameters. Al-
so shown are the energies of the I', &, and L, con-
duction-band minima, although we do not consider
l. in this section. In Figs. 3(b) to 3(d) we illustrate
the effect of varying coupling strengths upon the
final energy eigenvalues of Eq. (4). For weak cou-
pling, as in Fig. 3(b), these energies are only
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F/G. 3. Qlustration of the effect of increasing coupling upon the eigenvalues of Eq. (4). (a) The uncoupled energies
Wz, W» (V,= 0), and WN(V, = 0) vs composition for the potential parameters indicated. (b) Eigenvalues of Eq. (4) for
F=1.0 (weak coupling). (c) The same for F= 5.0. (d) Eigenvalues of Eg. (4) for F=40.0 (strong coupling). The influence
of L is ignored.

slightly changed from the decoupled eigenvalues 5:
Only in the vicinity of the I -X crossover is the
hybridization splitting noticeable. A s we increase
the coupling in Figs. 3(c) and 3(d), we observe
overall that the states repel one another. In the
case of strong coupling, presented in Fig. 3(d),
this has the effect that, for x= 0.30 and x=0.40,
there is a large splitting and a curvature in the en-
ergies, which is reflected in the data (e.g. , see
Fig. 1 and Ref. 6}. The energy EN is lowered
throughout and, even more striking, the energy E„Np
of the next highest state is raised so much for x
~ 0.40 that it is pushed into the X continuum for
large x (i.e. , xz 0.8) so that there is only one
bound state in this region. The energy EN, of the

Np
highest state is raised markedly for xs0.42. It
should be observed that those portions of energies
which originated in W„are only slightly affected
by the coupling (i.e., E„ for 0.30~ xs 0.40 andNp
E„, for 0.45 ~ x) because the small effective mass
at 1' makes the bound-state term illustrated in Fig.
2 extremely local in energy.

The overall features of the systematics manifest-
ed in Fig. 3 are generally valid. It is clear, how-
ever, from Fig. 3(d), that the specific parameters
employed in Fig. 3 do not give a good agreement
with experimental data in the strong coupling re-
gime. Nevertheless, we can exploit these system-
atics to learn how to choose parameters which im-
prove the agreement.

In the region of x in Fig. 1 where three experi-
mental lines are present, it is relatively easy to
determine Vp, U, and a which produce good agree-
ment with experiment [in practice, this involves

solving the three nonlinear equations resulting
from inserting the experimental energies into Eq.
(4)J. In the region xa0.47, where only N» is mea-
sured, such a procedure is not possible. Because
of the systematics in Fig. 3(d), however, we can
see that a balance must be struck between the re-
sults for x=1.0 and for x=0.40. If, at x=1.0, the
square well is strong enough to produce a bound
state associated with X, then Vp ~ -2.677 eV yields
an EN» atx=1.0 which is much lower than E»
—0.011 eV because of the strong coupling. A value
of Vp &-2.677 eV, however, produces a state N„at
x= 0.40 which is much too high in energy to agree
with data because of the slow variation of E» with
x. It appears, therefore, that the only viable al-
ternative is to have at x=1.0, W» =E» (i.e., no
bound state) and Vo =-2.677 eV (which yields E„
=0.011 eV). This conclusion is borne out by the
results of numerous computations.

Given the value of Pp and g» at x=1.0, we de-
termine the other square-well parameters by as-
suming g to be constant, U to have a linear form
as argued physically elsewhere, '4 and fitting to the
experimental energies at x= 0.35. The results of
this procedure for F =40.0 are given in Fig. 4
where the values of the parameters are U= (-0.378
+0.338x} eV, and a=24.8 A. In Fig. 4(a) we dis-
play as functions of x the uncoupled energies 5 „,
9», and gN corresponding to these parameters as
well as the energy g~ of the long-range state as-
sociated with L for later reference (since m~ & m„,
a bound state at I' requires one at L, ). We present
in Fig. 4(b), the results of the strong coupling of
the Wr, W», and W„shown in Fig. 4(a) and the com-
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FIG. 4. (a) Concentration dependence of the uncoupled
state energies corresponding to the parameters shown.
For reference, the energy Wz of the long-range state
associated with L is displayed. (b) Concentration de-
pendence of the eigenvalues of Eq. (4) for the parameters
in (a) and comparison with experiment (Refs. 5 and 10).
The coupling is strong (E=40.0) and L is neglected.
Bound-exciton energies of 0.01 eV were added to the ex-
perimental energies.

