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Using a simple tight-binding model and the transfer matrix approach, we have calculated the
spectral density of states (SDOS) of a rare-earth metal in the presence of a surface for different
magnetic arrangements (such as ferromagnetic, antiferromagnetic, and conical orderings). The
local density of states (LDOS) has also been calculated for some examples, integrating the
SDOS over the Brillouin zone. The main effect observed deals with the absence of Van Hove'’s
singularities in the surface LDOS, a fact that appears to be an intrinsic property of the surface.
Finally the relaxation of the overlap parameters at the surface is discussed and some numerical

examples are shown.

I. INTRODUCTION

Most of the electronic and magnetic properties of
the rare-earth metals can be described by a very sim-
ple picture: the 4f electrons, which determine the
magnetic properties, are highly localized while the
three outer electrons form a typical conduction band
(with 5d-6s hybridization) in a crystal lattice of
trivalent positive ions.

The 4f levels are atomiclike in character and no
overlap between their atomic wave functions
corresponding to neighboring sites is expected. How-
ever strong interactions between localized and con-
duction electrons are present, yielding effective forces
between the localized magnetic moments (associated
with the 4f electrons) in the form of an indirect ex-
change. The net result is a long-range oscillatory in-
teraction, the Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction,' which is responsible for the ex-
otic and diverse spin configurations present in rare-
earth metals.2

The appearance of different and sometimes compli-
cated magnetic structures will introduce changes in
the periodicity of the lattice potential in relation to
the paramagnetic crystal lattice. If the new period is
commensurate with the former one, the unit cell will
be, in general, several times larger, and the
corresponding Brillouin zone will be consequently re-
duced, giving origin to the so-called "new superzone
boundaries." When the period of the magnetic struc-
ture is not commensurate with that of the paramag-
netic crystal lattice we get a system with two kinds of
long-range order but no translational symmetry. The
situation is similar to the one encountered in antifer-
romagnetic Cr, where the magnetic ordering is attri-
buted to a spin-density wave.>

The magnetic ordering of the localized moments
will necessarily affect the band structure associated
with the conduction electrons. In the general case, as
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stated above, the exchange field will have a different
symmetry from that of the crystal lattice and altera-
tions in the Fermi surface are expected.*

Most of the exotic magnetic arrangements exhibit-
ed by rare-earths metals can be described as having
an axis of symmetry, which in most cases corre-
sponds to the axis perpendicular to the basal plane in
the hep structure. The order, within each layer per-
pendicular to the axis, is ferromagnetic and the mag-
netic moment varies from one layer to the other in
direction as well as in magnitude. Simple structures
like the ferromagnetic and antiferromagnetic ones are
special examples of the general case. ‘In Fig. 1 we
give an account of the possible structures.considered
in this paper.

For this model the original translational symmetry
due to the lattice is retained within each layer (which
is ferromagnetically ordered), and is only broken
along the perpendicular axis which might have no
symmetry at all. In the general case, no new broken
symmetry appears by introducing a surface, that is a
final layer which terminates the crystal.

Since, far from the surface, the localized moments
vary in a regular (although nonperiodic) form from
one layer to the other, we can study the spectral den-
sity of states (SDOS) of conduction electrons by us-
ing the transfer matrix approach.® The method has
been recently applied by a number of authors in or-
der to investigate electronic surface states.’ It has the
great advantage that the method is exact once the
Hamiltonian is known and in addition it provides the
SDOS directly for the different layers in the crystal.
The appearance of surface states can then be straight-
forwardly tested. Here, our interest is to calculate
the SDOS of conduction electrons in a rare-earth me-
tal, and to investigate simultaneously the effects of
the surface as well as possible correlations between

.the different spin arrangements and the SDOS struc-

ture.
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FIG. 1. Some of the different magnetic arrangements
presented by the rare-earth metals. The axis shown here is
perpendicular to the basal plane and to the surface. The
cases depicted here are (a) the ferromagnetic structure; (b)
the antiferromagnetic case; (c) a situation of conical fer-
romagnetism, the angle 8 of the cone being fixed and the
longitude angle ¢ varying regularly in A¢ from one site to
the next along the axis; (d) a helical antiferromagnetic struc-
ture, which can be considered a special case of the former

one with 0=77r; and (e) a particular situation of the conical

case with 0=-‘:~n- and A =m.

