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Electronic correlations in narrow-band solids
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The Hubbard Hamiltonian is rederived from the full many-body Hamiltonian with the assumption that only
intrasite correlations are important. It is shown to be exact in both the Hartree-Fock and narrow-band

limits, provided the appropriate linearization procedure is adopted in the former case. Real-time and
imaginary-time Greens functions are derived for the cases intermediate between the Hartree-Fock and
narrow-band limits, and a long-standing puzzle with regard to the number of electrons in the upper
pseudoparticle band is cleared up. The chemical potential and total energy of the system are calculated in the
narrow-band limit and are shown to be identical with those derived from an efFective one-electron
representation. It is shown that because these quantities depend only on the number of doubly occupied sites,
important transport parameters such as electrical conductivity and thermoelectric power can be calculated
from the effective one-electron representation, without the necessity of evaluating th two-particle Green s
function. For finite bands, the total energy in the Hubbard model is shown to give the exact result, in
contradiction to a previous calculation. It is shown that thermodynamic quantities such as the total energy
and chemical potential which depend only on derivatives of the grand partition function are independent of
the presence or absence of magnetic ordering, but that the entropy is'not. Thus a study of the insulator-
metal phase transitions is very sensitive to magnetic ordering.

I. INTRODUCTION

It has been many years since Mott' first ex-
plained why many sol.ids with narrow partially
filled conduction bands are insulating rather than
metallic. Unfortunately, the resolution of this
major puzzle involved correlations between the
conduction electrons, thus invalidating the one-
electron approximation of conventional band theory
and requiring the use of sophisticated many-body
techniques. Only one serious attempt has been
made to treat the problem in a logical, quantita-
tive manner —in a series of papers, Hubbard'"'
introduced a Hamiltonian that couM be used to
analyze major aspects of both the insulating and
the metallic states of solids in which electronic
correlations are important. The essence of
Hubbard's approximation was the neglect of cor-
relations between electrons on different atomic
sites, thus effectively replacing the infinite-
range Coulomb interaction by an extremely short-
range coupling. Despite its successes in making
available a structure for analyzing the physical
properties of Mott insulators, ' the Hubbard model
also has presented several major difficulties. ' '
It is the purpose of this paper to rederive the
Hubbard Hamiltonian, carefully examine some of
its implications, and clear up some of the mis-
conceptions about the model. We begin in Sec. II
by deriving the Hubbard Hamiltonian from the
general many-body Hamiltonian, explicitly l.caving
in the spin-dependent parameters. %'e show that
the Hamiltonian is exact in the narrow-band
limit, Snd relate the Hartree-Pock energies to

the atomic energy levels. Adopting an appropri-
ate linearization procedure, we show that the
model is also exact in the Hartree-Fock limit.
In order to interpolate between these limits, a
Green's-function formalism is introduced in
Sec. III. For the narrow-band limit, a single-
site, effective one-electron representation is
introduced, and we show that it yields correct
values for the chemical potential and total energy
of the system. A major puzzle concerning the
relationship between the number of electrons in
the upper pseudoparticle band and the number of
doubly occupied sites is resolved. We show that
because the total energy depends only on the
latter, transport parameters such as electrical
conductivity and thermoelectric power can be
calculated without the necessity of sophisticated
many'-body techniques. Section IV deals with the
total energy of the system in the case of finite
bandwidths. We show that a calculation of Her-
ring, ' previously employed to conclude that the
Hubbard model underestimates the total energy,
is based on an incorrect premise. In fact, the
Hubbard model yields the exact energy for the
case investigated. We extend the calculation of
the energy to finite temperature, and demonstrate
that although the spin degeneracy is dependent on
magnetic ordering, the energy and chemical po-
tential are independent of such effects. However,
in Sec. V, we show that the entropy of the system
depends very much on the magnetic ordering, and
that the presence or absence of the magnetic
state changes the entropy by Nk ln2. All of the
major results are summarized in Sec. VI.
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II. HUBBARD HAMILTONIAN

The dynamics of electrons in a single, nondegenerate band are well described by the Hamiltonian
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where cp creates an electron in the Bloch state
I k, ff& with corresponding Hartree-Fock energy
&p„vp, is the average occupation number of this
Bloch state, and
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At this point, Hubbard assumes that vga = vp, in-
dependent of spin, precluding the possibility of a
magnetically ordered state. %ith this assumption,
the term in square brackets in Eq. (I}becomes:

le'
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For the present, we want to maintain the possibil-
ity of magnetic ordering, so we shall retain the
general Hamiltonian [Eq. (I}]. In order to simplify
the equations, we define E"t t-,„
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From this definition, we see that gp, E"", p, c~p,cg,
is the average intraband interaction energy, as
calculated in the mean-field approximation. The
total Hartree-Fock energy is obtained from the
Hamiltonian (H,«}H„, where

