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Nonequiilbrium thermodynamics and iluasielastic light scattering from crystals.
II.Piezoelectric crystals
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The methodology described and utilized previously by the author, involving the use of nonequilibrium
thermodynamics in the analysis of the spectrum of light scattered quasielastically by crystals, is applied to
piezoelectric crystals. An additional thermodynamic variable, the electric polarization, is taken into account and
assumed to be a relaxing variable, Solution of the resulting equations in the case of KH, PO4 leads, as expected, to
the appearance of a polarization relaxation line in the spectrum. The spectrum is calculated for several values of the
two relevant parameters: the polarization relaxation frequency and the ratio of C« isothermal elastic constants at
constant electric field and constant polarization. For a fixed polarization-relaxation frequency, it is found that as the
ratio of elastic constants decreases (the characteristic behavior as the ferroelectric phase transition in KH, PO4 is
approached), the intensity of the relaxation line increases at the expense of the Brillouin lines, In contrast with
standard treatments of coupled modes in piezoelectric crystals, no adjustable parameters are involved in determining
the spectrum.

I. INTROI3UCTION

In previous work by the same author' (hereafter
referred to as I) a description was given and illus-
trate examples provided of the utilization of non-
equilibxium thermodynamics (NETD) in the deter-
mination of quasielastic light scattering spectra
of crystals. The methodology is summarized in
Fig. 1 of I. The figure also illustrates the crucial
role that the choice of thermodynamic variables
plays in the implementation of the methodology.
The materials considered in I were KH, PO, (KDP)
and the superionic conductor RbAg4I, The choice
of strain and temperature as the relevant variables
and the inclusion of both thermal and mechanical
dissipation (via thermal conductivity and viscosity
tensors, respectively) led, in the ca,se of KDP,
to the well-known quasielastic spectrum consisting
of Rayleigh and Brillouin lines. On the other hand,
for RbAg4I, the inclusion of an additional thermo-
dynamic variable, an internal (strain-independent)
temperature, led to the appearance of an extra
line, a relaxation line related to the hopping motion
of the silver ions in this crystal.

Now, when stress is applied to certain crystals,
an electric polarization is induced which is pro-
portional to the applied stress. This property,
referred to as the (direct) piezoelectric effect. ,

' is
characteristic of crystals belonging to 20 of the 32
crystallographic classes. ' I.et us suppose that the
stress in question is associated with the passage
of an acoustic wave through a given piezoelectric
crystal. It follows as a consequence of the piezo-
electric effect that a polarization wave is also
set up in the crystal. In other words, in applying
the formalism of NETD to the determination of
quasielastic light scattering spectra of piezoelec-

tric crystals, one should include at the outset an
additional thermodynamic variable, the electri c
polarization P.

In the present paper, we will apply the formal-
ism developed in Sec. II to KDP. In this crystal,
it is well known that its anomalous dielectric
properties in the paraelectric phase lead to an
elastic anomaly near the ferroelectric phase
transition (T,=122.00 K according to Brody and
Cummins') —specifically a drop by a factor of
about 90 between. T =295 K and T =122 K in the val-
ue of C,s6's, the (66) adiabatic elastic constant mea-
sured at constant (zero) electric field. ' Brillouin
scattering is ideally suited to studying such an
anomaly, since the position of the Brillouin lines,
if the scattering geometry is properly chosen, is
determined by C66'~. This requires that the crys-
tal be electrically shouted, as can be accomplished
by plating sel.ected faces of the crystal with gold
electrodes.

Plating the crystal, although it provides striking
visual evidence of the elastic anomaly in the Bril-
louin spectrum, also has the effect of obscuring
the contribution of the polarization mode to the
spectrum. What we suggest instead is that light-
scattering experiments be performed on insulated
crystals. Since physical intuition would lead one
to conclude that the position of the Brillouin lines
will in this case be essentially determined by
C„" —which does not display any elastic anoma-
lies —the polarization contribution can thus be
studied in more detail. It is shown in Sec. III how
a spectrum obtained under this electrical boundary
condition can be completely characterized (line
positions, linewidths, relative intensities) by
means of simple algebraic or numerical manipu-
lations involving only macroscopic parameters.

