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New approach to the theory of intermediate valence.
I. General formulation
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%e present a new approach to the theory of intermediate valence, applicable to a specific kind

of such solids. It consists of: (i) diagonalization of all intra-atomic terms in the Hamiltonian,

including hybridization; (ii) elimination by means of a projection of all states beyond a low-

energy manifold; (iii) conversion of the remaining states into equivalent fermion states; (iv) ex-

pression of the intra- and interatomic states in terms of the new fermion operators; and (v)

treatment of this new Hamiltonian in a mean-field approximation. This approach, although

valid in restricted cases, avoids all the problems of the alternative treatments.

I. INTRODUCTION

The phenomenon of intermediate valence has re-
ceived much attention in the last few years, and has
been the subject of recent reviews" and confer-
ences. 3 ~ It occurs in solids with highly correlated f
states, in which the occupation of those states is nei-
ther fixed, as in atoms or molecules, nor bandlike in
character like in more conventional s-, p-, and d-like
solids. The proximity in the energy of two configura-
tions, (4f)"and (4f)"+', the large energy required to
excite any of the other configurations and the size-
able hybridization mixing of the f states and the ordi-
nary band states (originating from s, p, and d orbi-
tals), give rise to a multiplicity of effects. The
most important ones are'. (i) the presence of two
well-defined f-electron spectra, as observed, e.g. , by
electron photoemission, (ii) lattice parameters and
other static or quasistatic parameters which do not
follow the systematic behavior of well-defined
valence states and which fall at intermediate values,
(iii) the likelihood of phase transitions induced by
pressure, temperature, or alloying effects, and (iv)
unusual magnetic susceptibilities and specific heats.

The cause of these uncommon properties lies in
the competing effects of three types of energies: (a)
the strong electron-electron repulsion in the f shell
which makes it unfavorable to have more than two
configurations; (4f)" and (4f)"+', (b) the strong
solid-state effects which completely delocalize the
conduction-electron states, and (c) the hybridization
effects which, to a given degree of strength, mix the
f- and conduction-band states.

It is interesting to note that any two of these ef-
fects are more or less routinely taken into account
when studying ordinary phenomena: (b) and (c) to-
gether are the ordinary basis of band theory; (a) and

(c) are routinely used in studying atomic effects in a
crystal field; and(a) and (b) together are the basis for
studying ordinary rare-earth compounds with well-
defined f-state occupations.

When all three of these effects are present, serious
difficulties appear. One way of attacking them, in the
spirit of the Hubbard Hamiltonian, ' is to solve the
band problem [(b) and (c)] to any degree of accura-
cy, and then include correlations as an afterthought.
This has not been thus far a very fruitful approach.
A different way of facing the problem, the inde-
pendent-manifold approach, consists of separating f
and band states completely [(a) and (b)] and then in-
clude the hybridization as a perturbation. This has
been a successful approach to study phase transi-
tions, but is not very convenient for looking at other
properties, ' except at high temperatures.

In this paper we start from a third approach, the
so-called atomic limit. We include all f-state correla-
tions and f-to-band-states hybridization locally, and'
add the solid-state band-spreading effects a posteriori.
By means of a projection technique (valid only under
some well-defined conditions) we eliminate all states
of unacceptable configuration and those with un-
favorable energies, and, when intersite band terms
are included, we obtain an effective Hamiltonian for
new fermion operators. This contains, in addition to
the ordinary band contribution, two- and three-
particle interaction terms. This new fermion Hamil-
tonian can be treated by ordinary methods of many-
body physics, in particular decoupling schemes relat-
ed to the Hartree-Pock and analogous mean-field ap-
proximations.

It is interesting to discuss at this point the relative
strength of the various energies involved in this
problem. We denote by: Uff the electron-electron
repulsion in the f shell; E the energy difference
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between the two relevant configurations (4f)"+' and
[(4f)"conduction electron]; t the conduction-electron
hopping energy; V the f-electron —conduction-
electron hybridization energy; tJJ the single-f-electron
hopping energy; u~q the average f-electron —conduction-
electron interaction energy; z the number of nearest
neighbors (coordination number); and v the total
number of electrons per atom in excess of n.

