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Charged-particles scattering in the presence of a homogeneous magnetic field
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We study the scattering of charged particles in the presence of a homogeneous magnetic field. Using the
Green s function formalism, an appropriate transition amplitude for the scattering process is defined, and

application is made on scattering by a Coulomb potential in the high-energy approximation; For this case,
the transition amplitude is obtained in a closed form; its behavior with the magnetic field intensity and initial

translational energy is qualitatively discussed for transitions from the first Landau level. In the ultrastrong-

field limit, the total transition probability presents periodic threshold structures with increasing values of the
initial translational energy.

I. INTRODUCTION

The effect of magnetic fields on the behavior of
physical systems is relevant in the study of prob-
lems in astrophysics, plasma physics, and solid-
state physics, where magnetic fields play an im-
portant role in their properties. ' ' The structure
of matter in the presence of strong magnetic fields
has been the subject of several works, ' ' and it is
a reasonably well-understood problem now: It is
known that strong magnetic fields deeply affect the
electronic properties of matter. It would be inter-
esting to investigate how transition probabilities
are modified by a strong magnetic field, since this
could eventually play an important role in physical
processes such as population inversion mecha-
nisms, selective excitations of molecules, etc. It
is then important to understand how charged par-
ticles interact in the presence of a homogeneous
magnetic field: To our knowledge there is no the-
oretical study of this problem.

In the present work we consider the scattering of
a charged particle by a structureless potential,
and apply the formalism for the specific case of
scattering by a Coulomb potential. %e also show
how the formalism can be extended for scattering
by a hydrogen atom, assuming that the eigen-
functions and eigenvalues for the hydrogen atom in
the presence of the field are known.

In Sec. II we formulate the problem using the
Green's-function approach, and obtain a conve-
iently defined transition amplitude. Section III is
devoted to the study of the results of Sec. II in the
case when the scattering potential is of the form

Zez/r, and in Sec. IV we discuss the results ob-
tained.

II. FORMULATION

In this section we present the formulation of the
problem of a charged particle interacting with a
structureless potential in the presence of a homo-
geneous magnetic field. The eigenstateg of a
charged particle in a homogeneous magnetic field
are known"'" to be separable into a plane wave
propagating parallel to the field, and a harmonic os-
cillator-type solution for the transverse motion,
the so-called Landau states. In the usual scatter-
ing problems, structureless potentials cannot
change the translational energy of the scattered
particle. The scattering in the presence of the
magnetic field allows a modification of the one-di-
mensional translation energy caused by a transi-
tion between the bound Landau states. It is then
possible to define a transition amplitude associated
with the process in which a charged particle goes
from an initial state 4,, „ofwave vector 0, and

Landau state n into a final state 4, ,„.Our aim is
to obtain an expression for this transition ampli-
tude.

Let us consider the Schrodinger equation

1 ~ 6'
H4 = — P — A '+ V(r) 4i 2m c

Taking B=BR and considering the symmetric Lan-
dau gauge~
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A=-, Bxr,
it is well known that the solution of

a,C = (P,'/2m+ II;)e = (E,-+ c)C

can be separated 1Q the form

@,,...(r) =~'"'g„,( p), (4

where E,=R'k,'/2m and H~ is the two-dimensional
isotropic harmonic-oscillator Hamiltonian ( p = xx
+ yy) whose eigenfunctions are

with $' = yp',

where

Z' „=(2m/k )(E —c„)=k', + (2m/5')(e —c„).

Energy conservation is guaranteed by Eq. {12): the
incoming particle with p, = @k, undergoes a transi-
tion from the n, to the nth Landau level, and AK

is its final momentum parallel to the field. The
integration in (11) is equivalent to the one appear-
ing in a. one-dimensional problem„" so that the re-
sulting Green's function is

G(p, p', z, z')

y=m(d, /25= eB/2-5c =1/ft,' (8) (13)

(~2) ~(((-8)e- K /2q((-(((g2){n (s ()-1/2

Here Q~ is the associated Laguerre polynomial"
conveniently normalized

Of course the solution of Eq. (1) satisfies

+ 6 r, r' V r'
~, ,„,r'dr', l4

where L~(x) is the alternative form of the associ-
ated Laguerre polynomial defined in Eq (d.13.) of
Ref. 10. The principal quantum number is n; s has

' the geometrical interpretation of the distance of the
center of the orbits from the origin. This choice
of quantum numbers leads to'0'»

