
PHYSICAL REVIEW B VOLUME 22, NUMBER 9 1 NOVEMBER 1980

Reflection of magnetoelastic waves from ferromagnetic surfaces
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We present theoretical studies of the reflection of bulk magnetoelastic waves from the surface

of a ferromagnet, with magnetization parallel to the surface. The calculations show a pro-

nounced left-to-right asymmetry in the amplitude of the reflected wave. The origin of this

asymmetry is in the boundary conditions which when applied to surface magnetoelastic waves

theory lead to nonreciprocal dispersion relations. The frequency dependence of the reflectivity

is studied here, for particular selected geometries which exhibit the left-to-right asymmetry.

I. INTRODUCTION

The propagation of surface magnetoelastic waves
on ferromagnetic surfaces, ' and on nonmagnetic sub-
strates overlaid with ferromagnetic films' has been
studied by a number of authors. One striking feature
of all these analyses is that the propagation charac-
teristics of the waves are nonreciprocal. That is, if
we consider a surface wave of some particular fre-
quency, then both the phase velocity (dispersion rela-
tion) and attenuation constant of the wave differ
when the wave propagates from left to right across
the magnetization (assumed parallel to the surface),
than when the propagation is from right to left. As
pointed out earlier by Scott and Mills, the origin of
the asymmetry lies in a breakdown of reflection sym-
metry produced by the presence of the surface. We
repeat the argument below.

The purpose of this paper is to point out that the
same breakdown of reflection symmetry leads to
left-to-right asymmetries in the reflectivity of bulk
magnetoelastic waves from the ferromagnetic surface.
This is true even though the bulk dispersion relations
do not display the nonreciprocity evident in the sur-
face wave dispersion relations. We illustrate this
point with calculations carried out for selected
geometries which exhibit the asymmetry strongly.
We also find that far from the ferromagnetic reso-
nance frequency there can be a nearly complete
transfer of energy from one elliptically polarized
branch of the magnetoelastic wave spectrum to its
nearly degenerate partner, as such that an incident
wave reflects from the boundary.

The geometry we consider here is illustrated
schematically in Fig. 1. We have a semi-infinite fer-
romagnet which occupies the half-space y & 0, and
the magnetization M, and external field Ho are paral-

, lel to each other, and also to the surface. A bulk
magnetoelastic wave of wave vector ko is incident on
the surface, and a portion of the incident energy is

carried away by the specularly reflected wave with
wave vector kz. Our point is that the amplitude of
the specular wave is in general different for the
configuration in Figs. 1(a) and 1(b). In essence, the
configuration in Fig. 1(b) is obtained from Fig. 1(a)
by a time-reversal operation applied to the wave vec-
tors of both the incident and specularly reflected
wave (the magnetization is held fixed in direction).

One might believe that the breakdown of time re-
versal as a "good symmetry" operation of the crystal
in the presence of magnetic order is responsible for
the asymmetry in the reflection coefficient. Howev-

rZ

(o)

y tto

y VR

FIG. 1. Schematic illustration of the geometry considered
in the present paper. The magnetization M, lies parallel to
the z direction and to the sample surface. In (a), the in-

cident wave vector describes a wave that carries energy from

right to left across the magnetization, and in (b) from left to
right.
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er, this is not the case. The asymmetry has its origin
in the breakdown of reflection symmetry in the xz
plane produced by the surface combined with the axi-
al vector character of M, .

To appreciate this, we return to the consideration
of magnetoelastic surface waves, which have a nonre;
ciprocal dispersion relation with ao, ( k~~) 4 rs, (—k ~~),

where k[[ is the wave vector of the surface wave.
While there is nonreciprocal character in the surface
wave dispersion relation, ' the bulk magnetoelastic
wave dispersion relations Orrr (k) are always even in
the wave vector, i.e., Orrr(+k) —= err( —k) for each
branch. If nonreciprocity in the surface wave disper-
sion relation had its origin in the breakdown of time-
reversal symmetry in the presence of the spontane-
ous magnetization M„ then both rv, (k~~) and Orrr(k)
should exhibit nonreciprocity.