In Sec. Il we write our Hamiltonian using a simple
tight-binding model. The exchange between conduc-
tion electrons and the localized moments is assumed
to be a contact interaction.

In order to use the transfer matrix formalism, it
appears more convenient to change spin-site
representation, taking as the new quantal axis the lo-
cal direction of magnetization at each lattice site. Al-
lowing overlapping between nearest-neighbor sites
only, we can split the Hamiltonian into two terms:
the first one considers coupling between sites on the
same layer and is diagonal in the new spin represen-
tation; the second part couples neighboring layers and
thus introduces spin hybridization.

Possible relaxation effects at the surface are taken
into account by varying the overlap parameters
between the first two layers and also between dif-
ferent sites on the first layer.

Reconstruction of spin ordering near the surface is
not considered as it should be in a self-consistent
theory. All through the paper we have used the sim-
plifying assumption of a frozen magnetic structure.

In Sec. III we describe the method used to calculate
the SDOS. For some cases, the local density of states
(LDOS) has also been calculated, integrating over the
two-dimensional Brillouin zone. A brief summary of
the transfer matrix approach is also given.

The numerical results and final discussions are
presented in Sec. IV. "Concerning the LDOS, the
main feature seems to be the smoothing out of Van

Hove’s singularities as one approaches the surface
from the bulk, a result which has previously been
found using a different method of calculation.” In
contrast, the SDOS is rich in structures that vary ac-
cording to the different magnetic arrangements.

No new striking effects are found in the case of an
incommensurate spin structure. This is probably due
to the fact that rational numbers form a "dense set,"
i.e., any irrational number can be "very well" approxi-
mated by a rational fraction.

When considering surface relaxation we have not
found states localized at the surface, even for large
variations (more than 20%) of the overlap parameters
near the surface. The antiferromagnetic state has
been extensively studied since spin hybridization
yields the formation of a gap in the SDOS. The search
for 8-function singularities split off from the contin-
uous spectrum has been made with negative results.

II. MODEL HAMILTONIAN

Our Hamiltonian is written as a simple tight-
binding one in the Wannier representation |n, ﬁ,,, v),
where n is the index of the plane, being n =0 for the
surface; R, is a two-dimensional lattice vector on
plane n; and v is the index of spin which is quantized
along the z axis, in a direction perpendicular to the
surface.

If M, is the local magnetization on plane n (which
is ferromagnetically ordered), the one-site contribu-
tion is given by
Hyy= 3, (e, —I M, 3,) [nRov) (nRyv'| (1)

=
nR”

w'

where & is the Pauli-spin matrix for conduction elec-
trons.

Allowing hopping between nearest-neighbors sites
we add two other contributions: (a) hopping between
sites on the same plane

Hy= E Il(ﬁ,,,ﬁ,, +A)
R, v

A
x|n R, v)(nR,+&,v| , 2

where A runs over the nearest neighbors on the same
plane, and (b) hopping between neighboring sites on
different planes

Hy= 3 6(n,R,;n +8n,K, +3)
%5
n,8n
v

x|nR,, vy (n +n,R,+5,v| . 3

For the simple cubic structure 81 =+1 and 8 =0,
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so we write for this case, for ¢, as a real number,

Hy= 3 0(nR, v)y(n+1,R, v|+Hc)
R v
n-0,1,"2

@)

In general we will keep ¢, # ¢, in order to take into
account surface relaxation in subsequent calculations.
Since two-dimensional periodicity is retained within
each plane, we can transform to the Bloch represen-
tation by using two-dimensional reciprocal vectors K

|nKv) = 1 Ze’ T nR,y) (5)

where N, is the number of sites per plane.
The total Hamiltonian now can be written

H=73 [e(K)8,,— I M, 7,,1|nKv) (nKv'|
nK

.’

ty(|nKv) (n +1,K,v| +He) , (6)

=03, ...
where
e(K)=¢+4,5Sg .- W)
and S g is a two-dimensional structure factor
Sg=2eMT=4y(K) . ®)
)

The first term in relation (6), which we call now
H,, is diagonal in (n, K) but in general couples the
spin numbers due to the local magnetization. The
second term in relation (6), which we shall call H, is
diagonal in (K, v) but couples neighboring planes.