The conventional band approach to mixed-valence
systems assumes' '

Uff PP 2zt && E, V, ufo' 0'0 tff

Under all conditions for rare-earth compounds tff is a
very small quantity and can be neglected; we do so in
our theory. It should be kept in mind ho~ever that it
may be a significant contribution to some actinide
mixed-valent solids. The role of the interaction ufo' is
threefold: it drives possible phase transitions, " ' it
contributes to the conduction-band f-electron hybridi-
zation, ' and it produces a screening of the f-electron
core."' It is, however, not crucial in the
phenomenon and we neglect it completely in our ap-
proach.

If the hybridization Vis small compared with the
bandwidth (2zt), it is possible to look at the system
as an incoherent mixed-valent state, ' but this re-
quires the configuration energy difference E to be
small enough so that

E & I'=+V'/2zt

The so-called localized model, used by Kaplan
et al. ' "corresponds essentially to the limit

t&( V&E,
which has also been discussed by Stevens. "

Our approach is similar to the localized model, but
its conditions are not so stringent. It requires that
the Fermi 1evel of the condition-electron band in the
ground-state mixed-valent configuration falls consid-

erably belo~ the bottom of the band of the other
(orthogonal, excited) mixed configuration. This can
be put in the form

2z vt & (E + V ) ' « Uff

with no particular restrictions on E and Vindividual-
ly.

In Sec. II we introduce the original Hamiltonian
and define its properties. In Sec. III we stud& special
limiting values, in particular the atomic limit of zero
bandwidth. In Sec. IV we define our projection tech-
nique, determine its range of applicability, introduce
the new fermion operators and arrive at the new
Hamiltonian. Section V discusses the approximate
methods of treating the new Hamiltonian. Section VI
is the summary and conclusions. In the;ollowing pa-

per' we apply this method to study the magnetic sus-
ceptibility of several model bands with this approach,
and determine the instabilities of the systems toward
formation of ferromagnetic and antiferromagnetic
states.

II. THE ORIGINAL HAMILTONIAN

We have chosen the center of gravity of the band as
our zero of energy, (ij) indicates nearest-neighbor
pairs, t is the band hopping parameter, and h gives the
value of the magnetic field multiplied by —g, p&.

For the sake of simplicity and definiteriess2 we as-
sume the ground-state ionic configuration (4f)" to be
a singlet G). The excited configuration (4f) "+' is a
doublet, +) and

~

—), and we completely neglect all
other configurations. With the index M indicating
the excited states ~+) or ~-), the ionic part of the
Hamiltonian is

~i XEMBJMBJM
JM

(2.2)

where the operators B and 8, defined elsewhere, "
are modified Fermi operators such that BJMB t —=0

for any M and M. In Eq. (2.2) EM is the energy
necessary to create the ionic state )M) from the
singlet state

~ G) by adding to the ion one electron
from the center of gravity of the band. The effect of
the magnetic field is included in EM, i.e,

E+ =E +goh (2.3)

where go is the ratio of the ionic to the conduction-
electron g factors. The last term in our Hamiltonian
is the hybridization

gpss

= X (VM~BJMCJn+ VM~CJ~~BJM)
JM+

(2.4)

where, invoking conservation of spin and choosing a
specific phase, we assume

V+t= V )= V V; V+)= V t=o

It should be noted that in using the Bt,8 operators
we have completely left out of our model any config-
uration other than (4f)"and (4f)"+'.