(k =0, ci j) =VOG(k =O, RO, Eq)(HO, cIj ),
G(k =O, HO, E) —=

1 C.(0)ff(0)
0 q q

+Go(k = 0, Ro, E),

G, (k, R„E)—= ~ ge '"'~~G, (R„,R„E),
&No m

(9a)

(9b)

(9c)
(9d)C (k) —= ge '" ~~f, (R ),

m

where the sum in Eq. (9b) is over bound states of
V„R, =0, Ik, c) is a conduction-band Bloch state,
and our notation is consistent with that in Eqs. (1)-
{5).

From Eqs. (9) we observe that we need to calcu-
late the Green's function defined in Eq. (9b). From
the localization in k space of the bound states of

parison with data"o (i.e. , the data points have been
raised uniformly by 0.010 eV to account for bound-
exciton energies"). The agreement between theory
and experiment is quite good for all x. In particu-
lar, the picture in GaP resulting from this study is
consistent with the usual one, '~ " "that is, the
observed nitrogen state is produced mainly by the
Koster-Slater potential interacting with the contin-
uum, since TV~=Ex at &=1.0. Moreover, the radi-
us a =24.8 A is consistent with the long-range na-
ture of the potential.

The luminescence of a state
I j) is most easily

characterized by the momentum amplitude at k =0,
which, in this theory " is given by

I
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FIG. 5. (a) Magnitudes of the bound-state contributions
to the k= 0 amplitudes of Nz and N~ for the parameters
in Fig. 3(b) for F=1.0 (weak coupling). The divergence
at x =—0.8 is an artifact of Wz —Ez . Only bound states
are considered. (b) Magnitudes of the continuum contri-
butions to the k= 0 amplitudes corresponding to (a). The
divergence at x —= 0.8 exactly cancels the corresponding
bound-state contribution. This figure emphasizes the
importance of correctly calculating the continuum con-
tr ibution.

V„we can write2' for bound Ij):

G(k =O, RO, E,)=.C„(0)f*(0)
NQ Ey gp

+Go(k =0, RO, Eq), (10a)

where, in the square-well model, '4 we have from
Eqs. (6):

Cr(0) =2/n„Krfr(0)a,

=1/u(fc2 +. y2 )&~2

(10b)

(10c)

In order to emphasize the importance of account-
ing properly for the continuum contribution tothe
luminescence embodied in Go in Eq. (10a), we pre-
sent the bound-state contribution I corresponding to
the first term on the right-hand side of Eq. (10a)]
to (k =0

I j) in Fig. 5(a) as a function of x for the
E, of Fig. 3(b) which are in the gap and we drop the
factor No' . The parameters are the same as for
Fig. 3(b) (i.e., weak coupling). Besides the struc-
ture near ~-= 0.30 and ~= 0.40 resulting from hy-
bridization predicted previously, 24 there is a di-
vergence for ~=0.75 which is an artifact of the fact
that Wr -E„at these compositions. From Eqs. (6)
and (10), this divergence is obvious and results
from the great spatial extent of a bound state with
small binding energy.

For the model under consideration, we can cal-
culate ' this contribution with a liberal application
of scattering theory. '2 %e report the details of the
calculation elsewhere" and concentrate here on the
result for E~ & E~:
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G, (k =0, R„E ) -=A
1

+
[sin(ya) —yacos(ya}] [(Er —E~)(E~ —E~ —U)]

cos(1/a„)(E, —Er ) a r([ ya cos (ya) ] —[ sa sin(ya) ] )
e(2/w —a„) B(a~ —2/w)

,v„ tz, —w„l,z„,Ilz„-z, l-z„E,1} ' (isa)

~~" (E~-+,), y' =- (a„a) ' —s', (1 lb)

2mrKR-=g. IER-Er I
~ (1lc}

'The parameters K~ and e„are defined in Eqs. {6b)
and (10c), respectively, and A is a normalization
constant equal to I/v N, and [II/(2w)']' ' for dis-
crete and continuum normalization, respectively.
The quantity E„ is a resonance energy defined for
2/w c ar & 1 (i.e. , ar & 2/w is the bound-state con-
dition) by

a&Ksa = sin(Kza),

where cos(K„a) &0, and for 1 ~ a„by

ar (Ksa(= sinh()K„a)), ReKz =0.