The total Hamiltonian (I}then becomes
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The Hartree-Fock intraband interaction energy
must be subtracted in Eq. (5) because the third
term treats this interaction explicitly. In fact,
using Eq. (4), the Hamiltonian (5) can be written

0H = Cpa Cpacga
F,a
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Although Eq. (6) has the advantage that it explicitly
separates the intraband interaction from the rest
of the energy, the Hamiltonian (5) will prove more
useful when dealing with the usual case, for which
the Hartree-Fock problem has already been
sol.ved.

%'e can transform to the Wannier representation
by introducing the Pourier transforms

(Iieff )HF = (ega &int, pa)cge cpq,RF

2', a

Equation (3) comes about because the Hartree-
Fock energies,

Cga 'Ep + 2gg t p(a p

0 .HF

where e&, represents that part of the energy of an
electron in state I k, ff& exctusiffe of its interac-
tions with other electrons in the same band; i.e.,
&ga includes the el:ectron's interaction with the
core electrons (interband processes), its kinetic
energy, and its interaction with the nuclei.

Qp(r) =N 2 g exp(ik Ri)Q(r -. Ri),

cp, =N ~2 exp ik H; c&~a,

T„.= Z' P e„-.exp[it -(R, -R,)],

v, f, ——N ' Q vpexp[ , ik ~ (-Ri -Rf)],

where h' is the' total number of lattice sites. The
total Hamiltonian then becomes
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The major approximation made by Hubbard' is

that all (ij~(I/r}~ht& can be neglected, except for
(ii)(1/r)[ii& -=U. U is the Coulomb repulsion be-
tween two electrons on the same atomic site.
With this approximation, the Hamiltonian (7)
reduces to
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or, alternatively
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where nje =c;,c;, . This equation should be com-
pared to Hubbard's result [H, Eq. (10)]
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The only difference between Eqs. (8) and (9) is the
assumption in the latter that vjj, = vj», indepen-
dent of spin. IIowever, by definition, vjj,
=1V 'Q~vp, =(n, &

for the Hartree-Fock calcula-
tion, where (»», ) is the average value of I, over
a canonical ensemble at temperature T. For
v«, to be independent of spin, both (»», & and (n, &

must be equal to —,'n, where n is the average
number of electrons per site. To apply the Ham-
iltonian (9), even to the cases F»»»» F»», we must
remember to require n~ =n~ in calculating the

Hartree-Pock energies, ep, . In effect, this is
exactly what Hubbard did; he simultaneously
dropped the constant term, -U Q» g, v»»()»»„and
made the transformation &p,- cp, by using Eq.
(4) with 2EH„", g, = Uv;, . The resulting Hamiltonian
is then:

0(ff eff }»»F ~R'a Cga Cga
f,e

+ U Q (n, )n», —1VU(»»»)(n»& . (12)
j,e

But since Ug» a(n, &n„=21VU(»»»&(»»»&, Eq. (12)
becomes:

(He»» }HF --e|aCTFa C»(a +1VU(t»»&(»»»& .0

F,e

(13)

In fact, the Hamiltoniajj» (28) is just what we ejF

pect from aHartree -Eoch description of electrons
for which only int» asite interactions are imPor-
tant. In this case, Qa, E",„(F g, c„,cp, =NU(F»»&-(n&&

and Eq. (13) is identical to the Hartree-Fock
Hamiltonian (3).

