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A simple model-independent method is developed to relate chemical bonds to the dielectric constant and
other physical properties of tetrahedral semiconductors with the minimum number of parameters possible.
For this purpose, we express ci(0), via the Kramers-Kronig relation, as a function of the zeroth and the first
moments of e,(co). The first moment is determined by the f sum rule awhile the zeroth moment can be
calculated if the valence- and conduction-band wave functions are known, Since conduction bands are
inadequately described by models that are analytically simple, we bypass the problem by using completeness
to eliminate the conduction band entirely. The result is an expression for e,(0) which involves only valence-
band wave functions. Since working in a localized representation is more convenient than in the Bloch
representation, we introduce a generalized Wannier function of bonding character for the valence bands.
Realizing that this is appropriate for only those semiconductors like diamond in which the bonding-
antibonding coupling is weak, we build into our Wannier function the lacking antibonding character via a
power-series expansion in the quantity V,/V, (Hall-Weaire parameters). Using Herman-Skillman values for
the atomic orbitals, we obtain numerical results that agree with experiment to about 10%,

I. INTRODUCTION

The chemical-bond approach to the study of
solids is an old one. In its earlier applications,
it was only used in a qualitative way to explain the
structure and stability of crystals. More recent-
ly, ' ' there have been several attempts to make
these ideas quantitative. The motivation for this
interest stems from the multiple attractions of a
chemical-bond approach. Such theories emphasize
the bond aspect of crystal structure, a concept
which is obscured in conventional band-structure
theory, yet which accounts, in a qualitative way,
for many chemical properties such as covalency,
polarity, and metallicity. The chemical-bond ap-
proach is graphic, satisfying to the intuition, and
is much simpler than band theory where difficult
sums over all k space must be dealt with.

The newer theories of chemical bonding, most
notably those of Hall-Weaire, ' ' Phillips, "and
Harrison, "' generally assume a simple-model
Hamiltonian for the underlying electronic structure
of the crystal in question. The great virtue of
these models is their simplicity and the possibility
of dealing with them analytically. These features
permit easy comparison between theoretical ex-
pressions and experimental results. However, be-
cause of the semiempirical nature of these theo-
ries, their success hinges upon a judicious choice
of the experimental parameters which they con-
tain, a problem which has led to some discrepan-
cies between different calculations. In order to
choose these parameters, a physical quantity which
characterizes the chemical theory is needed. Such
a quantity must be "global" in character, depending

upon the overall distribution of quantum-mechani-
cal states rather than on properties of a particular
group of states. The dielectric constant is pre-
cisely of this nature, and is in fact the crucial
element in both the Phillips and the Harrison
models. After the parameters have been carefully
chosen, these models can be used to predict other
physical quantities such as average optical gaps,
the macroscopic transverse charge (for ionic com-
pounds), cohesive energies, and elastic constants,
as well as other chemical properties like those
mentioned earlier. In the Phillips theory, for
instance, it is shown that the dielectric constant
can be used to determine the ionic character of
A."8' " compounds. Ionicity, in turn, enables one
to make predictions concerning the coordination
number and the type of bonding of these crystals.
Compounds with ionicities less than the critical
value 0.'$85 are predominantly covalent, while
those with larger values are predominantly ionic,
the ionicity scale varying between 0 and 1. This
example clearly illustrates the value of the chemi-
cal bond approach in correlating trends within
families of related compounds, as well as the im-
portant role of the dielectric constant. Moreover,
such theories do have a certain degree of flexi-
bility. As Weaire and Thorpe' have shown, this
type of approach is well suited to the study of
amorphous materials as well as periodic ones.
Although there exists little hope for diagonalizing
the Hamiltonian exactly in the amorphous case,
one may expect to calculate properties involving,
for instance, a trace over a complete set of
valence-band states. The static dielectric con-
stant, we will show, is in fact such a quantity. Of
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course there are limitations. The band structures,
for instance, that come out of such an analysis are
much-simplified, ' and the resulting effective
masses, naturally, are incorrect. High accuracy,
on the whole, cannot be claimed. On the other
hand, the overall picture of crystal structure and
the new understanding of chemical trends that does
emerge is well worth the effort.