@( 4.,( p) = &.&,( p) = (n+ 2)@(d,y.,( p),
n = O, 1, 2, . . . , (7)

where ~, is the cyclotron frequency [see (6)] and

e„is the energy of the nth Landau level.
Assuming only that the interaction potential V(r)

goes to zero for large values of r, the assymptotic
Green's function can be obtained from

E —II& — ' - t" p, p'„z,z' = 5~ p —p' 5 z -z'

(8)

G(p, p', z, z')

=
z,
—Q f d&@:.(T'N. .(~)~"' ''(. .(&) . ((()

Substituting (9) in (8) we have

g„(k)= 1/[(E —e„)—fi'k'/2m ]
which leads immedia, tely to

G(p, p', z, z')
&a{ - ')

=--,@. gp„.(p')p„.(p) J k. Z, —,(11)
no. n

where r = (p, z).
Taking the asymptotic limit, and defining k

=—Z

lim („„,(r)=C, „,(r)

--'@,—P y„...( p)e'"

xf (k„ns-k,n's') .
The transition amplitude representing an excita-

tion of the (k, n's') final state from the state (k„ns)
is defined by

f (k„ns-k, n's')

d re '"'P*..(p) t/(~)(,„„,(r) . (18)

The square of this a,mplitude is proportional to the
probability of finding the pa, xticle in a final state
n's' of momentum parallel to the field k, given the
initial state of momentum k, and quantum numbers
ns. This implies that any modification in its mo-
mentum in the direction of 'the field is associated
with R transltioQ between Landau levels. Assuming
the high-energy (Born) approximation we have

f(k„ns—k, n's')

are '"0„*.(p)&(r)g„.(p) (17)

and q= k —ko is the transferred momentum in the
direction of the field.

The result (1V) can be generalized for the scat-
tering of a high-energy charged particle by a hy-
drogen atom instead of a structureless potential.
If the incident particle is an electron, and neglect-
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ing the effect of exchange, we obtain in a similar
manner,

f (ko, ns, p —k, n's', p')

HI. PARTICLE SCATTERING BY A COULOMB POTENTIAL

For any central field, V(r) = V(r), integration
over the azimuthal angle is immediately done, re-
sulting for the scattering amplitude,

where

Ze'
Ves (ri) = —

~ ~ss'
1

(18)

(19)

f(ko, ns k, n's')=-
@ 6„,„i,k

dz e '~'I„,k(x) I„,(x)

x V((x/y+ z')'/'), (20)

The wave functions g()(r) are the solutions of the
Schrodinger equation for a hydrogen atom in a
homogeneous magnetic field, and must be obtained
in some approximation. ' ""

where x= yp', with y given by (6), and (p'+z')' '

Considering the specific case of the Coulomb po-
tential and the fact that the potential is eileen in the
z coordinate, we have

00

0 ~k(P

p 00

dz cos(Iz „dye "'I„...(x)Z,(y(x/) )&/2)l (x) (21}

]
(p2 + z 2)1/2 dye "*~.(yp) .

where we have used the fact that for z & 0

(22)

I

integration over x is readily'done, yieldinkg

f (k„ns- k, n's)

After performing the integration over z, E(l. (21)
becomes

f (k„ns-k,n's')

2Ze'm ""
ydy

tf S pe S y2+ q2

imge'
~

I„„(x}I...(x), (25)
Qo X+

where X = (I'/4y.
From the definition of Laguerre polynomials, we

get

Ny N2

&& Jt I„;(x)I„,(x)J,(y(x/y)'/')dx . m~ P=O

x(c(n'ns'smp)x '~'!"",
(23)

=I )(&)IS(;(&) k (24)

Using the relation"

dxI„s(x)Iy(;(xP(„s)( ~) (2MAx)
Pp

(26)

where the coefficients c(n'ns'smp) are well defined, '0

M, is the largestbetween n and n', and M, the largest
between s and s '. Using this expansion, E(l. (25}can
be integrated (Ref. 12, E(l. 3.3535, p. 310},yielding

mZef (k, ns k, m'8') = (. k„, (I„„(-k)l(—k)Ei(-k)

P, u, ~~+~,+~, .

+ ( 1) g Z g (-1) c(n'ns'smp)(l ],) i )(«+l~-~l-& 27)
mM P=O l =1

Ei(-&) = -E,(&) is the exponential integral func-
tion. "

For sake of simplicity, we consider for discus-
sion the case when the initial state has n = 0= s. In
this case (27) reduces to

tplgef (k0, 00 k, n's') =i & [I„k()(-&)jEi(-)()

mge'
=-i, [Q"„k(-)(.)]~e "E,(X) .