We can also write Eq. (12) in the form

0 tH — ~pe Cgocpa+ nj an»a &

F,o
2

(10}
j,e

where al1. of the intraband interaction energy is
included explicitly in the second term. The E-„,
are the nonintevacting energies, which are mod-
ified by the interaction 2 UQ», F»», F»„, The
Hamiltonian (8) is also exactly equal to Eq, (10),
where the transformation is achieved in this case
by writing ep, = ig, + Uvj j

In order to apply the Hartree-Fock method to
the Hamiltonian (10), we must linearize the oper-
ator product nj, nj,. This can be done by letting
n„=(n», &+n;„where the operator n», represents
the deviation of nja from the average value. Thus,
n» an„=(n» a&(»»»a)+(n», & n;, +n» a(»»»a&, where
we have made the usual assumption that the devia-
tions are small. Using the definition nja =—nj,
-(n„&, we get

n» aF»»a-(n» a&F»»a+(n»a)»»», —(n, a&(F»»a)

=(n, &F»», + (»», & n», —(»», )(»», &, (11}

where the final equality holds by virtue of the
translational symmetry, (F»», & =(n, &. Substituting
Eq. (11) into Eq. (10), we find



1206 . YOFFA, RODRIGUES, AND ADLKR 19

H = Q epnp, +U Qn)in)) —~Nn U, (15)
f,a

where we have noted that Q, ,n„=Ãn, the total
number of electrons present.

First, we consider the narrow-band limit, in
which all the Hartree-Fock energies ej-, are the
same, independent of k. They can be evaluated
by noting that when correlations are neglected,
all possible configurations of the lVn electrons
on the X sites are equally probable. In this case,
the average interaction energy between a given
electron and all the other electrons is &nU. Thus,
if T, is the energy of the relevant atomic orbital,
ep =To+ ,'nU (I-n the. important case of one elec-
tron per atom, i e., n=1, this yields cp=T, +&U;
thus, the Hartree-Fock energy lies halfway be-
tween the two quasiparticle bands at T, and

T, +U, just as we might hav'e expected. ' We shall
return to the quasiparticle representation in Sec.
III.) Since Qp, ,np, =Nn, the Hamiltonian (15) in
the narrow-band limit becomes

HNs. =EnTO+ U Q n(in)),
i

where the interaction contribution to the Hartree-
Fock term just canoels the constant term. Since
the magnitude of Q~n&tn~i =m, the number of
doubly occupied sites, the total energy in the
narrow-band limit is

Z„=xnro+m (17)

just what we would expect for strongly correlated,
localized electrons. '

0
(H,ff )« — (ep, + U(n, ) )cV,,cg, -&U(n&)(ni) .

F,e
(14)

This expression differs from that derived by
Hubbard [H, Eg. (15)jby the absence in the latter
of the constant term, -NU(nt)(n~). The difference
is due to the fact that Hubbard linearized the
product n&, n&, in a manner designed to result
in the proper criteria for ferromagnetism, where-
as we are concerned here with the correct total
energy.

Although the Hamiltonian (10) was originally
proposed as the simplest method for generalizing
the results of conventional band theory to the
case in which electronic correlations are impor-
tant, it has the additional advantage of reducing
to the exact solutions in the two extreme cases,
the narrow-band limit and the Hartree-Fock limit.
To show this, we begin with the Hamiltonian (9b),
which is applicable to solids without magnetic
ordering. Since, in this case, (n, ) =(n, ) = —,'n,
the Hamiltonian can be simplified to

In the Hartree-Fock limit, we must linearize
the correlation term in Eq. (15}, Ug, n, tn, ,~.
Using the same linearization procedure as in

Eg. (11), we find

U Pn;~n;~- U g ((n, t)n, ~+n;~(n~~) -(n, t)(n, ~))

n n n'
U -n;~+ -n~~ ——

2 ' 2 4

1
HHF = &pnq, —gNn U.

iY, ty

Eq. (18) yields just what we would expect from a
Hartree-Fock description of electrons for which
only intrasite interactions are important. The
constant term &Ãn'U just cancels the average
interaction energy which is double-counted in the
sum. (An alternative way of seeing this is to
recall that, in the Hartree-Fock limit, the neglect
of correlations results in ~n' of the sites being
doubly occupied on the average; this increases
the energy by &Nn'U, a term which represents
the sum of the interactions. This term is counted
twice when we sum the &j-„so it mustbe subtracted
off, to obtain the correct total energy of the sys-
tem. )

If the linearization procedure used in Eg. (11) is
not used, an incorrect result is obtained for the
total energy.