We mentioned above three chemical-bond models.
These modelS, although highly successful in de-
scribing chemical trends, are less satisfying in
other respects. The Hall-%eaire model, for in-
stance, yields a fair description of the valence
band but a poor one of the conduction band. The
situation is illustrated by the following example.
Weaire and Thorpe' found that the parameters V,
and V, of the Hall-%eaire model which gave a
good fit for the valence-band density of states for
Ge were V, =-2.5 eV and V, =-6.75 eV. %e
used" these parameters to determine the Hall-
%eaire wave functions and energy levels for Qe
and to calculate the imaginary part of the fre-
quency-dependent dielectric function. %e found
that the resulting peak in c,(u&) was at about 2V,
=13.50 eV, far displaced from the experimental
value of 4.3 eV. Since the form of e,(&o) that we

used in this calculation depends symmetrically on
valence and conduction bands, we attribute this
discrepancy to the poor conduction bands. The
Phillips model, although it does yield good results,
is based on a simplified Penn band-structure mod-
el" which bears little relation to that of real
semiconductors. Finally, in Harrison's model,
the shortcoming is the introduction of an arbitrary
"scale factor" in the dielectric constant which we

believe results, in part, from neglect of the cou-
pling between bonding and antibonding states, as
our forthcoming analysis Would seem to indicate.

Although these models have str~»ngly different
characteristics, they have also been remarkably
successful in explaining chemical properties.
This fact suggests the possibility of a more
"model-independent" description of such proper-
ties. The aim of this paper is to construct a theo-
ry with that purpose. In particular, we wiG devel-
op a relation between the static dielectric constant
and localized chemical orbitals —namely, the
valence-band Wannier functions —with the minimum
number of parameters possible. Ne claim an ac-
curacy of no better than 10% for reasons we shall
discuss further on. We have achieved this aim for
diamond, with no parameters at all. For the other
group-Dt' semiconductors, we have introduced a
single parameter which is a measure of the anti-
bonding character of the valence bacd and which we
relate to parameters of Hall-Weaire-like models.
We also confirm the general expression for c,(0}

used by Phillips.
In Sec. II we develop a relation between e, (0)

and both conduction- and valence-band wave func-
tions. We then find that c,(0) can be written as a
trace over valence-band states, and that, as a con-
sequence, we are not limited by any definite repre-
sentation. In Sec. III we choose to use a localized
basis and introduce the appropriate generalized
Wannier function for the problem. Section IV i~
devoted to obtaining a general expression for the
dielectric constant and to a comparison of numeri-
cal results with experimental values. %'e discuss
the effect of high-lying core d states on e,(0) in
Sec. V. Finally, Sec. VI consists of a comparison
of our resuBs to those of other models. 'The study
of the III-V semiconductors in a similar frame-
work will be presented in a subsequent paper.

II. THE FORMALISM

To find an expression for the low-frequency di-
electric constant we start from the Kramers-
Kronig relation at (o =0,

2t, (0}=1+—

The standard form" for c,(ur) in terms of position
vector matrix elements is

(2a)

where ink& and ln'k'& are Bloch functions repre-
senting filled and empty states, respectively. A

summation over spin is implicit in the above ex-
pression. Since nw n', the matrix element is
diagonal in k space [see Eg. (83}]. We have
chosen this form for convenience. Realizing that
simple models give a poor description of the con-
duction band (empty states), we are led to manipu-
late the above expressions in order to get rid of
the conduction bands and to express Eg. (1) in
terms of valence bands alone.

First note that Eg. (2a} can be written as the
sum of the following two terms:

E, O' E„k

and
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E,(k') E (k)x6 Q) — + (2c}

where o, v, and e refer to core, valence, and con-
duction bands, respectively, and e is the arbitrary
polarization unit vector. Equation (2c) describes
transitions between core and conduction states.
Since the latter occur at high energies, and since
there is a factor I/ur in the integrand of Eq. (1),
it is permissible to drop the contribution to the
dielectric constant from core transitions without
losing more than a few percent in accuracy. "
Henceforth, when we write e,(&a), we shall mean
only the part describing valence- to conduction-
band transitions.