" The Hamiltonian H, can be diagonalized in spin

i 1 ; o1
e~iad2 cos’56p + eide2 sin’5 6y

Q (90, A¢) =

. L1
i sinfpsin5 A

We have to point out here that the fact of
0 (8o, Ag) being independent of the layer index
yields a set of equations of motion for the resolvent
which has a regular pattern. When this is the case we
can use the transfer matrix formalism to solve the in-
finite system of coupled equations.® We discuss this
point in Sec. III along with the method to calculate
the SDOS.

IIl. METHOD OF CALCULATION

Defining the one-electron resolvent (Green’s func-
tion) by

G)=Gz-H)" , (13)

; 1 » a1
/82 cos? >0y + e4#/2s5in? =0,

space by taking the axis of quantization along the local
direction of magnetization within each plane.

If |@) and |B) are the eigenfunctions of o,, we de-
fine new states | +) by

~i,/2

[nK+)=e c05%0n|nKa)+"M"/ Si“%”ﬂ‘”Km ’

©

id,/

- 2 —_ i
|nK——) =—e " sin%O,,ana)%—ew"/

2cos—;—(),, |nKg)

In relation (9), (8,¢,) are the polar angles of the
magnetization for the nth layer.

It may be easily shown that the transformation
given by formula (9) diagonalizes H,, which in the
new spin representation takes the form

Ho= 3 [e(K) — wIMol|nKp) (nKul . (10)
nK
p=%

The H, Hamiltonian, which describes the coupling
between neighboring planes, turns out to be spin hy-
bridized in the new representation. However the
coupling constant does not depend on the plane in-
dex n for the cases considered in this paper, i.e.,
when the polar angle @ is constant for all layers
(0 =0, and ¢ varies regularly from plane to plane
(see Fig. 1). If we write ¢ =0 at the surface and
é,=nA¢ (n=0,1,2,3..)), the H, Hamiltonian can
be written

Hi= 3

-Oif 2
n s Ly dpeee
popmt

tz[InKu) Q. (69, AD)

x (n+1,Ku'| +H.cl , (11

where Q (6o, Ad) is a complex (2 x 2) rotation ma-
trix, which in the new spin representation has the fol-
lowing form:

- L1
i sinfy sm-2—A¢

(12)

where H is the total Hamiltonian, and z is a complex
variable, the partial spectral density of states for the
subband of spin u corresponding to the nth layer is
obtained as

pu(n| K, ) E—:lr—lm(nK;LIG(m+i0+)|nl_('p) . (14)
This density of states is properly normalized to uni-

ty
f_ dop,(n|K 0)=1 . (15)

The SDOS is obtained by summing over the spin
states (in general by summing over the different
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types of orbitals)
p(n|Kw) =3 p,(n|Kw) , (16)
p=t

and is normalized to the number of orbitals per atom
considered (in our case 2)

f_:dwp(nlﬁw)=2 . an

The LDOS, is obtained in turn from the SDOS by
summing over the K vectors of the two-dimensional
Brillouin zone

pnlw)=- 3 p(n|Kw) , (18)
Ni gesz

and the normalization is the same as relation (17).
The following notation will prove to be economical:

[Gum (K, 2)],,= (nKv|G (2)|mKp) ; (19)

in this sense Gum(K,z) is a (2 X 2) matrix in spin space.