6006 1980 The American Physical Society

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositorio da Producao Cientifica e Intelectual da Unicamp

https://core.ac.uk/display/296627847?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


22 NONEQUILIBRIUM THERMODYNAMICS AND QUASIELASYIC. . . 6007

The present contribution is organized as follows.
In Sec. II we consider the nonequilibrium thermo-
dynamics of piezoelectric crystals. In Sec. III
the formalism developed in Sec. II is applied to
KDP. In Sec. IV concluding remarks are made.
In the Appendix we summarize the equilibrium
thermodynamics of piezoelectric crystals, with
particular emphasis on relationships pertinent
to the main body of the paper.

H. NONEQUILIBRIUM THERMODYNAMICS
OF PIEZOELECTRIC CRYSTALS

In considering the nonequilibrium thermodynam-
ics of piezoelectric crystals, a description in
terms of space- and time-dependent counterparts
of equilibrium variables (cf. the Appendix) will be
utilized, as is customary in treatments of linear
NETD. ' The assumption will also be made that the
polarization can be treated as a relaxing thermo-
dynamic variable in the context of the Mandel-
shtam-Leontowich hypothesis, ' namely, that the
time variation of a given relaxing variable is
simply proportional to the variation of the sys-
tem's free energy with respect to the same var-
iable (in I, the relaxing internal temperature pos-
tulated for HbAg4I, was handled in this fashion-
cf. Secs. IIC and V of that paper).

Before implementing the program set forth
above, a brief digression is called for in order to
justify regarding the polarization in piezoelectrics
as a relaxing thermodynamic variable. This is
consistent with one's physical intuition inasmuch
as an applied stress induces an electric polariza-
tion in such crystals, but once such stress is
"turned off" and thermodynamic equilibrium has
been reached, the average polarization is zero
and the state of the crystal is again describable
in terms of strain and temperature variables.
One may thus characterize the situation by saying
that the polarization has relaxed to its average
value of zero. Parenthetically, one may remark
that an analogous description is also appropriate
in ferroelectrics, except that in such crystals the
equilibrium value of the polarization is nonzero
and it is to this value that the additional polariza-
tion induced by the stress relaxes once the stress
is removed.

Since q»(K) =
w& [K,u„(K) +'Kyg, (K)], and we will

later wish to set K=(K„,O, O), the only relevant
strain components will be g„q„and g, . Further-
more, we will wish to consider crystals belonging
to the tetragonal c'lass 42m, for which class the
matrix of (Voigt) piezoelectric stress coefficients
(e„.j is'

000e,400
0 0 0 0 e~4 0

00000e„

where

lt'
'E

(~P.~i};,i:'
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sr iBP 8T

(2.1)
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From (A6), it follows that E~,~, = X,"'r, E~ „.,

=-as,.&, and Eq. (2.1) further yields

E~,r--Xl I„T
If one writes (a is the entropy density)

(2.2)

r, , =~„((~,,j, T, P,),
a=o((i),,j, T, P,),

one can show that (henceforth we shall omit the
superscripts associated with (X,,j and (k, ,j)

T,I +C &&» k3Q3»Q3&»
en&) Tn~

sr ~ iiklpkl sij s T

0' 'r
T „&8P3
~iiati ai 3'Jl, sT

,
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(2.2)

(2.4)

(2.5)

(2.6)

where use was made of standard thermodynamic
results' as well as of the following relations [cf.
Eqs. (A14), (A9), (2.2)]:

e
Eeq], &T~

From Eq. (A14) in the Appendix, disregarding
for the moment the k"E terms, it follows that
P, =e36q, . Since we will select a scattering geome-
try to probe the q, component, the only polariza-
tion component of interest to our discussion will
be P,—in other words„one is justified in postula-
ting the following functional dependence for the
system's local free-energy density E(r, f) (Ref. 8):

E(r, f) = E((q,&(r, f.)j, T(r, f), P,(r, f)) .