(11d)

(tie)
'The absolute magnitude of the continuum contri-

bution to (k =0
( j) is plotted in Fig. 5(b) as a func-

tion of x for the same parameters as in Fig. 5(a)
and we ignore the factor of A as we do in other fig-
ures. The first term in Eq. (1la) derives from the
unperturbed conduction-band continuum. The third
term, which reflects bound-state poles in the scat-
tering amplitude, "~ combines with the first to
produce the divergent structure at x-=0.75 in Fig.
5(b) (i.e., a„s2/w). This structure cancels exact-
ly the corresponding structure in the bound-state
contribution in Fig. 5(a). For a„a2/w, the first
term changes sign and cancels the divergent struc-
ture in the fourth term, which originates from the
presence of scattering resonances, leaving the
smoothly varying second term as dominant for x
z0. 15, as illustrated in Fig. 5(b). The structure
for x=-0.3 and x-=0.4 reflects the hybridization
displayed in Fig. 3(b).

In Fig. 6(a), we present the total ](k =0
(j)] ver-

sus composition for the bound states Nx and N„ in
Fig. 3(b). 'The parameters here are the same as
in Figs. 3(b) and 5 (i.e., F =1.0). It is clear that
there is no divergent structure in the total am-
plitude and that a full calculation reflects results
derived earlier. 4 Both states are sharply en-
hanced as they approach the respective hybridiza-
tion regions of x. In the region 0.5 s x s 0.9, the Nx
amplitude is larger than that calculated before"
because of our superior treatment of the continuum
contribution. Also given in Fig. 6(a) is the ordinary
band structure enhancement (BSE) amplitude for Nw

state, defined as

I I I I

u*u.(L4-05x)
u. -0;262 eV
a ~ 248 K

lO — y s 2667 eV

m;0
I ].oLal

O 2 ]
~~ )0

lO
I

Nr
0.0

IO

I l

0.2 Q4 0.6 08 10
X

04 0.6 08 I.O
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FIG. 6. (a) Magnitudes of the total k= 0 amplitudes
corresponding to the parameters of Fig. 5. The struc-
ture for x —0.8 is smooth and only the hybridization en-
hancement at x= 0.3 and x= 0.4 remains. Illustrated is
the expected band-structure-enhancement term of Eq.
(12) for Nx calculated for weakly coupled (Il= 1.0) ener-
gies. (b) Strong coupling (E=40.0) version of (a). Hy-
bridization enhancement is smaller and the N~ and N»
amplitudes are much closer in value than in (a).

N (BSE)= (12)
ENx Ej-

where the prime denotes the derivative. From this
comparison, it is clear that, in this model a much
larger enhancement is produced by the strong lum-
inescence of the state of V, associated with I' than
by the unperturbed conduction band as in Eq. (12).

In Fig. 6(b), we give the total amplitude ~(k =0
~
j)~

corresponding to the bound-state energies of
Fig. 3(d) [i.e., Fig. 6(b) is the strong coupling
version of Fig. 6(a}]. Although the enhancement
illustrated in Fig. 6(a) is still present, the sharp-
ness of the x variation is reduced in the regions of
hybridization. Besides details of the variation,
which derive from the spectrum in Fig. 3(d) and the
normalization factor in Eq. (3b), the most import-
ant result is that strong coupling makes the ampli-
tudes much closer in magnitude: Strong coupling
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actually increases the value of the N~ amplitude
relative to the weak-coupling case. Note that there
is no N„state for x&0.8 in Fig. 6(b).

'The total N~ and N„bound-state amplitudes for
the potential parameters in Fig. 4, which produce
agreement with experimental energies for F =40.0,
are presented in Figs. 7(a) for F = 1.0 and 7(b) for
/=40. 0 as functions of x. The general conclusions
resulting from our discussion of Fig. 6 remain un-
changed. Strong coupling reduces the sharpness of
the hybridization structure and brings the N~ and

N~ amplitudes closer in magnitude than in the I
=1.0 case. In Fig. 7(b), it is clearly indicated that
N„enters the ~ continuum for xa 0.75, and that
the N~ amplitude is larger than the N~ for x~ 0.70.

B. Influence of the L minimum

In this section, we examine the influence of the
L, conduction-band minimum upon the energies and

momentum amplitudes of the eigenstates of Eqs.
(2)-(4) in the case of strong coupling. We find

that, although the energies are sensitive to the
presence of I., the momentum amplitudes change
little. Pa rameters extracted from experiment

'

are in accord with the long-range character of the
model.