The equations of motion are obtained through the
use of Dyson’s equation

2G(z)=1+HG(2) , (20)

yielding an infinite set of coupled equations, which in
matrix notation has the following form:

(Zl__ﬂﬂ) : QOn =“8r|0_1_'+'t22' Q\n B (21)
for all n =0,1,2,...;
(ZI_HO) __mn_IZQT 1n+t2Q Gm+1n » (22)

for 0 <m <n;
(z1—Ho) G =1+10" Gt + 1,0 Grn » (23)
for n > 0; and
(z1=Ho) * Gun=10" Gnoton +2Q° Gmi1n > (24)

for all m > n.

Since the matrices Q, Q, and Hy do not depend on
the layer index, all the equations (24) have the same
pattern. We can define then a transfer matrix® by

I'Q/nnEQMH,n , 25)

for m = n. Inserting this definition into equations
(24) we get the following matrix equation for T (in-
dependent of n):

6Q-T?—(z1-Hy) T +0,0"'=0 . (26)

In general the latter equation has to be solved nu-

J

1A/
e;; : ((z —€) —[(z — )2 —4131'7%)

Ir= p—iA¢/2

merically: the physical solution is chosen so as to

yield a positive density of states, satisfying the boun-

dary condition

lim 7(z) =0

Z—%00

@n

Once the proper solution of T is obtained we can
compute the SDOS for all layers. As examples we

quote the following formulas:

Go(z) =(1l-Hy—0Q 1),

Gn(2) =1Gx - f22QT (z1-Hy™ 'Q]_[ ,

Gn(2) ={Ge' -

3

28

A1l -H)-13Qt (z1—-Hp)™" - Q7' Q)

For getting the bulk density of states lim,—., G,,(z)

the procedure is slightly different.

In this limit

(n — o0) the set of equations (22) can be used to de-

fine a second transfer matrix by

@ Gpn=CGm-1n, 0<m<n .

29)

Inserting this definition into equations (22) we get
the following second degree matrix equation for &:

nQh @2 (zL—Ho) - @+1,0=0 ,

(30)

subject to the same boundary condition as 7. Note
that ® and T are not the inverse of each other, since
they are defined in different subspaces.

Equation (23) now yields
lim G (z2) =[(z1 - Ho) — 1,0
n—oo -

@—-nQ-T17 .

3D

The ferromagnetic case is an illustrative example
which can be solved analytically in closed form. In
this simple case, 8p=0 and A¢ is arbitrary, and all
the matrices involved result in diagonal form:

e—iA¢/2
2= o
€4 0
0710 e
where

0
eiA¢/2 ’

e+ =e(K) 3IM, .

32)

(33)

The transfer matrices are also diagonal and direct

calculation yields

{(z—e)—[(z—€)?—

431'7)

’
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FIG. 2. SDOS for the ferromagnetic case for different
layers in the crystal, with n» =0 the surface and n = oo the
bulk. Here, and in all the next figures, the horizontal axis
corresponds to energy in units of ;. The dashed line illus-
trates the partial SDOS corresponding to spin +, while the
continuous one displays the total SDOS. The exchange split-
ting has been chosen to be JMy/t; =0.2 and the SDOS
corresponds to a point in the Brillouin zone with y =—1.
Large oscillations are present in the inner layers, but they

are damped as long as we proceed to the interior of the crystal.

eiA¢/2

0

{(z—€) —[(z —e)?—413]'72)

Inserting the above results into Egs. (28) and (31)
we get the relevant Green’s functions in the form of
a continuous fraction

(Goo) + = {%(Z —€+) +%[(z —e+)?—417]1\2)!

) -1
(Gn)i:[(GO_OI)i— : ]
Z— €+
t} B
(G + [(Goo)i (z—€t)_’22/(z_€i)| oY
13 B
tim (Gun) = (G 2~ 2
2
(z—€1) - : 2
(z—e1) — =

=[(z—es)?—412]7'2 |

As it should be from physical considerations, the
result is independent of A¢. The corresponding den-
sities of states are shown in Fig. 2 for 1y, =1,=1.
Note that large oscillations take place when going to
the interior of the crystal, increasing the number of
states near the band edges and giving rise finally to
the four peak structure of the bulk SDOS.