(2.5)

Our system consists of a lattice of ions that can ex-
ist in two different valence states and a band of con-
duction electrons. The ionic and band states are cou-
pled by a hybridization term. There is also a uniform
external magnetic field,

In terms of Wannier state creation (c; ) and des-
truction (c; ) operators of site i and spin o., the
nearest-neighbor only band Hamiltonian is given by

Xy = X t ci~cJ~+ X /l (cttctt —cjtcjt) . (2.1)
(ij) 0 i
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III. SPECIAL LIMITS OF THE HAMILTONIAN

%e now consider the limiting cases of the Hamil-
tonian

+b +3/( +3C/g ~ (3.1)

a. t V 0. This is a perfectly ionic case with

no hybridization between the various orbitals. Each
ion may be in 12 different states with n + v electrons
0~v~3

v=0, I Go)

v-2 ~ I+T& I+l& I-T& I-l) IGTl)
I+Tl& I-Tl&

(3.2) G t) +o) —o)

Some of these states are schematically shown in Fig.
1. The ions in the I G) configuration have energy
zero and those in the I M) configurations, have ener-
gies E~. For E~ & 0 the ground state of the whole
system is highly degenerate, except in the cases of
exactly n and n +2 electrons per ion.

b. V =0, t WO. This situation corresponds to
the "standard state" introduced by Stevens. " The
%annier states spread into a band and we have a col-
lection of ions, either (4f)" or (4f)"+', embedded in

a metallic state but not coupled to it. If E is at a

higher energy than the top of the band, the ground
state of the whole system involves only the (4f)"
configuration for any number of electrons per atom
between n and n +2. This case is identical to that of

G t&)

FIG. 1, Eight unperturbed states of the atomic Hamiltoni-
an which, through hybridization, give rise to the four lowest
intermediate-valence states.

rare-earth metals with ordinary well-defined valence.
c. t =0, V AO. This is the starting point of our

calculation. It consists of a collection of ions, each
with a well-defined number of electrons (n + v),
where v varies between 0 and 3, but with hybrid
Wannier and f states. The two nonvanishing energy

TABLE I. Hybridized ionic states for h =0.

Number
of electrons Spin

Eo

Energy Subspace

IGo&

+
2

1+
2

1

2

2 I

(E2 4 2) 1/2]

IGl& I-o&

I+t&

2 '"(I+l& —I-t»

[E + (E2+8 y2)1/2] IGtl&. 2 '"(I+l&+I-t»

+—,'1 I+tl&
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lo) -=I Go&;

(ii) two states with v I,cr +-, denoted by

It) =-a. lGt&+p. 1+0&,

Il) =adlGl) +pdl —0&;

(3.3)

(3.4)

(3.5)

parameters are V and E, and therefore we use V/E as
a reduced parameter. The 12 states defined by Eq.
(3.2) are now part of a coupled generai 12-fold
subpace. However, since the number of electrons
and the z component of the total spin are good quan-
tum numbers, the 12 & 12 matrix factorizes readily
into eight blocks: five 1 &1, two 2 &&2, and one
3 x 3. In Table I we display the resulting diagonalized
states for h =0.

In the case E )0 [singlet (4f)" more stable than
the triplet (4f)"+'] there are four of the 12 states of
Table I which have energies, for small h, at or below
the zero of energy. These states are:

(i) one with v=0, a =Q, and E=0 which we
denote by

» cr
= 'Y/cr'Y(cr

and the projection operators

P,p ~ (I —v, l) (I —v;I),
P(t =

vent(1

v(t)

P~t = (I v;t)v~t

~~tl=»t~ i

(4.2)

(4.3)

We denote the energy of the four states
(3.3)—(3.6) by 0, Et, Et, and Ett. These last three
are functions of V/E, h, and gp. We also define the
new fermion operators y&, y; such that, for each
site,

I t) - vt lo), I l) = yt lo)

1tl) =vtytlo) --styli»,
and such that the ordinary fermion anticommutation
rules are satisfied.

We also introduce the number operators

(iii) one state with v=2, a. Q, given by

I t l) = a* I G t l& + S.I+l& + gdl —
t& ~ (3.6) H =Hp+Hg (4.4)

With these the projected Hamiltonian 0 becomes

where for h -0, 5„=—Sq.
Each one of these states is the lowest-energy state

of one of the four manifolds depicted as separate
blocks in Fig. 1.