In Fig. 8, we present the calculated energies as
functions of x, corresponding to the potential pa-
rameters of Figs. 4(b) and 7(b} resulting from con-
sideration of L,—these parameters produce strong-
ly coupled energies which agree with experiment
when we consider only I' and & (i.e., see Fig. 4).
Figure 8(b) displays the energies produced by in-

I I I l

U-(-0.378+0.338x)eV
ai 24.s k

I
I

vo*-o.e77 ev

I m*ot.
F ~ I.O

UJ

Q IO

IO

I I I

F $40.0

IO0

\
\l~ I ~ I

0.2 0.4 0.6 0.8 I.O 0.4 0.6 0.8 I.O
X X

FIG. 7. (a) Magnitudes of the total k= 0 amplitudes of
Nx and Nz as functions of x for the parameters of Fig.
4 in the weak-coupling (I'= 1.0) case when L is neglected.
Only bound states are treated. (b) Strong-coupling
(E=40.0) version of (a). Hybridization enhancement and
the difference in magnitudes of the Nz and Nz amplitudes
are reduced. This case corresponds to the energies
presented in Fig. 4(b). Note that Nz is not bound for x
& 0.75.

eluding L, in the conduction-band density of states
in Eq. (7) only without accounting for the bound

state produced by V„which is associated with the
I. minima shown in Fig. 4(a). Upon comparing with

Fig. 4(b), we see that the major effect is that of
lowering all of the energies and increasing their
variation with x, especially for N~ for x~ 0.4 and
N„' for xs 0.4.

The effects of including the L bound state [which
is shown in Fig. 4(a}] are presented in Fig. 8(b)
for the same parameters. Comparing with Fig.
4(a}, we observe that this spectrum involves an
additional hybridization for x s 0.4 between the iso-
electronic state ]N) and the long-range state as-
sociated with I., besides the ones discussed here-
tofore. ' The overall effect is that E„~ is greatly
lowered for xs 0.4 because of this strong hybrid-
ization (i.e., F =40.0). The other states N„and Nx
are much less influenced.

The momentum amplitudes corresponding to the
bound-state energies of Figs. 8(a) and 8(b) are
given as functions of x in Figs. 9(a) and 9(b), re-
spectively. Our previous conclusions regarding the
effects of strong coupling upon the enhancement in
the regions of hybridization and upon the closeness
in magnitude of the N„and Nx amplitudes are sup-
ported. The difference from Fig. 7(b) can be at-
tributed to the changes in the energy spectrum pro-
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2.20
—2. 1

~ 2.0
LLIz 1.9

1.8

2.2

—2. 1

~ 2.0

z 1.9
1.8

0.0 0.2 0,4 0.6 0.8 1.0

FIG. 8. (a) Concentration dependence of energies of I',
X, L, and the states predicted by the theory when the L
minimum is included only in the conduction-band density
of states. The parameters correspond to those in Figs.
4 and 7 and strong coupling (E=40.0) is considered. The
effect of L is to reduce the energies of all the nitrogen
states. (b) The same as (a) except that the long-range
state associated with L is also considered. Note the ex-
tra hybridization of the Nz and NL, states for x~ 0.4.
The effect of the L bound state on the other states is
small.
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FIG. 9. (a) x dependence of the magnitudes of the total
k=0 amplitudes corresponding to the bound energies in

Fig. 8(a). (b) x dependence of amplitudes corresponding
to bound states of Fig. 8(b). The dominant effect of L is
in the density of states.

duced by L. From comparing Figs. 9(a) and 9(b),
it is notable that the presence of the I. bound state
has only a small effect on the N„and N» ampli-
tudes. Also illustrated is the amplitude of N~ —of
all the cases we discuss in this paper, this is the

only one in which N„ is bound over a significant
region of x. Proper treatment of the luminescence
of resonance states within this theory is outside the

scope of this article and is treated elsewhere. "
The effect of the long-range state upon N„' is mani-
fested clearly.