At equilibrium, (SE/SP, )r„=0 and therefore

l=Ep „bni, +Ep ~bT+E~ i, ~3=0,sEI
3 3
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tion'

Equations (2.3)—(2.6) thus yield (including the
viscous contribution to the stress tensor")

Expanding (BE/BP,)r„, one obtains

(2.9)

The structure of Eq. (2.9) suggests the definition

8
a3jj 3 jjkl 9- ~kl &

BP
C iklP.kt 3ii BT lid

pC„(BP, 2 fBP,

(2.7)

(2.8)

where r is the relaxation time (at constant strain
and t em p e ratu r e) .

Therefore the dynamical equation for ~, is

8 1 1 BP,—~ = ——~ +— k a .Dq. . + — DT3 7 3 ~l 33

(2.10)

One now assumes that the polarization relaxes
according to the Mandelshtam-Leontowich rela-

Use of Eq. (2.10) allows one to eliminate the ~,
dependence of Eqs. (2.V) and (2.8); one finds

(2.11)

(2.12)

Bg 8 8 8—C,,'„l3„LT— C„,k„—g„, ''v —AT+r, .„, —sq„+r —,aq„),
rt J

r ~ r, I BP, 8 pC PC„BP3av+r nc=Cr. '—~p b,i) . + Cr."~p —.a . . —' r rg. . +—-~ nT+ "-
)t

' 7. rT. —ijkl kl i j ~
i, zkl kl . 3ig BZ, Bt ig T I BT BtgJ Tl

Once Ar, ,(r, t) and bo(r, t) have been specified, the
equations to be solved a,re [cf. Eqs. (2.2) and (2.5)
in f]

(2.13)

(2.18)

and the expression for ao(K„, s) and n7', ,(K„,s)
obtainable from (2.11) and (2.12).

III. APPLICATION OF THE FORMALISM TO KDP

9 ~ 8
p —,au,.(r, f) = rk7 „(r,f) . (2.14)

T(she(K„, s) —Ao(K„)) = —IPp, AT(K„, s), (2.15)

p(s'Au, .(K„,s) —s hu, .(K„))=iK„Zr,„(K„,s) (2.16).

We shall solve Eqs (2.13) an. d (2.14) for a, particu-
lar choice of wave vector, namely (as in I), K
= (K„,0, 0). The Fourier-Laplace transforms
(FLT's) of Eqs. (2.13) and (2.14) for this wave
vector are

For the choice K = (K„,O, O), the piezoelectric
effect in crystals such as KDP that belong to the
class 42m is manifested through the relation P3

836 g6 Sine e pyro el ect ric ity is ru led out in this
class, (BP,/BT)„=0. Utilizing Eqs. (2.11)-(2.18)
one thus obtains the following equations of motion:

(s'+as+b)au, (K„,s)+ic~T(K„,s) =(s+a) nu„(K„),

c
s'+a' s+b'+1 —e' nu, (K„,s)1 + 7S

[it has been assumed, as is customary, " that, at
t =0, (B/Bt)Lu(r, t) =0]. The coupled equations for
the FLT's are then obtained utilizing the facts
that

s+a'+1 O' M, K„,1+7s
(s'+a"s+b")nu, (K„,s) = (s+a")nu, (K„),

(s + d) AT(K„, s) +i (c 's) bu„(K„s)

(3.1)

Acr(K„) = (pC„/T) nT(K„) +C,,'kiAq, ,(K„), (2.17) = aT(K,) +i (c')M„(K,),
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where (cf. I)

a = (v„/p)K„, a' = (v„/p)K„', a" = (v„/p)K„',

b =(Czr' /p)K', , b' =(C ' /p)K', b" =(C ' /p)IP

c =K„[C&,~+C,';~)P, +C,';~P, ]/p, c' =(T/C„)c,

d = (&,/pC, )K'„, e' =K„'4,"a„/p.