It should be noted that for E & 0, there is an eight-
fold set of states of lower energy instead of the four-
fold one discussed here.

where

and

X (El 11+El Jt+Efl ill)
J

(4.5)

P&' yj (+ +8 (v. +v P+D v. v J
0»~

(4.6)
IV. PROJECTION TECHNIQUE AND

NEW FERMION OPERATORS

When all energy parameters h, t, and k&T are con-
siderably smaller than IEI, we could simplify our
problem by including, for the purpose of the band
hopping terms, only the low-energy subset of states.
If E & 0 these states are those given by Eqs,
(3.3)-(3.6).

We project now our Hamiltonian onto this sub-
space and completely eliminate the other eight high-
energy states, It should be noted that:

(i) All coefficients a„,p„, ad, etc. appearing in Eqs.
(3.3)—(3.6) are functions of V/E, h, and gp. (ii)
The 3C; +A part of the Hamiltonian is, by construc-
tion, automatically taken into account. (iii) Any four
states can be directly interpreted as the four occupa-
tion states of a spin- —, system, and therefore any

Hamiltonian referring to those states can be directly
written in terms of fermion (spin —,) creation and

destruction operators. (iv) Our new Hamiltonian
should reduce to the original &b (and the new opera-
tors should reduce to c(,c; ) when V 0.

In Eq. (4.6), o indicates the spin opposite to a,
and the coefficients A, 8, and D are functions of
the coefficients a„,p„, a„, etc. appearing in Eqs.
(3.3)-(3.6). In the calculation of these expressions
care should be taken of including the relative phases
of the various creation and destruction operators, as
well as the ordering of the various multifermion
states. The correct expressions for these coefficients
with our choice of phases, are

W, =(a„)', a, -a„(X,—a„)

D, -(X,-a„)
where

Xt Pm -(ada, +Pdgd)

(4.7)

Equivalent expressions are obtained for the l coef-
ficients by exchanging t ~ l and u ~ d.

It is interesting to note that the hybridization of the
original Hamiltonian is responsible for the appearance
in Eqs. (4.5) and (4.6) of two- and three-particle
terms (four and six y or yt operators). When V 0,
only the e coefficients remain finite in Eqs.
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(3.3)—(3.6): I l2 I
= I, p = 8 = O and E1 l

= E
1
+ El

then obtain

H ( V =0) = XE vj + 1 $ y t y, , (4.8)
(iJ) ~

i.e., a simple band Hamiltonian in the presence of a
magnetic field.

V. SELF-CONSISTENT-FIELD
APPROXIMATION

To handle the new Hamiltonian we use the stan-
dard Hartree-Fock (self-consistent-field) approxima-
tion. We replace the four-particle operators in Eqs.
(4.5) and (4.6) by sums of two-particle operators and
C numbers, i.e.,

where ( ) indicates expectation values with the
state under consideration. This decoupling scheme is
directly related to the decoupling of the two-particle
Green function into two'terms containing two one-
particle Green's functions" (see Appendix). For the
six-operator (three-particle) terms in Eq. (4.6), the
equivalent decoupling involves many more terms.
These are once again directly related to the decou-
pling of the three-particle Green function into terms
which are products of one- and two-particle Green's
functions22 (see Appendix). If in addition we neglect
all states for which there is a spiral arrangement of
the spins, i.e., we consider only states in which

(5.2)
Yl Y2'Y3'Y4 ('Yly4) Y2 Y3 + (Y2y3) 'Yl'Y4

t -t t

(Yl'Y3& yly4 (y2y4) yl y3-t

—(yly4&(y2y3) + (y l'y3) (y2 Y4) (s.l)
the simplification is considerable. For example we
obtain

2

y'1YJ1 'I+Jt (~'tvjl) y "lyj1 (y'tyjt)) + (y''tyjly lyJ1)(yjly l(YJly l)')
t t t t t t

+ (YJlyJty'ly 1) (y'lyJl (yllyjl)) + ( Jly'1YJl) (~it (~il))