(18)

III. MANY-BODY AND SINGLE-SITE REPRESENTATIONS

In order to apply the Hubbard Hamiltonian to
experimental results on real materials, it is
important to evaluate physical parameters such
as the chemical potential (i.e., the Fermi energy)
and the number of doubly occupied sites in cases
that are intermediate between the Hartree-Fock
and narrow-band limits. It would also be extreme-
ly vat.uable if we could interpret the model in
terms of an effective one-electron-like represen-
tation, particularly in view of the fact that real.
materials can possess both narrow and wide bands
in the vicinity of the Fermi energy. ' Hubbard'
discussed an effective one-electron-like represen-
tation in his original paper, but a considerable
amount of confusion has resulted, especially with
respect to quantities such as the temperature de-
pendence of the Fermi energy and the number of
particles in the upper band. It is the purpose of
this section to clarify the problem in a rigorous
manner.

g Nn2U,

where again we have assumed translational invar-
iance and no magnetic ordering. Thus, Eq. (15)
becomes in the Hartree-Fock limit
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In ojder to interpolate between the Hartree-
Fock and narrow-band l.imits, %e introd6ce both
real-time and imaginary-time (temperature-
dependent) Green's functions. This formalism
permits us to derive in a simple and unambiguous
way a wealth of information about the correlated
system. As is well known, the real-time Green's
functions lead to the pseudoparticle spectrum of
the system, whereas the imaginary-time Green's
functions are directly related to the thermody-
namic functions. For convenience, we eliminate
the constant term in Eq. (15) by writing the Har-
tree-Pock energy &p as &g =eg+-,'n'U, where
&j", represents the noninteracting part of the elec-
tronic energy; —,'n'U is the electron-electron inter-
action energy. We have already discussed this
procedure in Sec. II. Substituting into Eq. (15), we
obtain

H = cg np~+ U ng)n]),
0

f,a

which' is just a rewriting of Eq. (10). Making use
of the Fourier transforms,
T1o& N' Q2 ep-exp[ik ~ (R; -R&)] and
c&,=N 2+2ci, exp(ik ~ R&), the Hubbard Hamil-
tonian becomes

H = T;fcg~~ cf~+ U ng)n]) .
e

For this Hamiltonian, we define the causal re-
tarded and advanced Green's functions'

G, ,(t, t') = + i8(+ (t —t'))(lc—';,(t), ct,.(t')))
—=((C1e(t)l C~, r (t')))o o

where (, ] is the anticommutator and ( ) indi-
cates the average over a grand-canonical en-
semble at temperature T. We define, for real E,
the Fourier transforms

9(7) =- g e'"1'9(v,),u, T

where &u, =s(2l+ I)/ksT is the fermion frequency.
In the Bloch representation, where

G (E) g G(k E) $2 ~ (Ng i(t)
N

and

91~(~i) = g—9(k, ~1)e'"'"' ""
YI',

we have

9(k
d(()' 2G(k, (d'-i)I)9k, (e, =
2v 2 &()1 —(()

(21)

with q an irifinitesimal. positive number.
In the narrow-band limit, T)5 5ffTo and we

can obtain G and 9 exactly using the equation of
motion method described by Zubarev. ' We get

Gee'(E) ee' U . n-e + n-e
2m E- To E- To

where n, =(n1,) for a translationally invariant
system. Also in the narrow-band I.imit, we have

eo -
)

5ee 1-n-e n,
l 2' sM1+P. To l~l+P, To U

(23)

For nonzero bandwidth, following Hubbard, ' we
find the approximate sot.ution

(j.)
Gee~(k E) 5„1 E2 -T, -U(l-n, }

wÃ E(»- E(» E E
p7 1' F

U; -7 (lU-n. , ).}„-(2)

E(2)

(24a)

dt ' c„t;c~,. 0 „,, 19
f"

where E(„»' &E„-' are the roots of the equation

(E—ep)(E —T, —U)+n, U(To —e~2) =0. (24b)

The analytic continuation of these functions into
the complex energy plane will be denoted by
G1'g' (E).

We introduce next the imaginary-time Green's
function

9gf(7, 7') =- —(T, [B„(7)LJ,e(7'}]), (20)

where T, is the time-ordering operator; 5&, and

25,. are "imaginary-time" annihilation and crea-
tion operators defined by V„(7') —= e"'c„e "' and
Pf~,.=e"'cf,.e "'. E =H —pÃ is the grand-canonical
Hamiltonian, p. is the chemical potential, and 8
is the particle number operator. The Fourier
transform of Eq. (20) is defined by

g(y ly k y ~(y e'
( 0 . 1. 2 N E(1) E(2)

7p

(x)E-, -T„-U(l-n .)
i(d, —E«)+ p,

Ir

o—T.—U(( - m..",})
(2)

i(u, -E(»+ p.