More examples are presented in Sec. IV as well as
the final comments.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In the first place we present the results when no
surface relaxation is considered. When the parame-
ters at the surface are modified the equations of mo-
tion (21) to (24) are slightly different, but the gen-
eral method of the transfer matrix, described in Sec.
111, works perfectly well.

The antiferromagnetic structure is obtained by set-
ting 00=%1r and A¢ =mx. In Fig. 3 we show the
corresponding SDOS for various layers (being n =0
at the surface and n = o in the bulk) for an M point
of the two-dimensional Brillouin zone

y(K) =+lcos(Kca) +cos(K,a)l=—1 .  (35)

The strong spin hybridization produces the appear-
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FIG. 3. SDOS for the antiferromagnetic case for a y =—1
point in the Brillouin zone. A gap of magnitude 2JM,/t; ap-
pears as a result of spin hybridization. For further comments
see the main text.

ance of a gap of magnitude 2JM, in the center of the
band for all layers. As in the ferromagnetic case,
large oscillations occur when going from the surface
to the inner planes. As a common fact we note that
for the surface SDOS the states are more concentrat-
ed in the neighborhood of the center of the band

(and around the gap in the antiferromagnetic case),
while for the bulk the availability of states is bigger
near the band edges.

In Figs. 4 and S we illustrate the surface and bulk
SDOS for cases of conical ferromagnetism [like the
one shown in part (c) of Fig. 1]. Figure 4 shows a
comparison between a case of commensurate spin
structure (A¢ = %‘n’) and a noncommensurate case

with a value of A¢ close to the former one
(A¢=0.6). No striking differences appear; just the
formation of little extra kinks in the bulk SDOS for
the commensurate case.

The partial contributions corresponding to one-spin
subband are also shown in Fig. 5 for the case
A¢p=0.6. They are slightly asymmetric due to hy-
bridization of the spin states (compare with the par-
tial densities for the ferromagnetic case in Fig. 2).

Figure 6 is the analog of Fig. 4 for two different
cases of conical magnetism. We note the appearance
of ‘new structures in the form of extra peaks for the
bulk density of states and in the form of "ear-shaped"
protuberances for the surface SDOS. The origin of
the "ears" is again due to spin hybridization, and this
fact is illustrated by Fig. 7 showing the partial SDOS
for one-spin subband (upper figure) compared to the
total SDOS. The partial SDOS for the surface is al-
ready highly asymmetric if compared with the fer-
romagnetic case. ’

Figure 8 shows the SDOS for interior planes
(n =1, 2) making a comparison between two different
cases of conical ferromagnetism. The case in the left
(9= %w and A¢p = %w) shows a great resemblance

Nz ns®
0S5
Y=0
Mo o2
]
o+ 1 | | fiztas=|
.
Ad=— 092 %
4
0S
n=0
00 | | 1
-2 (0] +2 -2 (0] +2

FIG. 4. Surface and bulk SDOS for two different cases of conical ferromagnetism for a y =0 point of the Brillouin zone. The
case depicted in the left corresponds to a noncommensurate variation of the angle ¢ which will never return to its original value
as long as we go to the inner planes. For comparison purposes we display in the same figure a commensurate case where the
variation A¢ is close in numerical value to the noncommensurate one.
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FIG. 5. Partial SDOS for the u =— subband correspond-
ing to the noncommensurate case shown in Fig. 4. Spin hy-
bridization has broken the symmetry of the subband.

25 |

° A 1 I
E .
[} 3 Ao 2

50
Mo 2 tstpml
h
Y=0

0 1 1 I

-2 o 2

FIG. 7. One-spin partial SDOS compared to the total
SDOS for one of the cases shown in the previous figure.
The "ears" presented in the total SDOS arise from spin hy-
bridization near the band edges.

with the pure ferromagnetic case.