Let us next consider the form of c,(ra) for a
group-IV semiconductor, for instance Si. This
function is iQustrated in Fig. 1. The steep char-
acter of this curve, as well as its narrow width,
suggest an expansion of the factor I/&0 in Eq. (1}
about some average frequency & in the following
manner:
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For the cases of diamond and silicon, ~~ is the
valence-electron plasma frequency and we have
made use of the well-known sum rule in evaluating
Eq. (4). Combining Eqs. (1) and (3) we obtain

&o

c,(0}= 1+ —— e,((o) du)
0

+ — c~ + d+. (5)

%'e have verified numerically from the data of
Ehrenreich and Philipp, '4 that, for silicon, the
contribution of the third term in Eq. (,5) is less
than 10%. This fact is a consequence of the nar-
rowness of the a, (&o) curve and leads us to make

1 1 1 1 1 1 (&0 —(o)~—= —+ ———= —+ ~ ( &0 —(d) + (3}
(d (0 (d (d g (0 (0 rd

This procedure is essentially a moment method for
evaluating c,(0). Indeed, if we use Eq. (3) to cal-
culate c,(0) via Eq. (1), we see that the first term
in Eq. (3) yields the zeroth moment of e,(&u), the
second term is related to both the Eeroth and the
first moments, and the third is an exact sum of
all other moments that contribute to &!,(0). We then
choose ~ to eliminate the contribution of the
second term in Eq. (3) and thus find
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FIG. 1. Imaginary part of the frequency-dependent
dielectric function (courtesy of Philipp and Ehrenreich).

the approximation of dropping this term and to
claim an accuracy no better than 10% in our sub-
sequent calculation of c,(0). With the help of Eq.
(4) we can rewrite Eq. (5) in the following form:

e,(0) = 1+ uP~ /uP . (ea)

Equation (6a) has the same form as the formula of
Phillips. " ~hggygp corresponds to the position of
the resonance in the e,(&o) curve, whereas our &o

is proportional to the first moment of e,(&o). We
can interpret ~ as a mean optical gap.

For semiconductors which contain high-lying
core d states, such as Ge and Sn, the peaks in
em(v) are broader, due mainly to the mixing of
these core d states with the valence states." As
a result, the last term in Eq. (5) no longer is
small. In fact, for the case of Ge, we estimate
it to be about 2'l% of the total contribution to
e,(0), again using the data of Ehrenreich and
Philipp. Vfe will consequently have to correct
for this effect by introducing a factor D which we
can calculate and which we identify with the simi-
lar factor introduced by Van Vechten. " The
evaluation of the factor D will be discussed in
Sec. V, where it will be shown that Eq. (5}can be
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written

t, (0)=1+(aP~/V)D . (6b)

Clearly, if me restrict ourselves to semiconduc-
tors in which D =1, our problem mill be reduced
to a calculation of the integral f z,(&d) d&u only.
Substitution of the form given in Eq. (2b) for t, («&)

then yields

p= vp g ~ r ck ~ 7
0

Completeness states that

l~&'&(~& I=&-g I~'v&(~&
I

C

ok' Ok'

This relation allows us to rewrite Eq. (7) as

III. GENERALIZED lVANNIER FUNCTION

We wish now to relate &l,(0) to localized chemi-
cal bonds. It is clear, then, that me need some
localized representation rather than the Bloch one.
The aim of this section is to develop localized
wave functions (Wannier functions) fer the valence
band which have the character of bonding orbitals
in the chemist's sense. What restrictions are we
forced to comply with in defining our localized
functions? To answer this question, we refer back
to Eq. (8) and note that both terms can be viewed
as a trace over valence bands only. In particular,
the second can be written

P&v»~ I;i f~a a&&a a && p')&vs& .
vA y A

Thus, we may evaluate Eq. (8) in any representa-
tion which can be obtained from the Bloch func-
tions through a unitary transformation which mixes
only valence-band states. This is a central point
of our analysis which will become clearer as we
proceed. In particular, we will later use this
flexibility to define localized functions tQat have
precisely the character of chemical bonds.

co d(d = vk 6 ~ ~r vk
0

—g &
&Ua(& ~ r&v'a'&/*) .

kks

(8)

Here we have neglected the core contribution which
we show to be negligible in Appendix B. From
Eqs. (4), (6a), and (8) we see that we have suc-
ceeded in expressing s,(0) in terms of valence-
band wave functions alone.