Thus, we have both the real-time [Eqs. (22) and

(24)] and finite-temperature [Eqs. (23) and (25)]

(25)

Although the approximate solution has several
faults, ' it can still be used to obtain reliable in-
formation about the correlated electron system.
Finally, the 9 function is obtained from Eq. (24):
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Green's functions, for the narrow-band limit
[Eqs. (22) and (23)] and for finite bandwidths
[Eqs. (24) and (25)].

Perhaps the most important quantity that can be
calculated with the above formalism is the chemi-
cal potential p, . The pseudoparticle density of
states per atom in the atomic limit is given by

p(E) = —Iim g [G»'(E+iq) -G,", (E-iq)]
q~~

jq(y

upper band (at E=T,+U) is equal to the number of
doubly occupied sites m, where

@e-(2r, v-2v)/~~r 1Vn

S 2(1.+ s( o+ u')//)(ar)

(30)

On the other hand, we can calculate the number of
electrons in the upper pseudo-particle band N„:

N„=N dE p„(E) (
— „)~

= (2 —n) 5 (E—T,) + n5(E —T, —U), (26)

where we have used Eq. (22) and the fact that
n, =n, = —,'n for a nonmagnetic system. The chem-
ical potential can then be evaluated from the
equation

OO

n= dEp(E) (z»/. ~, +

We obtain:

p. =T —kgT ln
(1-m)+[(1-n)'-n(n —2)e ] ')

(27)

The single-site representation' is a scheme that
makes use of the fact that any atomic site is either
empty (E=0, nondegenerate), singly occupied
(E = T„ twofold degenerate), or doubly occupied
(E=2T, +U, nondegenerate). This can be looked
at in terms of two one-electron-like levels, both
at T, when empty but one moving to To+ U when
the other is occupied. The grand-partition func-
tion for a system of N independent sites can then
be written down immediately as

2 -(ro-w)jhzr -(2ro+v-2v)la~rqar ~sr
S y

(26)

where 5& is the single-site grand partition func-
tion. Using n =k~T(& In3/&p. )r, we can solve for
the chemical potential in the single-site repre-
sentation

p, =T, +U+k~T

(1-n}-[(1-n)'-n(n-2)e ~ & ]' '
(x ln n-2

(29)

With simpl. e algebraic manipulation, we find that
the chemical potential defined in Eq. (29) is
identical to that in Eq. (27), which was derived
formally for the many-body system.

Another important quantity is the number of
electrons in the upper band. In the single-site
scheme, the "second" electron on a site has ener-
gy T, +U, so that the number of electrons in the

Nn
1+e( 0' (31)

(V) = ",k~Tlim P P e'"'" ', (i(d, -e'„-+ p,
—
)(2s)'

x Tr9(k, ((),), (32)

where 0, is the system volume, 9(k, (d, ) is
defined in Eq. (23), and ep =T, in the atomic limit.
Making thes e substitutions,

where p„(E) is the pseudoparticle density of states
per atom in the upper band [from Eq. (26)]. Com-
paring Eqs. (30) and (31), we discover that the
number of electrons in the upper pseudoparticle
band is twice the number in the upper band of the
single-site representation 1 The resolution of
this apparent paradox l.ies in the fact that the
respective "upper bands" are really very different
quantities. In the single-site picture, the number
of available states in the upper band is a tempera-
ture-dependent quantity that exists only by virtue
of filled states in the lower band. Within the
Green's-function formalism, the upper band is
created only after the interaction between electrons
is switched on. The spectrum is a function of U, &„-,
and n. (In fact, there is a finite probability for
an electron on a singly occupied site to be in the
upper pseudoparticle band at T &0.) Physically,
the reason for the difference is that either the
spin-up or the spin-down electron on doubly oc-
cupied sites can be considered to have energy
Tp + U, and thus be in the upper band; in the
single-site representation, only one of these
electrons can actually be placed in the upper band
or else the total energy will be overestimated. As
we shall see shortly, all the thermodynamic
quantities depend not on the number of electrons
in the upper band, but on the number of doubly
occupied sites. We shall demonstrate that this
latter quantity is the same in both pictures.

First, we note from the form of the Hamiltonian
(16}, that the number of doubly occupied sites
m(=N(n(~n, l) } is exactly (V)/U, where (V) is the
thermal average of the interaction energy. This
energy is given by
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j.

(V) =NksT lim N g e "~"o(i &a, - T + p. )
'g~ Oi ~N zen, —To+ p. zen& —To —U+ p.