For a crystal for which the xz, yz, and xy planes are
reflection planes (in the absence of a surface), then
with M, W 0, reflection symmetry requires
rurr(+ k ) = Orrr( —k). This is true if the magnetiza-
tion is aligned along a principal axis of the crystal,
and if all three principal axes are perpendicular to
each other. To illustrate, consider a bulk magneto-
elastic wave which propagates parallel to the x axis, so
k =xk. A reflection operation R„, in the yz plane
takes k into —k, but is not a good symmetry opera-
tion because M, is an axial vector, so R~, changes its
sign. The reflection R applied subsequently leaves
k unchanged, but restores M, to its original sign. .

Thus, for the ferromagnet, the combination R R~, is
a good symmetry operation when M, A 0, and this
ensures rurr(+k) =err( —k) for bulk magnetoelastic
waves that propagate parallel to x. The argument is
readily extended to show the bulk wave dispersion re-
lation has inversion symmetry for any direction of k.

If we consider a semi-infinite material, then R
takes the crystal from the half-space y ) 0 and places
it in the region y ( 0. Thus, with surface present
and M, A 0, the combination R~R~, no longer
remains a good symmetry operation. This has the
consequence that r0, (+k~I) & Or, (—k~~), since there is
no symmetry operation which changes the sign of k[[,
and leaves both M, and the configuration of the crys-
tal unchanged. It is the breakdown of this reflection
operation that renders the specular reflectivity in Fig.
1(a) different than that in Fig. 1(b).

From a theoretical point of view, the nonreciproci-
ty of the surface wave dispersion curve and the
behavior of the reflectivity are intimately linked.
One finds the magnetoelastic dispersion curve by
searching for the zeros of the determinant of a cer-
tain matrix D(k~~, or). The reflectivity calculation in-
volves inversion of the matrix, with the elements cal-
culated through choice of a value for k[[ determined
by the bulk magnetoelastic dispersion curves. In
each analysis, the nonreciprocity has the same
mathematical origin.

In Sec. II, we outline the method we have used to
carry out the calculations, and in Sec. III we discuss
our results. Section II is quite brief, since the
analysis is straightforward in principle, though not in
practical execution.

II. CALCULATION

The approach we have used is very similar to that
described earlier by Scott arid Mills, ' in a study of
magnetoelastic surface wave propagation on a semi-
infinite ferromagnet with magnetization parallel to
the surface. The Hamiltonian describes an isotropic
elastic continuum with c, and cl the transverse and
longitudinal sound velocity, respectively. The spin
motion is described by a Bloch equation, with demag-
netizing field included but exchange ignored. At the
frequencies and wavelengths of interest in the
present study, the neglect of exchange has little
quantitative consequence; in the magnetoelastic sur-
face wave problem, the influence of exchange has
been studied by Camley and Scott, ' and we refer the
reader to their paper for a discussion of its role.

The spin-lattice coupling enters the present calcula-
tion through the term

H„= '[M„(e +e )+My(ey, +e~)]

and as in the work of Scott and Mills, we align the
magnetization along the [100) direction so in the cu-
bic crystal, only one magnetoelastic constant b~
enters. We have set the relaxation time 7 of the
spins equal to infinity, so in the bulk of the material,
the mean free path of the magnetoelastic wave is in-
finite. It is difficult to discuss the reflectivity calcula-
tion within a model that includes dissipation within
the crystal.

Through use of the equations of motion displayed
by Scott and Mills, one may find the dispersion rela-
tions of the bulk magnetoelastic ~aves, for any
selected direction in the crystal. This must be done
numerically, unfortunately. In general, we have a
three-branch dispersion relation. For a particular
geometry, we show dispersion curves in Fig. 2(b).
These have been calculated for n =P = —rr, where n

1

and P are defined by Fig. 2(a). We have chosen
6& = 2 x 10' ergs/cm', typical of a metal such as Ni,
the external magnetic field is Hp=2 x 10 Oe, the
magnetization 4aM, = 6 x 10' Oe, the transverse and
longitudinal sound velocities have been taken to be
3.83 ~ 10' cm/sec and 5.4 x 10 cm/sec, respectively,
and finally the density p has been chosen to be 8.9
g/cm'. These material parameters have been em-
ployed in all the calculations reported in the present
paper. Figure 2(b) shows two modes for each fre-
quency that mix strongly with the spins. The third
branch has a frequency which lies very close to, but
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not precisely equal to c,k, with k the wave vector of
the mode. The two branches which mix strongly
with the spins show anomalous dispersion at the
spin-wave frequency