X) (&,h) =g 4)(r- It,),
vN

(10a)

eik+ R]
X',(r, k) = y,'(r- R,) .

N
(lob)

The choice of sp' hybx'ids for the atomic orbitals
results from various considerations, the most
important of which is that they do yield reasonable
valence bands as shown by Harrisons and by Kane."
Harrison used neutral Sp' atomic orbitals to cal-
culate his matrix elements, starting from an ex-
tension of the Hall model, while Kane used Gaus-
sian wave functions of sp' character and a pseudo-
potential Hamiltonian. They both found that the
valence bands were adequately represented by such
a description. For nogfetrahedral structures, of
course, the choice of sp' hybrids will no longer be

The dj.scussion up to this point has been general.
To illustrate, me shall choose to work in a tight-
binding framework. This restriction is not nec-
essary, as will be discussed at the end of this sec-
tion, but is convenient for us. Moreover, it is
mell known that tight-binding descriptions do give
an adequate picture of the valence bands of a crys-
tal, s which are the states that concern us here.
Thus, me consider the standard primitive cell for
tetrahedral semiconductors containing two basic
atoms at site i, with four sP' hybrids (P~) pointing
from atom I to the nearest-neighbors (atom II)
along the directions j (j =1, . . . , 4) and four other
sP' hybrids (&C&~&') pointing from these nearest neigh-
bors to atom I. I et &t&&( r - It, ) and &t& z~( r —R,), re-
spectively, be the antibonding and the bonding com-
binations' of these hybr'ids for a given bond j:
y;(r R,) =[2(I-S)]-'"

x[j',(r %,)-yP'(-F R, -6)]—, (9a)

y'(r-lt, }=[2(l+S}]'~'

x [p, (r %,)+g",-($ R, —6,-)], (9b)

where R, is a lattice vector for site i and locates
atoms of type I, and 6~ is a nearest-neighbor vec-
tor joining atom I with atom II along the direction
j. S is the overlap integral between two hybrids
which combine to form a bond. 9 is defined in Eq.
(2la). It is well lmown'"""" that the wave func-
tions of Eqs. (9) diagonalize the simplest tight-
binding Hamiltonian, which only includes the cou-
pling (V,) between every two hybrids forming a
bond. Consequently, Eqs. (Qa) and (9b) are ortho-
normal and correspond, respectively, to two sets
of degenerate energy levels E,=- V, and E,=V, .
With these definitions me can nom construct the
usual Bloch-like tight-binding sums
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where each block is a 4 x 4 matrix for tetrahedral
structures. In the limit of the simplest one-param-
eter Hamiltonian including only V„expression (11)
reduces to a diagonal matrix with H"=E, and H '
=E,. Switching on the other interactions
(V„V„V„.. . , V„) introduces the remaining terms.
These interactions appear in both H and H ', and
as we shall discuss later, are small compared to
E, E,—Now .the diagonal blocks in (11) couple
bonding orbitals to bonding orbitals or antibonding
orbitals to antibonding orNtals, while the off-
diagonal blocks mix bonding and. antibonding states.
This distinction is important because the two types
of terms play quite different roles." The diagonal
blocks couple degenerate levels, hence all small
terms in H or H" cannot be treated by perturba-
tion theory but must be diagonalized exactly, thus
broadening the bonding and antibonding levels, re-
spectively, into bands E„' and E'. This procedure
is usually hard to do. Fortunately we wiQ not have
to carry through this calculation, as will be shown
below, because we are ultimately taking a trace
which is independent of representation. The off-
diagonal blocks, on the other hand, couple non-
degenerate levels, and we can thus hope to treat
them by perturbation theory. Henceforth, let H,
denote the diagonal blocks of H, and H, the off-
diagonal blocks. Thus, we can, in principle
diagonalize H, and determine the eight zero-order
Bloch eigenfunctions