(28)
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Since Q"„(x)= (-1)"n'!,

, ,)
. mZe' (n'!)'e E,( )

pP. 0 I 2 (29)

%'e present a simple qualitative discussion about
the dependence of the transition amplitude on the
magnetic field intensity and on the incident trans-
lational energy E, = 5'k,'/2m. Energy conservation
implies that transitions occur only if Mkco, & Ep
(~=n'-n). Since we assume n= 0, our discussion
is restricted to excitation of Landau levels, ~&0,
so that the relevant parameters of the problem may
assume the following corresponding ranges of val-
ues:

0 & A. - an -k, & k o- 0- & E,/h~, & b,n .

The absolute value of the transition amplitude given
by (29) for a fixed ~ decreases monotonically with
the parameter E,/h&u„and because of the factor
k, it diverges for E,/Ku, =An, which is the
threshold condition. Of course for E,/R~, &An it
vanishes. Making use of the inequality"

1/(x+1) &e"E,(x) & 1/x for x&0,

)sP

2 3 4 Eo

c

it can be shown that the absolute value of the tran-
sition amplitude increases with ~. The behavior
is qualitatively shown in Fig. 1. The total transi-
tion probability from the initial state (n, s) = (0, 0):
P,=g„~f(k„00- k,

n's' ~' as a function of E,/5&v,

should therefore present periodic threshold struc-
ture, separated by unity, corresponding to a pro-
cess where the initial translational energy Ep is
totally transferred into a Landau-level excitation.
The total transition probability I'p as a function of
E,/hat, has an overall increasing oscillatory be-
havior, as shown in Fig. 1. It should be noted that
effects such as the de Haas-van Alphen and Schub-
nikow-van Alp/en present a similar behavior for
the magnetic susceptibility and the electric resis-
tivity, respectively, as a function of the inverse of
the magnetic field. "

For transitions from initial states others than
the one discussed above, the analytic expression of
the transition amplitude is given by Eq. (27). The
periodic structures in the total transition probabil-
ity are still present, because of the factor k ' in
the first term of that equation. Although we have
not carried out a detailed analysis of the function
(27), we believe that the general behavior of the
transition amplitude and total transition probability
for excitation of Landau levels also present the as-
pect depicted in Fig. 1. The overall increasing be-
havior of the total transition probability with the
incident energy is due to the larger number of ac-
cessible final states; notice that each transition
amplitude between two particular states is a de-
creasing function of E,/htu, .

2 5 4 Eo
c

IV. CONCLUSIONS

The scattering of charged particles in the pres-
ence of a homogeneous magnetic field has been
studied, and an application was made for the case
of scattering by a Coulomb potential in the high-
energy approximation. The presence of the mag-
netic field allows for inelastic processes (transi-
tion between Landau levels) even when the scatter-
ing is associated with a structureless potential.
Due to the separable form of the solution (4) this
problem is formally equivalent to the one-dimen-
sional scattering of a charged particle (character-
ized by it momentum Sk) by a system associated
with the Landau levels.

For collisions of charged particles in the pres-
en, ce of a homogeneous magnetic field, a typical
value of the translational energy (within the Born
approximation) is E,= 100 eV. This corresponds
to the separation between Landau levels in a mag-

FIG. 1. Qualitative dependence of the partial transition
amplitude !fo-n'! and of the total transition probability
from state(n, s) = (0, 0), l's» as a function of the initial
translational energy relative to the Landau-level
separation.
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netic field of the order of 10"G. The threshold
structure we have previously discussed can only be
observed for fields of that order or larger, which
are presently known to exist in the surface of neu-
tron stars and pulsars.

A field of 10"0 is orders of magnitude larger
than any experimentally available magnetic field.
Strong magnetic fields in the laboratory are of
the order of 10' G, so that the parameter E,l@~, is
about 10' for E,= 100 eV. Separation between
structures of the order of 10 ' of the value of the
parameter can not be experimentally observed, and
the only observable effect in the laboratory should

be a slow i~crease of P, with E,lS~, . Therefore
the total transition probability increases with E,
and decreases with J3; it is only in the ultrastrong-
field limit (B&10"G) that the increasing oscilla-
tory behavior can be observed.

The scattering of a charged particle by a hydro-
gen atom in the presence of a magnetic field is
more complicated, since the dependence of the
atomic levels as a function of the magnetic field is
not known in an analytic form, as the Landau lev-
els, and the general behavior depends on the level
considered' "",no general behavior can be antic-
ipated without specific calculations.
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