In Figs. 9—11 we depict the LDOS for ferromagne-
tism, a case of conical ferromagnetism, and the anti-
ferromagnetic case, respectively. In most instances,
49 points in the two-dimensional Brillouin zone were
used to evaluate the LDOS. Near the band edges
and singularities the number of points employed was
increased until getting convergence. For the fer-
romagnetic case the analytical expression of the
SDOS was known and integrated directly.

In all cases, the Van Hove’s singularities have been
smoothed out for the surface LDOS. This result has
also been reported by Kalkstein and Soven’ using a
different method of calculation, and seems to be an

0S5+ \

05

00

-2 0] 2

|
-2 o 2

FIG. 6. Surface and bulk SDOS for two different cases of conical ferromagnetism. The point of the Brillouin zone chosen
corresponds to ¥y =0. The main feature seems to be the appearance of the "ear-shaped" protuberances in the surface SDOS

which develop into extra peaks in the bulk case.
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FIG. 8. SDOS for the second and third layers for two
examples of conical ferromagnetism and for a point of the
Brillouin zone with y =—1. The first case is not essentially
different from the pure ferromagnetic densities shown in Fig.
2, while the second shows spin hybridization to a larger extent.

intrinsic surface effect. Proceeding to the interior of
the crystal the LDOS begins to oscillate and to
resemble to the LDOS of an infinite crystal, as it is
shown in Figs. 9 and 11. Note that the splitting of
Van Hove’s singularities near w/t; =2 for the bulk
LDOS in Fig. 9 is due to the ferromagnetic exchange
(JMo/(] =0.2).

In a similar fashion, summing up the antiferromag-
netic SDOS over the two-dimensional Brillouin zone
yields the formation of a little "pocket" in the center
of the band as a reminiscence of the gap which ap-
peared in the SDOS.

Figures 12 to 16 deal with the surface SDOS when
the parameters at the surface are varied. In Fig. 12
we have taken a case of conical ferromagnetism and
have varied the overlap parameter ¢, at the surface in

025

025 |-

-6 -4 -2 0 2 Y 6

FIG. 9. Local density of states (LDOS) in the ferromagnet-
ic case for the surface, the second layer and the bulk. No
Van Hove’s singularities are present at the surface with a-
completely smooth LDOS.

050 -

FIG. 10. Surface LDOS for a case of conical ferromagne-
tism. We found no essential difference in relation to the
pure-ferromagnetic case.

both directions: 5 > t; and 1§ < t,. Remember that
t} is a parameter which describes the overlap between
the surface and the next layer. Thus, reducing the
value of ¢ results in a concentration of states near
the center of the band, decreasing the mean width.
On the contrary, increasing ¢ results in a surface
SDOS which resembles the bulk SDOS with states
more concentrated near the band edges. This is pre-
cisely what we expect based on physical grounds,
since a larger value of 1 is equivalent to a surface re-
laxation, where the first layer gets closer to the
second one and consequently the bulk effects are

Mg |

025}  °% n= 00
|

025t n-2
1 1 1 1 1

025} - el
1 1 1

n=0

025 |

1 i 1 ! 1
-4 -2 0 2 4

FIG. 11. Antiferromagnetic LDOS for various layers in
the crystal. As in the ferromagnetic case no Van Hove’s
singularities are present at the surface, and oscillations in the
LDOS occur while resemblance with the bulk shape in-
creases. The gap present in the SDOS develops, through
summation over the entire Brillouin zone, the formation of
a little "pocket" in the center of the band.
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12
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FIG. 12. Surface SDOS when the overlap parameter t, is
varied at the surface for a case of conical ferromagnetism
1 )
(0=%7r, A¢=§1r). In the upper figure the (5 parameter

(overlap between the surface and the second layer) assumes

a value bigger than the bulk case, which corresponds to a si-
tuation where the surface relaxes getting closer to the next
layer. The net yield is a SDOS for the surface which strong-
ly resembles the bulk case (see Fig. 4). In the lower figure
the effect is exactly the contrary; the surface relaxes increas-
ing the distance between the surface and the next layer. Lo-
calization of statés at the surface should then be bigger.

then stronger.