Setting R = s/i e„where &u, =K„(C66'~/p)'z',
bu„(K„,s) may be written as

razz, (K„R)= [X(R)/i+,D(R)]nzz, (K„),

with

X(R) =R' —i(n+2n)R —2(n n+)r,
(3.2)

D(R) =R' —i(n+ 2n)R' —[I+2(nn+ r)]R+ in,

and n = (~,r) ', n = a/2&a„r= -,'()'z,"a'„/C6re'~). From
(A18), it follows that

(Cr &/Cr p)

At 269 K, the adiabatic elastic Stiffnesses are'
C s "s = 6.15 x 10"dyn/c m', C,s '~ = 6.31 x 10"
dyn/cm'. " These experimental values imply that
2m=0. 025. In view of the smallness of 2z at 269
K one is justified in effecting the fol, lowing approxi-
mate factorization of D(R):

D(R) = (R —in) [R —izz —(1+r)][R—zzz+ (1+r)]
(3.3)

[this leads to an R-independent term equal to
in(1+2r), rather than in as in the original equa-
tion]. Partial fraction decomposition results in

s+vs 2 s+2a+z(1+r)&u s+ ~ —i(1+r)a &~
(3.4)

where v+=7 ' and

A(n) = 2r/E(n),

B(n) = [(1+r+in)n'

+ 2i (r + in) n + (1 +r + in) ]/E(n ),
E(n) = (1+r)n' —2zzn +1+3r .

The power spectral density will be proportional
to the function obtained by setting s =-iQ in Eq.
(3.4) and taking its real part. One finds that the
spectrum consists of three lines, specified as
follows:

H,elaxation:

L,, (A) =A(n)v„j(Q'+ v'„),

8rillouin:

I,(0) =f ~a ReB(n) —[0+ (1 + r) &u, ]ImB(n)]

x f[fl + (1+r) tu, ]' + (-,'a)') ',
' Brill.ouin:

L,,(n) =1.,(-fl) .

The integrated intensities will be proportional to
2r/E(n) (relaxation line) and

[(1+r)n' —2nn + 1+r]/E(n)

(Brillouin lines).
The fact that 2r =1- (Cere

s/Cere'~) for KDP at
high temperature is experimentally known to be of
the order of 10 2 has enabled us to characterize
the spectrum completely by carrying out simple
algebraic manipulations. However, as T approach-
es T, =122.00 K,' it is common knowledge' that

C„' (and hence Cere's) goes to zero, which implies
that the parameter 2x approaches 1. In fact, using
the measured values of these elastic stiffnesses
at T =122.00 K, namely, C6r,"~=6.96 xl0'0 dyn/
cm', "and the values of C66'~ measured by Brody
and Cummins' for different applied electric fields,
one finds that 2r at 122 K ranges from 0.99 (E =0)
to 0.42 (E =3937 V/cm). In other words, the ap-
proximation 1+x= 1 which allowed us to factor Eq.
(3.2) into Eq. (3.3) and hence led to the simple
analytic determination of the spectrum is no longer
valid.

The polarization relaxation time v is also known
to exhibit a strong temperature dependence as the
ferroelectric transition is approached: In fact,
ultrasonic investigations'2" reveal that the tem-
perature dependence of the polarization relaxation
time at constant stress, 7„„„,may be expressed
as

r„„,„=24x 10 "(T—To) ' sec K.
Since Eq. (3.2) is of the third degree, exact

(3.5)

, = 24 x 10 'z(T —T,) ' sec K,

where T, =121.82 K.
In our formalism, the relaxation time is as-

sumed to be measured at constant sheik. Inspec-
tion of Eq. (2.9) reveals that the ratio r„„„/v„„„
is given by the ratio of the reciprocal dielectric
susceptibilities at constant stress (y') and constant
strain (y"). Since these are known' to display
Curie-Weiss behavior, y'=C(T —T,) ' and y"
=C (T —T,) ' where C =259 K and To = 117.45 K
(Ref. 13) is the ferroelectric transition tempera-
ture for the clamped crystal, it follows that
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analytic expressions for its roots are available, "
and hence the spectrum can in principle be deter-
mined for any values of the parameters z, n, and

However, such potentially obtainable expres-
sions would hardly be enlightening in view of their
algebraic complexity. Since there is no reason to
suspect that the viscosity coefficient will display
anomalous behavior near T„we have held n
=-,IP, v«/p~, fixed at the reasonable value" of
n =0.01 and have solved Eq. (3.2) numerically for
several values of x and n, corresponding to sev-
eral values of the temperature.