4' ('F, k) =Q aq (k))t~(r, k), (12a)

4„'(r, k) =g a',„(k)x',(r, k),

where we shall let m=1, .. . , 4 and m=5, . . . , 8 for
convenience. Here the e's are elements of 4 x 4
unitary matrices. Throughout this paper we use
k and k interchangeably for the vector. Substituting
Eg. (12b) into the usual expression for the Wannier
functions and with the help of Eq. (10b) one can
see that the Vfannier functions for the valence band
will consist of a mixture of all bond directions at a
given site [as long as

(12b)

0,'~„k e&~ „4,
a condition which is generally satisfied] and will
also contain contributions from other sites. Clear-
ly, these functions will not be very localized, nor

a valid one.
With the choice of basis defined by Eqs. (10}, the

matrix of the most general tight-binding Hamilto-
nian can be divided into four blocks, as follows:

(a- ff~)

for e' and o' separately, one can verify that Eq.
(13) reduces very conveniently to

a~(r —R,) = y,'( 0 —5,), (14)

which associates our generalized Wannier function
for the valence band, in the limit H, =0, with a
bonding combination of hybrids along a given bond.
Similar results are true for the antibonding case.

Calculating Eq. (8) with the above defined
localized functions is thus equivalent to neglecting
bonding-antibonding coupling (H,}and should yield
good results for those sexniconductors, like
diamond, in which this coupling is small. We did
this calculation and found corroborating results.
Indeed, we predicted a dielectric constant that
was accurate to within a few percent for diamond,
but that was far too low (30%%uo-45%} for the other
three elemental semiconductors. See Sec. VI for
a full discussion.

To account for this bonding-antibonding coupling,
we must then include H, which we can deal with by
perturbation theory, as indicated before. Our
choice of perturbative method is suggested by the
usus, effective mass transformation in which the
interband terms of the Hamiltonian are removed
by a canonical transformation. "' In our case
the bonding-antibonding coupling H, pl.".vs the role
of these interband texms. To carry this process
through, proceed as follows. We know that the set
of "unperturbed" eigenfunctions (O'J defined by
Egs. (12) diagonalizes H, . Here we let n = 1, . . . , 8
to include both antibonding functions (n =1, . . . , 4)
and bonding functions (n =5, . . . , 8). We seek the
set of "perturbed" eigenfunctions (4'„')„.,t ~ ~ ~ s

which diagona i H =Ho+Ha to first order in Ha ~

To find them, we perform a unitary transforma-
tion U = e'r (with T = T~ ) which takes us from the
(4g representation to the (4 J' representation.
The Hamiltonian transforms as follows":

H' =UHU~ =e' ~He ' ~ . (15a)

would they describe chemical bonds in the
chemist's sense. We resort then to the relative
freedom we have in defining our localized func-
tions which we established at the beginning of this
section and define modified %annier functions by
mixing valence-band states as follows:

8 ~ hk~%)

~j(r R-g) = Q a~~(kg'„(P, k) . (13)
N. S

For an unspecified set of coefficients 0. , expres-
sion (13}is the most general possible valence-
band Wannier function. With the help of Egs. (12b}
and (10b) and the unitarity property of the a ma-
trices, namely, that

Q n, „(k)a~,(k) =5),
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A typical matrix element is

a'„=&e' ia„ ie„'&

(for m ~ 4 and n & 4) .
(16b)

From this equation we readily identify
The perturbed eigenfunctions for the valence band
will then be given by Eq. (15b) with n=5, . . . , 8:

The perturbed eigenfunctions are then given by

, ) g ( «} }[}')«(, ))
Nlw1 N tN

(1Va)

U,„4', = U„, 4, (15b)

which, in its last form, corresponds to correct
matrix multiplication. The point here is to choose
U (i.e., T) in such a way that the bonding-anti-
bonding coupling is removed to first order. We
accomplish this by expanding H' in powers of T,
obtaining

where the dots represent higher-order terms, the
brackets indicate the successive orders, and the
commutators arise from expanding the exponentials
Eq. (15a). We then set