From comparing Fig. 8 with Fig. 4, it is appar-
ent that inclusion of the effects of the I. minima
destroys agreement with the data. I order to de-
termine a set of potential parameters in this case
(i.e. , F =40.0}, we insert three experimental en-
ergies for ~ -—0.39 into Eq. (4), forming a set of
three nonlinear equations in V„U, and a. The Vo

and a so determined are held constant and U is ad-
justed at &=1.0 to give the single observed state of
energy E» —0.011 eV ' """~' The results of
this procedure are V, =-1.909 eV, U=(-0.3'l3

+0.312x}eV, and a =22.8 A. Note that, even when

the effect of L, is included, the parameters derived
are consistent with the long-range nature of the

potential.
In Fig. 10(a), we display the energies of the un-

coupled states resulting from this choice of pa-
rameters. It is interesting that, because of the
rapid x variation introduced by the density of
states at I., the Koster-Slater parameter extracted
from the data is too weak to produce a bound (N)
at x =1.0. The strongly coupled energies resulting
are presented in Fig. 10(b), where they are com-
pared with the data (i.e. , a bound exciton energy of
0.010 eV is subtracted from the calculated ener-
gies). 'The general conclusions reached earlier are

0
—2.I

C9
20

I.9

I.8

0$
X

0$

FIG. 10. (a) Concentqation dependence of the uncoupled
state energies for the case when L is considered fully.
The parameters were chosen to give good agreement
with experiment at x= 0.4 and x= 1.0 for E= 40.0. (b)
Concentration dependence of the eigenvalues of Eq. (4)
corresponding to the parameters in (a). Bound-exciton
energies of 0.01 eU were subtracted from the calculated
energies. Experimental data from Hefs. 10 and 23 are
presented also.

borne out here and agreement with experiment is
very good.

Bound-state momentum amplitudes correspond-
ing to the parameters in Fig. 10 are given as func-
tions of x in Fig. 11(a) for weak coupling and in

Fig. 11(b) for strong coupling. Our previous con-
clusions regarding the effect of strong coupling and

the x variation are supported. Here, the N„state
enters the X continuum for xa0.6 and the N„and
N» amplitudes are of roughly the same magnitude
for xa 0.50.

III. COMPARISON WITH EXPERIMENT

In Sec. II, we concentrated upon studying the de-
gree to which calculated energies could be brought
into agreement with experiment and the systematics
of the energies and luminescence (as incorporated
in the k =0 momentum amplitudes) of the states
predicted by the Kleiman"' theory. Here we de-
vote our attention to examining the degree of
agreement with luminescence measurements of the
properties of the states whose energies we have
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FIG. 11. (a) Concentration dependence of the k= 0
amplitudes, corresponding to the weakly coupled (I = 1.0)
bound-state eigenvalues of Eq. (4) for the parameters of
Fig. 10 (i.e., L is taken fully into account). (b) The
same as (a) except for strong coupling (E=40.0). Nz is
resonant for x& 0.7.

already determined to be in accord with experi-
ment.

In Fig. 12, we present the ratios of the N„and N~
k =0 probabilities as functions of x for the strong-
coupling cases where I, is not considered [i.e.,
Fig. 12(a)] and where it is [i.e., Fig. 12(b)].
These figures correspond, respectively, to the
amplitides in Figs. 7(b) and 11(b}. For our pres-
ent purposes, we note only that the ratio peaks at
x= 0.45 in Fig. 12(a) and at x= 0.40 in Fig. 12(b).
Luminescence measurements for nitrogen- im-
planted samples indicate a peak in this ratio at x
= 0.37." The agreement is good especially in view
of the fact that the potential parameters were de-

( I I

U = (-0.373+0.312x)eV
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fflL=Oj9ma, w v4 0
F= 40.0
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a*24.8 k (b
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FIG. 12. (a) Concentration dependence of Nz to Nz
k= 0 probability ratio for the case when L is neglected
and the strongly coupled (E=40.0) energies are adjusted
to the data (i.e., the parameters correspond to Figs. 4
and 7). (b) The same as (a) except that the parameters
(see Figs. 10 and 11) are derived when L is taken into
account. Data on nitrogen-implanted material (Ref. 25)
indicate a maximum at x= 0.37.

termined from data for as- grown samples. " T he
results of this comparison would seem to indicate
the importance of accounting for L properly.

Pressure measurements' of the normalized elec-
troluminescence intensity of Nx at x=0.65 (i.e.,
solid circles) and Nr at x=0.48 (i.e. , triangles)
are presented in Fig. 13. Also illustrated are the
respective normalized k =0 probabilities for the
two cases treated previously [i.e. , Figs. 7(b) and

11(b}].In converting from x to pressure we use
the value' dx/dp-1. 1%/kbar. The agreement with
experiment is quite good in both cases, although
there is little to favor the inclusion of L. 'These
results reflect earlier' ones.