Table I summarizes the results obtained for two
values of the ratio v„/v„namely 10.0 and 1.0, for
2m=1 —Cr's/Cr'~=0 0, 0..5, and 1.0. QuaLitative-
ly, one sees that as the ratio C~r6'~/C6r, '~ decreases,
the Brillouin lines move away from the origin and
their widths increase, whereas the relaxation line-
width decreases.

In Fig. 1 (drawn to scale) we display the cal-
culated spectrum for the fixed ratio v„/vo =1 and
for 2m=0. 5, 1.0 in order to dramatize the effect of
the elastic anomaly. For 2r =0.0, corresponding
to a high-temperature situation for which C66'~
= C66', the polarization line has negligible inten-
sity and the Brillouin lines, centered at 0/&uo = 1,
would be roughly seven to ten times higher than
the Brillouin lines depicted. From the figure, one
sees that the formalism predicts an increase in
the polarization line intensity at the expense of the
intensity of the Brillouin lines.

Figure 1 is to be regarded as illustrating the
typical behavior one should expect to find in the
vicinity of ferroelectric phase transitions. In the
specific case of KDP, the value of the ratio v„/v,
at 7 =122.0 K, for instance, is actually of the or-
der of 30 rather than 1, as was assumed in draw-
ing Fig. 1—a value that can be readily calculated
by using Eq. (3.5) and the expression ~, =K„(Cr, ~/
p)' ', where C ' =6.96x10"dyn/cm' "p=2.338
g/cm', " for a wavelength of about 6000 A. Never-
theless, the value of 1 chosen for the ratio isnot at
all unreasonable: For instance, the polarization
relaxation time for deuterated KDP (KD*P) is an
order of magnitude longer" than that for KDP,
which leads [aLL other relevant parameters being
of the same order of magnitude (as they are known
to be)] to frequency ratios roughly ten times smal-

T,P I/2
~o K. Ic66/pi

T,E
c66c"

66

~polarization 0

h, =05
6 = 10

Z.'
LLI

M

I 'I

I

I I

I

t I

t I

-2.0 —I.O 0.0
Q/GJo

2.0

FIG. 1. Spectrum calculated from Eq. (3.1) for the
partiCular ChOiCe Vpp]arlzatipn= V0 and tWO ValueS Of the
ratio C6(f /Ce~g . Note the increase in the intensity of
the polarization line, at the expense of Brillouin lines,
as the ratio decreases.

Ier. It seems reasonable to conjecture that ma-
terials exist for which Fig. 1 provides an accurate
representation of a real spectrum.

IV. CONCLUDING REMARKS

The formalism presented in the present contri-
bution should be contrasted with the standard
treatment of coupled modes in piezoelectric crys-
tals." Coupled-mode dynamics is discussed in the
context of a phenomenological theory involving a
power-series expansion of the Lagrangian energy
density of the crystal. Mode lifetimes are taken
into account by means of a Hayleigh dissipation
function characterized by different damping con-
stants 'for the different modes under study. Spec-
tra are calculated from response functions, and
description of the spectral features often requires
approximate decoupling of the equations of motion.
The phenomenological nature of the approach im-
plies, in many situations, that the parameters of
the theory are often only very indirectly re'lated to
quantities measur ed using diff erent experimental
techniques.

'The approach proposed in I and in the present
work, on the other hand, by virtue of its therrno-
dynamic (albeit nonequilibrium) character, is firm-
ly rooted in macroscopic quantities that can be
measured (and most of the time unambiguously

TABLE I. Boots of Eq. (3.2) for the fixed ratio n=0.01 and for, respectively, two and
three ValueS Of the ratiOS & and 2r. NOte that & = V~l~&ation/27t'V0.