NnU

2(1+ e& ro+" »&sr) ' (33)

Then

m =Nn/2(1+ e o'" "&ss ) (34)

where

p'(E) =p(g(E, n))
E(E —U)

(36b)
Comparing with Eq. (30), we see that the number
of doubly occupied sites is indeed the same as
calculated in the single-site representation. A
useful. by-product of the form of the Hamiltonian
(16), is that the four-operator average
(c«c«c, &c,&) can be calculated by recognizing its
relationship to the interaction energy, as de-
scribed previously. Thus, physical properties
involving four-operator correlation functions
(e.g. , conductivity and thermoelectric power)
can be evaluated ggiggggg recourse to two-particl. e
Green's functions, as is ordinarily necessary for
other Hamiltonians. In addition, since we have
shown that (n&~n, &) is the same for the single-site
and many-body representations (in the narrow-
band limit), physical properties (e.g., the energy,
which simply equals NnTo+mU) can be calculated
in whichever one that is most convenient. This
provides an enormous simplification, since the
single-site representation circumvents the so-
phisticated techniques of many-body theory, and
can easily be made compatible with the conven-
tional one-electron bands which are ordinarily
present near the Fermi level of Mott insulators. "

IV. TOTAL ENERGY OF THE SYSTEM

2N/~ (lEI &-.'~)

0 (IEI&-'a)
(35)

where p(E) is the total density of states, in the
absence of correlations and we have chosen T, =0
for convenience. The Fermi energy e& of the
ground state can be obtained from the relation

Ig
Nn = dE p'(E),

a 00
(36a)

For a real system, with finite bandwidth, the
total energy has been the subject of much con-
fusion. Herring calculated the total energy in
the strong-correlation limit and obtained a result
which appeared to be much too small. He thereby
concluded that the Hubbard model underestimates
the total energy. In this section, we show that,
in fact, the Hubbard model gives the exact answer
in this. case.

Consider the case of a square band:

We consider the case for which n &1, so that we
are concerned only with the lower band. Solving
Eq. (36) for e~, we find

e z ——own + o(U —oA —[(U+ —'4)' —Ubn]'

(3V)

This result is in agreement with Herring. ' How-
ever, Herring evaluates the total energy from the
relation

ff

E=N e~ dn.
0

For the case n=1, U=~, Eq. (38) yields the
result,

Z=-8

(38)

In this same limit,

1 3
e~ = --,~+ 4n~. (40)

These results are shown in Fig. 1. The solid lines
indicate the band edges E . and E and the
dashed line marks the Fermi level. The sketch
makes clear why Herring underestimates E/N
by 8&. The difference between the true energy
and that calculated above is just the "area" of
the triangle bordered by E . and a horizontal
line at E=-&&. The correct expression for the
total energy is thus:

Since the exact energy is E =0, Herring concludes
that the Hubbard model underestimates the total
energy of the system.

Vfe shall now show that the Hubbard model, in
fact, yiel. ds the exact result for the total energy.
The error in the previous calculation arises be-
cause Eq. (38) is inapplicable in this case, due to
the band-narrowing effects of electronic correla-
tions. Th~s can be made evident by first looking
at the density of states in the lower band. From
Eq. (36b), we find for the strong-correlation limit
(U-m)

N/& [lEl~ a(2-n)&]

0 [lEl&-,'(2-n)~]
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E

2

0—
EF

Emin

which shifts the energy scale by Tp. Making the
variable change [20,/(2w)3]d3k (2/n)dE, we get
E„- = &(E+T,) and E = &(E+T,+U). [We have
assumed (&/U)' «1. The decoupling scheme used
by Hubbard' was chosen to be valid in this limit
and leads to unphysical. behavior in the opposite
limit. A later paper by Hubbard' corrects this
defect. Errors in the following calculation will.
vanish in the limit of interest, U- ~.] We now

have

0 I/2
'n

I

FIG. 1. Behavior of band edges and Fermi energy as
functions of n, for a square density of states, with tf

The shaded area indicates the occupied states at
T=0.