[Ho(HO+ 4mM, sin'8„) ] II2

with Hk the angle between the propagation direction
and the magnetization. For the geometry illustrated
in Fig. 2(a),

sin28k = cos'n + sin'n cos'p

FIG. 2. {a) Orientation of the incident wave vector is
described by the angles u and P illustrated here. The angle
a is the angle between the wave vector and the y axis, nor-
mal to the surface, while P is the angle between the projec-
tion of the wave vector onto the xz plane and the x axis.
{b) For parameters described in the text, we show the
dispersion relation of the bulk magnetoelastic waves. One
branch, not shown, couples weakly to the spins and has fre-
quency close to e,k.

ponents kq normal to the surface are different. In
fact, in certain regimes of frequency, some of the
normal wave-vector components are purely ima-
ginary, so we have a disturbance localized near the
surface with displacement and magnetization that
falls to zero exponentially as one moves into the
crystal interior. We require a program that calculates
the perpendicular components I q associated with a
wave of frequency co, and wave vector k~~ parallel to
the surface. This program is similar to that used in
the magnetoelastic surface wave investigations.

For a given incident wave direction, once the vari-
ous allowed values of kq are found, the modes are
superimposed and subjected to boundary conditions.
The boundary conditions are that the stress tensor
components cr~; must vanish at the surface, and the
normal component of the b = h + 4m MT is continu-
ous along with the tangential components of h. Here
h is the demagnetizing field generated by the
transverse magnetization MT = xM„+yM~ associated
with the spin motion. Outside the crystal (y ( 0) we~(
have a magnetic field h = —'7@M in the vacuum,
where

IbM $ e&p(I kll
' +II+ kIIX )

The key feature of the calculation is inclusion of the
magnetoelastic contributions to the elements ca~,

which appears in the boundary condition. As earlier,
we have

(2)
S

awhile the other elements of the stress tensor involved
in the boundary condition have a form identical to
the limit b, =0. The second term in Eq. (2) intro-
duces nonreciprocal behavior into the reflection coef-
ficient, since the first and second terms behave dif-
ferently with respect to reflection in the yz plane.
The first term is invariant under such a reflection,
and the second changes sign.

The calculation of the reflection coefficient has
been carried out as described above, and we now turn
to our results.

III. DISCUSSION OF THE RESULTS

The basic calculation we explore here is to launch a
bulk magnetoelastic wave from one of the strongly
coupled bra'nches of the dispersion curve up to the
surface, and we study the amplitude of the mode
specularly reflected from the surface. Of course,
there are several reflected waves, only one of which
is associated with the original branch. Each wave
that comes off the surface has the same wave-vector
components

kII =xk sinn cosP +zk sinP

as the incoming wave, but their wave-vector com-

In Fig. 3, we present calculations of the frequency
variation of the reflection coefficient for two choices
of b2, and for n = p =

4
rr. The incident wave thus

propagates. in the same direction chosen for the
dispersion curves displayed in Fig. 2. The incident
wave has been taken to lie on the lowest branch of
the magnetoelastic wave dispersion curve in Fig. 2.

For both choices of b2, we see a clear asymmetry
in the reflection coefficient, for frequencies which lie
somewhat below the asymptotic frequency of the
branch. The asymmetry is largest in the vicinity of
the "knee" of the dispersion curve, where the mode
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FIG. 3. Calculations of the reflection coefficient for

cx =P = —m, for two choices of the magnetoelastic coupling

constant b2. Both (a) and (b) are calculated for an incident
wave on the lowest branch of the coupled-mode dispersion
curve, as illustrated in the inset. The curve labeled R
gives the reflectivity for propagation across the magnetiza-
tion from right to left, and that labeled R+ is for propaga-

tion from left to right.

is a strong admixture of both spin and lattice motion.
For the smaller value of b2, the two curves are quali-
tatively similar in shape, but as b2 is increased, the
frequency variations in the two directions become
rather different.

The low value obtained for the reflection coeffi-
cient for frequencies small compared to the spin-
wave frequencies is an effect of magnetoelastic cou-
pling, even though only a small fraction of the energy
in the wave is stored in the spin motion. Suppose b2

vanishes identically. Then the normal shearlike
modes of the bulk may be chosen to be linearly po-
larized and are degenerate with velocity c,k. If we
send a shear wave up to the surface, and its displace-
ment is parallel to the surface, the reflection coeffi-
cient is unity for the angle of incidence we have used.
The same is true for a shear wave with displacement
parallel to the plane of incidence, as one sees from
the analysis presented by Landau and Lifshitz. 4 Sym-
metry forbids mode mixing upon reflection from the
surface, i.e., with b2=0 one cannot convert energy

I.O—

b~ 2 x l08 ergs/crn~

0.0-
0.5

I

I.O

p

I.5
I

2.0

FIG. 4. Reflection coefficient for the case where the in-
cident magnetoelastic wave is directed along the [111]direc-
tion. R+ and R have the same meaning as in Fig. 3.

stored in an incident wave of s polarization into p-
polarized shear wave energy by this means.