(16a)

This equation determines T which will clearly be
of the same order as H, . Thus, typical matrix
elements of T, to first order in H„are

ft is thus clear that Eq. (13) will yield an expres-
sion for the perturbed %annier function if we sub-
stitute the perturbed Bloch functions, given above,
in the right-hand side of that equation. If we write
the matrix element in (1Va} more explicitly, we
find, with the help of Eqs. (12):

&@' ~&, ~+„'& = g a*„'(n)e',„(n)IP,,',(k), (1Vb)
l el

where

(1Vc)

For further simplification, let us expand the ener-
gy denominator of Eq. (1Va) about the quantity b, ,
the average energy separation between bonding and
antibonding bands, as follows:

}
~1 g (

}}„'—}}')"

Then, keeping only the first term in this expansion
and combing Eqs. (12), (13), (1Va), and (1Vb), we
obtain the form

, 8%,
«}(»—}(g)=4()+» «'}Q(-Q Q «» Q «f: («)«',„(«)tp!(«}Q «}» («}«„(r»}, '

a». 5~ ~ x N " s. s

where the first part of the wave function comes
from our previous result of Eq. (14). With the
unitarity property of the 0, matrices, much simpli-
fication occurs, and the generalized Wannier func-
tion for the valence band reduces to

a,"(r- R, ) = t'(r(-)R,}
4

~ ik ~ Rg
+ «p )}»»g(»)}(f,(~, ») )g.x N

(18a)
This result clearly shows how the 0. coefficients
drop out of the problem —sparing us the task of
diagonalizing H, . %e attribute this fact both to the
trace character of the calculation, which allowed
us enough flexibility to introduce the e~ matrix in
our definition [Eq. (13)] of the Wannier function,
and to the perturbative nature of the problem,

which allowed us to approximate E'„-E' by &. To
evaluate Eq. (18a), all we need, then, is an ex-
pression for H, in the bonding-antibonding repre-
sentation. As for keeping only the first term in
the energy denominator expansion, the approxima-
tion is justified whey Ll»H„ the basis for treating
H, by perturbation theory in the first place. The
second term in the expansion is of order H, /n. and
will thus only yield second order changes in the
%annier function.

To actuaQy calculate the generalized Wannier
function, we must know the explicit form of the
Hamiltonian. The most general tightbinding Ham-
iltonian includes aQ possible interactions between
orbitals. The HaQ-Weaire model' is only a simple
approximation to that Hamiltonian, but because of
its analytical tractability we shall use it to cal-
culate the W'annier function foQowing the above
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outlined procedure. The details of this calculation are presented in Appeadix A. 'The resulting set of
generalized W'annier functions for the valence band, orthogonal to order y, is

(18b)

where y=&V, /V, if S is neglected and y=&(M, /
M, ) (1 —S')'~' if S4 0. The quantities V„V„M„
and M, are defined in Appendix A. 5z is the vector
pointing from atom I to its nearest neighbor, atom
II, along the direction j(j =1, . . . , 4) (see Fig. 2).
Equation (18b) contains the first two terms of a
power-series expansion of the generalized Wannier
function in the quantity V,/V„which is of the order
of 0.4 for most semiconductors. The parameter
y represents the strength of the antibonding mix-
ing in the valence-band wave function. It can also
be taken as a measure of the delocalization of the
latter. The larger y, the less localized in space
the wave function is. It is interesting to define
an antibonding character percentage P, = Sy'/(I
+6y').