2 p++ /2

E= dE
4U& z g]2

(E-T„-U)(3E+T.)
1+8 - p- »~a~

E=Ã p. dn =1V Ez+n dn, (41)
(E-T,+U 3HZ+ 2+ U2))

g(E TQ+p) /Alp T

dk Q e'"&"~(i(u, +ep+g)
(2w)'

x Tr9" (k, u), ), (42)

where b is the finite-temperature Green's func-
tion Eq. (25) and the trace is taken over spin
indices. Substituting Eq. (25) into Eq. (42) and
performing the sum over l, we obtain:

n.
(2x)3 E(x) Eim)

[E~p' —T„—U(1 —n/2)](e~p +EP )
(x) „1+~(~„-' -»(~~r

where we integrate to n=1. As we see, the Fermi
energy e~ does not equal the chemical potential
p, , as is often the case, but is instead given by
p, = eg +ssE /Bn. .

The physical interpretation of Eq. (41) is that
as we add each electron with energy e+, we
simultaneously increase the energy of all the
electrons in the band, by &E /&n, due to the
band-narrowing effects of the additional correla-
tions. Equation (41) yields

E=O,

the exact answer.
We are now interested in generalizing this ap-

proach to finite temperatures. For the case
n=1:

Letting x=E- T„we get

(x —U)(3x+ 4T„)
X 1+g(~-~)»I ~&

cosh(&/4ksT)
&~

&/4k, T (44)

Note that for & =0,. E=A'(T, + &Ue & ), as it
should. In the limit 4/U 0,

sinh(4/4ksT)
I

U ~g,~ r
~/4k, T & 2

As U-~, E-XTp. As discussed previously, this
is the expected result.

(x+ U)(3x + 4T„+2U)
1+e(x+v) I2a~ r 43

Even at reasonably high temperatures, U ~0.5

eV, it is still true that e '"~ &&1. Since &'&& U',
we can make the approximations (1+ei" "~~~sr) '

I e(x U)/2ks T d (I (Ã+v)/2ABT)-1 -(AU)ihks T

After substituting these expressions into Eq. (43),
we can integrate to obtain the total energy. If,
in addition, we ignore terms of order one com-
pared with U/ksT, we obtain

sinh(4/4ksT) U

4/4ksT 2

[Ep —T„-U(1 —n/2)](er, + Et, )
(s) p (2)

(a)
1+e(~-

(X) (2)where Ep, E p are given by the roots of Eq.
(24b), with n, =n, = ,n. We again specialize to-
a square density of states as given by Eq. (35),
but reinstate the atomic energy level explicitly,

V. ENTROPY AND OTHER

THERMODYNAMIC CONSIDERATIONS

One of the major applications of the Hubbard
model is as a quantitative means of analyzing
Mott transitions. However, any study of phase
transitions requires a knowledge of the free en-
ergies of the system. Consequently, we next
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turn to a discussion of the entropy. Very little
previous work has been carried out on the entropy
of a strongly correlated system. In this regard,
it is clear that the possibility of magnetic ordering
is of fundamental importance, and we must con-
sider magnetic states explicitly.

For the case of n =1, the chemical potential is
independent of temperature; tQus

where P = I/k»T. Integrating this relation, we
find

S(p)-S( )+)'3()EI -)'~ f d))E. (45)

With E=E-S/k»P and Q=E—
thermodynamic potential, we

Q(P) =-(N/P) ln[e " "~()(1

pN, where 0 is the
have

+ eS U/2) ] (47)

Finally, since 0=-(1/p) in&, we obtain

S(p) es(~)lks(I ~ es UI2)» (48)

In the single-site representation discussed pre-
viously [see Eq. (28)], S =[2(1+esU~')]», which
implies S(p= 0) =ks ln2». Thus, in this picture,
the ground state is 2"-fold degenerate, with
either spin equally probable for the electron on
each site. [We restrict ourselves to (n~) =(n~),
but for N»1, N1/[(-,'N)l]'=2 .] This is just what
we would expect for independent atomic sites. In
the original model of Hubbard, ' only states with
full translational symmetry, i.e., (n(, ) =n„were
considered. This restriction eliminates anti-
ferromagnetically ordered states. However, as
long as b/U is finite, the ground state in the
strong-correlation region is antiferromagnetic
at low temperatures. Thus, Eqs. (45)-(48) are
valid only for T & T» -&'/U, where T„ is the Noel
temperature. S(p=&) is then the "zero-tempera-
ture limit" of the entropy in the higher-tempera-
ture nonmagnetic phase, rather than a real physi-
cal quantity.