Even far from the spin-wave frequencies, where
the influence of magnetoelastic coupling is small in
quantitative terms, the two degenerate linearly polar-
ized eigenvectors are mixed strongly to form normal
modes with elliptical polarization when b2 ~ 0. If one
such mode is launched toward the surface, conver-
sion of energy from a wave with one sense of ellipti-
cal polarization to the other is now possible, and the
amplitude of the reflected wave with polarization the
same as the incident wave can become small com-
pared to unity if this conversion is very efficient.
Our calculations show that there is nearly complete
conversion at low frequency. This seems to be the
case for each angle of incidence we have examined.
We have checked the amplitude of both low-

frequency elliptical waves with m =—c,k, to verify that
100% of the incident energy is carried away from the
surface by the combination of the two, in the low-

frequency limit. It is striking to see this influence of
the magnetoelastic coupling far from the spin-wave
frequencies. The origin of the effect is, as just
described, that nearly degenerate waves are mixed
strongly by even a weak perturbation.

For the incident wave on the lower branch, at wave
vectors sufficiently far out on the dispersion curve,
well beyond the "knee" and on the flat portion of
the curve, the values of jcq for all reflected waves,
save for the specularly reflected wave, become pure
imaginary. Here the reflectivity is necessarily unity.
The region of the dispersion curve is not of great ex--
perimental interest, since the group velocity of the
wave is very close to zero, and its mean free path is
short.

In Fig. 4, we show calculations of the frequency
variation of the reflection coefficient for the case
where the incident magnetoelastic wave is directed
along the [111]direction. We see a larger contrast
between the reflectivity for the two directions of pro-

pagation, when these calculations are compared to
these given in Fig. 3. Thus, the magnitude of the



22 REFLECTION OF MAGNETOELASTIC WAVES FROM. . . 4449

1.0— I

$5o

O 0.5—
4J

U
4J
IX

TRANSDUCER

0.0 I

I.O I.5
m/@HE

I

2,0

FIG. 5. Frequency variation of the reflection coefficient,
for an incident wave on the branch of the magnetoelastic
wave spectrum that approaches c&k, as k 0.
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FIG. 6. Possible geometry for which asymmetries similar
to those calculated here may be observed. The crystal
within which the magnetoelastic waves propagate is a fer-
romagnet, with magnetization normal to the plane of the fig-
ure. Reversal of the direction of the magnetization will alter
the reflection coefficient.

asymmetry is quite sensitive to the angle of incidence
of the wave. Note particularly that the wave incident
from the left side now has the largest reflectivity,
while the converse is true for the geometry in Fig. 4.

Figure 5 gives reflectivities calculated for that
branch of the magnetoelastic wave spectrum for
which the frequency approaches etk as k 0, with ct
the longitudinal sound velocity. The reflectivity is
very low for frequencies below the spin-wave fre-
quencies. What happens here is that almost all the
energy which comes off of the surface is carried by
the (nearly) p-polarized transverse waves. The re-
flection coefficient here agrees well with that calculat-
ed fram elasticity theory with b2 set to zero. Above
the spin-wave frequencies, this branch shows asym-
metry in the reflection coefficient once again. When
the results in. Figs. 3, 4, and 5 are combined, we find
a small asymmetry for the reflection coefficient on
those portions of the magnetoelastic dispersion curve
that lies near the "bare" longitudinal phonon fre-
quency ctk.

We conclude in Fig. 6 with an illustration of a

geometry where asymmetries such as those calculated
here may be observed, at least in principle. Imagine
a transducer and detector arranged so magnetoelastic
waves can be detected after reflection from a corner
cut as shown. If the magnetization is perpendicular
to the plane of the figure, its direction can be re-
versed through 180 through use of a suitable mag-
netic field. Thus, reversal of the magnetic field with
transducer and detector fixed in location should lead
to a change in the reflection coefficient of the magne-
toelastic wave from the surface. We would find such
measurements most intriguing.
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