In Fig. 14 we compare N~ lifetime versus x mea-
surements" with lifetimes calculated for the
strong-coupling cases when L is considered (i.e.,
broken line) and when it is not (i.e. , solid line). The
theoretical lifetimes are presumed to vary as the
inverse of the k =0 probability of N~ and are nor-
malized to the experimental value" in GaP. The
agreement is quite good in both cases and would
seem to support the exclusion of L from consider-
ation. 'The unusual variation in the theoretical life-
time without L for xs 1.0 in Fig. 14 reflects the
fact that the Koster-Slater and long-range X state
interact strongly at a composition x& 1 (i.e., in
this case, there is no bound state of V, in GaP).

Ga(As, P):N
l 0 300K 300 K
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LLI 0.9 ~ 0

0.8—
2~ (w„( ~ ~

f x~065) ( x 045)
cn

U~ ( 0378 +0t338x) eV U (W373 +0t312 x)eV
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FIG. 13. (a) Pressure dependence for the states shown
corresponding to the case in Fig. 4(b). The data is from
Ref. 8. (b) Pressure dependence corresponding to Fig.
10(b). The data is from Ref. 8.

Ga(As, P):N

IV. CONCLUSIONS

In this article, we examined the systematics
governing the long-range, short-range, or Klei-
man6 2~ theory of the nitrogen isoelectronic impur-
ity in Ga(As, P), and the extent to which states
arising from the theory could be brought into
agreement with available data. ' """In Sec. II,
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FIG. 14. Concentration dependence of experimental
lifetimes (Ref. 26) and the inverse of the Nx k= 0 prob-
abilities corresponding to Fig. 4(b) (i.e., solid line) and
Fig. 10(b) (broken line). Theory is normalized to ex-
periment in GaP (Ref. 33).

we discussed the influence of strong coupling
among the constituent states arising from either
the long-range or the short-range part of the poten-
tial and the influence of the I. conduction-band min-
ima. Some of the general consequences of the
strong coupling (as illustrated in Fig. 3) are curva-
tures in the calculated energies as functions of
composition at x= 0.3 and x= 0.4 (the regions of
hybridization) and raising of the N„energy above
the X-band edge (i.e. , resonance) for large x, so
that only N» is observable at these compositions.
Potential parameters which are consistent with the
long-range nature of the model (i.e. , the square-
well radius -20-25 A) produce good agreement
with experimental data as in Figs. 4 and 10.

In calculating luminescence properties, in par-
ticular the k =0 momentum amplitudes, both the
bound state and continuum contributions must be
calculated properly in order to avoid unphysical
structure in the total amplitude as summarized in
Figs. 5 and 6. In general, the presence of strong
coupling reduces the enhancement corresponding
to weak coupling produced as F, -S'„, the energy of
the strongly luminescent state derived from the
long-range potential associated with the I' minima.

Even for strong coupling, this enhancement is lar-
ger than BSE."'~ " In addition, strong coupling
greatly decreases the difference in magnitudes of
the k =0 amplitudes of N„and Nx (e.g. , Figs. 7 and
11). This could explain" the absence of observa-
tion of N„ for ga0.5.

The highest energy state N„' predicted by the the-
ory is bound in only exceedingly small range of x
for the potential parameters derived from experi-
ment. Discussion of the influence of N~ on the lum-
inescence awaits a treatment" of resonant states
in this theory.

It is only in the description of the states in GaP
that inclusion of the I. minimum' " has any major
effect. When we neglect I. in this theory, the ob-
served state in GaP must be attributed to the
Koster-Slater model for consistency —there can be
no long-range bound states. Consideration of I„
however, requires that the GaP state arise from a
long-range state with a resonant excited state de-
rivable from the Koster-Slater model. This sep-
aration into long-range and Koster-Slater states is
somewhat arbitrary, since the strong coupling
causes each final state to have a mixture of the un-
coupled states. '4 Nevertheless, inclusion of the
effects of L (Refs. 19,20) suggests that the long-
range part of the potential is important in GaP,
and that an excited state is present. '

Finally, in Sec. QI we show that the theoretical
states resulting from inclusion and from exclusion
of the effects of I. produce good agreement with
all available data. '~'~6 There is, therefore, little
in the nitrogen data to indicate the importance of
including I..

In brief, we have shown that the Kleiman the-
ory" can be put into good agreement with the data
without inconsistencies in contrast' to intermedi-
ate- range models. "
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