Figure 13 shows a similar case for another example
of conical ferromagnetism.

In Fig. 14 the parameter ¢;, which describes the
overlap between neighboring atoms on the surface, is
varied, breaking the symmetry of the SDOS. This
density of states is reflected around w/t; =4 for the
point y=-—1.

Figure 15 shows a series of cases where the self-
energy € at the surface is varied along with the ex-
change splitting JM,. Varying €§ also produces asym-
metry in the SDOS in a similar way as in the case
when ¢ is varied. .

Finally, in Fig. 16 we depict the antiferromagnetic
case when the surface parameters are varied. The
roles of varying #{ and ¢} are exactly the same as in
the preceding figures. A change in #{ produces an
asymmetric distribution of the states, while varying
keeps the symmetry but changes the concentration of
states near the gap and band edges. Comparing with
Fig. 3 we note that the case #§ < ¢ presents a larger
degree of localization of states around the gap. This
situation reflects the fact that ¢, (surface) < t, (bulk)

S
2
h
05 |-
00 |- !
05 -
00

-6 -4 -2

FIG. 13. Same effect depicted by Fig. 12 for a different
case of conical ferromagnetism (0=A¢=%7r).

1 AN

2 4 6

FIG. 14. Here a different case of surface relaxation is
shown. The lattice parameter at the surface is shortened,
thus enlarging the overlap between neighboring atoms on
the layer. The symmetry of the SDOS is lost, but the asym-
metric distribution of states is reversed when going to a
point with y =—1 in the Brillouin zone. Similar results are
obtained when the overlap is reduced by the same amount:
the same SDOS is reproduced for ¢{/7;=0.8 and y=—1.
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-6 -4 -2

FIG. 15. Varying the parameter ¢, at the surface, here ¢
is the self-energy entering in the dispersion relation
e(K) = € +4r,y(K), produces a similar effect as varying 7y,
i.e., a breaking of the symmetry in the SDOS.

is equivalent to the case when the surface relaxes in-
creasing its distance to the next layer. In this case lo-
calization of states should be stronger at the surface.

On the other hand, when ¢, (surface) > t, (bulk)
the situation should resemble the bulk case since the
surface comes closer to the inner planes.

We have looked for 8-function singularities split-
off from the continuous spectrum specially in the gap
region. For variations of the surface parameters as
those shown here we have not found any intrinisic
state localized at the surface in the SDOS.

As a summary we make the following remarks: (i)
Due to the experimental techniques existent today,
especially photoemission spectroscopy, small regions
of the Brillouin zone can be sampled. The SDOS is
then the relevant quantity to be calculated and com-
pared to the experiments. (ii) Even when a more
realistic model should consider d-s hybridization for
the conduction band, the general trends here
described should be the same. In particular, the en-
ergy gap in the antiferromagnetic SDOS, due to
strong spin mixing, should also appear. We also feel
that the smoothing of Van Hove’s singularities in the

i'oﬂ 1—Z'I
osh h f ,
/\
t2 tr_te
=312 —=-—==
1, T
os |
Il
-6 -4 -2

FIG. 16. Surface SDOS for the antiferromagnetic case
when the parameters at the surface are varied. For discus-
sions of the different effects see the main text.

surface LDOS is also of universal character, being an
intrinsic property of the surface. (iii)) We have
shown here an example where the transfer matrix ap-
proach can be used to calculate the SDOS. The
method proved to be powerful and of rapid conver-
gence. Apart from providing directly the SDOS
(which has more information than the LDOS) for the
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surface, we can get without extra work the SDOS for
the different layers in the crystal. The intrinsic sur-
face States can then be identified without problem.
(iv) The next step in a problem of this kind should
be to study spin rearrangements in the vicinity of the
surface as a result of possible surface relaxations. A
number of works® along this line have been carried
out for the Heisenberg ferromagnet, yielding magnet-
ic reconstruction with penetration depth of a few .
layers from the surface.
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