For arbitrary bandwidth, we must use the many-
body formalism. This analysis (for n=1) re-
duces in the narrow-bandwidth limit to the result
found previously for independent sites, i.e.,
ground-state degeneracy =2". When the hopping
energy T&& in the Hamiltonian (8) has off-diagonal
terms, the intersite interaction lifts the degenera-
cy of the 2" atomic ground states. The ground-

Using E =N[T, +U/2(l +es U')], we can easily
evaluate Eq. (45) in the narrow-band limit:

S(P) =S(~)+Nks ln(2cosh»PU) —»Nk»PUtanh»PU.

(46)

state wave function then involves configurations
in which pairs of electronic wave functions can
overlap at the site locations; i.e., the energy
decrease due to.delocalization more than balances
the increased Coulomb repulsion. As we increase
T&&, more up and down spins are "paired, " and
the spin entropy is reduced. Indeed, weakly
correlated electrons (T~&&& U), lie in a half-
filled band which can be occupied only in one
unique way, with every k state below the Fermi
level doubly occupied. These results suggest
that an interesting problem to study is the behavior
of the ground-state. entropy as correlations in
a half-filled band are progressively increased
from zero (metal, with zero entropy) to infinite
strength (Mott insulator, with S =ks ln2»). But
the main point we wish to emphasize here is that
many important thermodynamic quantities (e.g.,
p, and E) depend only on derivatives of lnS. ,
which do not involve the ground-state degeneracy.

VI. SUMMARY

We have rederived the Hubbard Hamiltonian, ex-
plicitly maintaining the possibility of magnetically
ordered states. An effective Hartree-Fock Hamil-
tonian has been obtained from the Hubbard Hamil-
tonian and we have demonstrated that the appro-
priate linearization procedure yields the correct
total energy in the Hartree-Fock limit. We have
also shown that the Hubbard Hamiltonian is exact
in the narrow-band limit, and have thereby re-
lated the Hartree-Fock and atomic energies.
Using real-time and imaginary-time Green's func-
tions, we have been able to interpolate between
the Hartree-Fock and narrow-bandwidth l.imits.
This procedure has been used to clear up a long-
standing puzzle concerning the fact that the num-
ber of electrons in the upper pseudoparticle band
is twice the number of doubly occupied sites.
The single-site approximation and its effective
one-electron-like representation has been intro-
duced and justified in the narrow-band limit. We
have shown that physical properties such as elec-
trical conductivity and thermoelectric power, in-
volving four-operator correlation functions can
be evaluated correctly in the single-site represen-
tation, without recourse to two-particle Green's
functions. This is an extremely important. result,
since the single-site representation can then be
used in conjunction with conventional band theory,
which adequately describes the wider bands that
are ordinarily present in Mott insulators. The
total energy of the system has been evaluated at
both zero temperature and finite temperature. It
has been shown that a criticism of the Hubbard
model based on the conclusion that it underesti-
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mates the total energy is itself erroneous, and
that the Hubbard model gives the exact total energy
in the special case considered. Finally, we have
shown that the energy at finite temperature can be
calculated without regard to the presence or
absence of magnetic ordering, but that this choice
is critical to a determination of the entropy.

ACKNOWLEDGMENTS

Research was supported by the NSF- under NSF-
MRL Grant No. DMR 72-03027A05 and Fundagao
de Amparo a Pesquisa do Estado de Sao Paulo,
SP, Brasil, Contract No. VV/0549.

*Present address: T. J. Watson Research Center, IBM,
Yorktown Heights, ¹ Y. 10598.

)Permanent address: Instituto de Fisica-Unicamp,
13100 Campinas, SP Brasil.

fDepartment of Electrical Engineering and Computer
Science.'¹F. Mott, Proc. Phys. Soc. (Lond. ) A 62, 416 (1949).

2N. F. Mott, Philos. Mag. 6, 287 (1961).
3J. Hubbard, Proc. R. Soc. A 276, 23$ (1963), herein-

after referred to as H.

4J. Hubbard, Proc. R. Soc. A 277, 237 (1964).
~J. Hubbard, Proc. R. Soc. A 281, 401 (1964).
6D. Adler, Semiconductors and Insulators 3, 367 (1978).
~C. Herring, in Magnetism, edited by G. T. Bado and

H. Suhl (Academic, New York, 1966), Vol. 4.
D. Adler, Solid State Phys. 21, 29 (1968).

GD. Adler, J. Solid State Chem. 12, 332 (1975).
' D. ¹ Zubarev, Soviet Phys. -Usp. 3, 320 (1960).
~~D, Adler and J. Feinleib, Phys. Rev. B 2, 3112 (1970).