Vyol~sauon/V0 = 10 0 Vyol arizat ion/VO

0.00
0.50
1.00

(+1.000, 0.010) (0.0, 1.592)
(+1.078, 0.131) {0.0, 1.350)
(+1.181, 0.262) (0.0, 1.088)

(+1.000, 0.010) (0.0, 0.159)
(+1.222, 0.036) (0.0, 0.106)
(+1.412, 0.050) (0.0, 0.080)
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identified) in widely dissimilar experiments. We
believe that this point should be emphatically re-
iterated. For instance, calculation of the spectra
in Fig. 1 involved no unknown parameters: n is
related to a. viscosity coefficient, and x basically
measures the ratio C~r;s/C6r;~ and o. the ratio
vs/v, . Furthermore, the attendant numerical
manipulation was of a most mundane sort. It is
our view that the present approach holds out the
promise of making a significant contribution to
the problem of analyzing quasielastic l.ight scat-
tering spectra.
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APPENDIX

In the simplest situation, electric polarization
can be taken into account in the context of the
thermodynamics of dielectric crystals by includ-
ing an additional contribution in the expression for
dF, the change in the Helmholtz free energy of the
deformed crystal associated with quasistatic tran-
sitions from one state of thermodynamic equili-
brium to another. If polarization is not included

dF(T, (v},,})=-SdT+ v'„dv},, ,

where Iv, ,}and fv), ,}are, respectively, the stress
and strain tensors and where, as convention dic-
tates, repeated indices (here and elsewhere in
this paper) are summed over. Including polariza-
tion, dF becomes"

dF, (T, fv), ,j,(E,.})= SdT+v, ,dq, , P-dE. ,—(Al)

where P is the polarization of the crystal and E
is a uniform applied field. Successive changes of
variables produce

dF, (T, {A,,},IP,})=d(F, +P,E,).
SdT + v, ,dv},.) +E;dP—, , (A2)

dF (» Lv;,},(&,})=d(F, v;~v};,)—
SdT —v},, dv, , - P,dE-, , (A3).

dF, (T, f „},(P,.})=d(F, — „v}, +P;E;)
SdT —q, , dv', , +E,dP-, (A4).

To simplify matters at this point, we will ig-
nore the influence of temperature (such influence
will later be taken into account explicitly) and con-
centrate our attention on the interplay between el-
astic deformation and electric polarization, the
hall. mark of piezoelectric behavior. For notational
convenience, we shall. also omit subscripts for
now.

Depending on the choic e of thermodynamic var-
iables, four different (quadratic-bilinear) expres-
sions for the free energy describing the coupled
deformation-polarization system may be written2:

F'=W ' g ——'k"E —egE,

F,' = W~'~g'+ &X"P' —agP,
F' = 2S ' v k'E d—vE,
F' = ——S~'~7 + —X'P —b7'P

(A 5)

(A6)

(A7)

(A8)

v'=C '
q —aP,

q = S'~~+ I P,
= C~'Eq —eE,

g = S~'@7'+dE,

E=X"P-aq,

P =k"E+eg,

E = X'P —b7',

P =k E+d7'.

(A 9)

(A10)

(All)

(A12)

(A13)

(A 14)

(A15)

(A16)

Relations (A9), (All), (A13) and (A14) may be used
to derive two results of future utility. From (A13)
and (A14), recalling that kx =1, it follows that

e =k"a. (A17)

On the other hand, subtracting (A9) and (All) and

employing (A13) and (A17) one finds

g TvP g TpE yv)g2 (A18)

where the primes indicate that the terms involving
the temperature have been left out; Cr'~ (Cr's) is
an isothermal elastic stiffness coefficient at con-
stant polarization (electric field), Sr'~ (Sr's) is an
isothermal elastic compliance coefficient at con-
stant polarization (electric field), k" (k') is a di-
electric susceptibility at constant strain (stress),
}f" (X') is a reciprocal dielectric susceptibility at
constant strain (stress), and the coupling coeffi-
cients are, ' respectively, Mueller and Voigt piezo-
electric stvess coefficients (a and e) and Mueller
and Voigt piezoelectric strain coefficients (b and
d).

Combining (Al)-(A4) and (A5)-(A8), it is a sim-
ple matter to derive the following thermodynamic
relations (these will be of future utility):
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