+ (y'1yJ1 'l& ("Jl (vjt)) + (y tyjt) (vjl) (~ » —(y'tyjt) (y'lyjl) (yJly'l)
f (s.3)

With this decoupling scheme the Hainiltonian (4.4)
becomes a new Hartree-Pock Hamiltonian

HHF X U yj yj —X W y; y, +K, (5.4)
Ja (iJ) cr

in terms of which

H„„=xE„.r„'.r„. ,
ko

where

(s.6)

r,.=(W')-'' Xexp(ik Rj)yj
J

(s.s)

where the constants U, 8, and

codepend

self-
consistently on expectation values of the form (yty)
and (ytyyty) as well as on the coefficients A, 8,
D, Et, El, and Ett of Eqs. (4.5)—(4.7). It is now
evident that Eq. (5.4) is a simple one-particle band
Hamiltonian with nearest-neighbor hopping. But it
must be remembered that the parameters which
determine this Hamiltonian are not constants but
self-consistent quantities, functions of the state. As a
consequence it describes a system with interactions
which is capable of spontaneously breaking its syrn-
metry to produce ground states other than the nor-
mal, paramagnetic one. '

For ground states in which the translational sym-
metry is conserved, i;e., the paramagnetic (normal)
and the ferromagnetic states, a transformation to
Bloch states automatically reduces the Hamiltonian to
the necessary diagonal form. The new destruction
operators I k are given by

E„—= U + ( W (S(k) (5.7)

and

S(k) —= —(sgn W ) Xexp(ik Ra) (5.8)

nn

The dimensionless quantity S(k) is a reduced band
energy.

VI. SUMMARY AND CONCLUSIONS

For a well-defined case of mixed-valence solids in
which the "atomic" spectrum splits into two well
separated regions, we have been able to reduce the
problem to a more familiar one of many-fermion
physics. The approach consists of: (i) inclusion of
all intra-atomic contributions and neglect, as a start-
ing point, of the band "hopping" terms, (ii) diagonali-
zation of the intra-atomic terms including the various
accessible configurations and the hybridization terms,
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(iii) analysis of the spectrum and, if the case so war-

rants, projecting out of all states except the lowest-
energy manifold, (iv) reduction of that manifold to
an equivalent set of fermion states and incorporation
of the band hopping terms in this new formalism,
and (v) treatment of the resulting many-fermion
Hamiltonian, which includes two- and three-particle
terms, by the standard methods of many-fermion
physics. ' In particular the Hartree-Fock and related
schemes should be in many cases very satisfactory,
although care should be taken to avoid the normal
pitfalls inherent in them. '4

In the following paper we apply the method here
described to calculate the magnetic susceptibility of
the paramagnetic state, and its instabilities toward the
formation of other (broken symmetry) states.
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APPENDIX

The ordinary Hartree-Fock decoupling of the two-
fermion Green function

G2(l 2;1'2') ~ G, (1;1')G, (2;2') —Gt(1;2') Gt(1';2)

(A1)
can be extended to the three-fermion function by
standard methods.

G3(1 2 3;1'2'3') ~ Gt(1;1')G2(2 3;2'3') + Gi(2;1') G2(3 1;2'3') + Gt (3;1')G2(l 2;2'3')

+ G 1 (1;2')G2(2 3;3'1') + 6 t (2;2') G2(3 1;3'1') + 6 i (3;2') G2(1 2;3'1 )

+ Gt(1, 3') G2(2 3;1'2') + Gi(2;3 ) G2(3 1;1'2') + Gi(3;3') G2(1 2;1'2')

-2G|(1,I') G1(2;2') Gt(3;3') —2G|(2;1')Gt(3;2') Gt(1;3')

—2Gt(3;1') Gi(1;2') Gt(2;3') +2Gt(3;1') Gi(2;2') Gt(1;3')

+2Gt(2;1') Gl(1;2') Gt(3;3') +2Gt(1;1')Gt(3;2 ) Gt(2;3 )

This last expression can be further simphfied by replacing G2 by its expression in Etl. (Al).
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