A few points are worthy of note at this time.
First, as a test of our methods we have solved
for the Wannier function of the linear monatomic
chain using the usual definition for this function,
and a Hall-Weaire-like Hamiltonian. We found
qualitatively the same results as for the three-
dimensional case (see Fig. 3}. Secondly, a more
realistic Hamiltonian than the Hall-Weaire model,
with tight-binding parameters V„.. . , V„would
yield a more compbcated generalized Wannier
function. However, if one did set V,»=0, that
function would reduce to Eq. (18b). Therefore,
use of Eq. (18b) means neglecting all coupling of
order V&»/V, and higher. Examining Fig. 4, we
see that there are three types of coupling. Cou-
pling between hybrids on one atom (V,), coupling
between hybrids on adjacent atoms {V„V„V„
and V,), and coupling between further neighbors
(V, and above). V, and V~ are accounted for in
the Hall-Weaire model. We have separately shown

that the parameters V„V„and V, do not change
the form of our generalized Wannier functions.
Their sole effect is to modify the average energy
~ between bonding and antibonding levels, thus
yielding slightly different values for y. However,
since V„V'4, V, «V„' 'this energy separation will
always be 2V, as a first approximation. Alterna-
tively, if one treats y as a parameter, V„V„
and V, do not matter. Finally, if we include the
parameters V, and above, or if we keep second
order terms in V„V3$ V4, and V„only orbitals
that are far apart are coupled, and the coupling
is very small. " Thus, in calculating the matrix
elements of ~' and r, we expect small corrections
as compared to local contributions, and we will
neglect these in the calculation of the dielectric
constant. Finally, we believe that our definition
of localized function via Eq. (13) is universal in
the sense that it is valid even in a non-tight-bind-
ing framework, i.e., that the coefficients a&(k)
do exist regardless of the basis used. Alvarez"
has constructed composite Wannier functions in
a similar way, starting from the valence band wave
functions in k space, and thus supports our above
assertion. The virtue of the tight-binding repre-
sentation is that such a calculation is rendered
unnecessary.

IV. DIELECTRIC CONSTANT AND OPTICAL GAP

Having determined the localized valence-band
functions, we proceed with the actual calculation
of Eq. (8}. As pointed out in Sec. 111, this equation
involves a trace over valence-band wave functions.
Hence, it can be written in any general represen-
tation of the valence bands in the following way:

42 (0 d{d= $$ 6'r

where i,j are quantum numbers which specify a
complete set of valence-band states. For our pur-
pose we shall use ~ij)=a~(r —R, ) given by Eq.

FIG. 2. Generalized Wannier function centered on bond

j . 8& is the nearest-neighbor vector joining atoms I and
II. The antibonding tails extend to the nearest-nei. ghbors
of atoms I and II. FIG. 3. Wannier function for the linear chain.
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(18b). The sum over spin has now been completed,
yielding a factor of 2.. The diagonal term wQl in-
volve matrix elements of r using the wave function
shown in Fig. 2. The off-diagonal term is more
complicated and wil. 1, involve matrix elements of
r between two %annier functions that share an
atom of type I or II. A typical configuration is

CI M de = QPp -pQ+
0

where

(20)

shown in Fig. 5. After some tedious but straight-
forward algebra, we obtain the following result,
to order y'.

{r (j)&,„+6 ( j)&., -' {)p(j)&...+ ',"
2

()=() ~) g )' g~' P(2 &&)m P() ) )) )

+ i OP(j, j')&,,+ ' (ll-BS)

The computation, overall [i.e., E(I. (20}), is origin
independent. However, once an origin is chosen,
it must be used consistently throughout the calcu-
lation. On the other hand, the various integrals
appearing in E(I. (20} may refer to different ori-
gins. There is no contradiction here. It is only a
matter of performing translations and of grouping
variogs terms for convenience. The quantities
appearing in E(I. (20) are defined in the following,
where g' and f" stand for the sp' hybrids intro-
duced before:

(21c)

(21d)

(jj )&„j'(f,'P'r)=(( , rN', (r)d r, . (21e)

the center of bond j. Referring to Fig. 4, we can
see that S= (I (5& and that Q& is of the type
(1 ( (e ~}I(5&. See discussion of &I below:

S=
g rp+ ~

g r~-~ dPg~y
&+(),j'»,,=jt PrH) F)'(', .( )d'r. (21fl

&'( ) )&j(,"'(~,+ ~~)(~'~,)'

The origin for these local integrals is at the site

For these two overlap integrals, the origin is at

FIG. 4. Taro atoms in a primitive cell arith the eight
hybrids surrounding them and pointing towards their
nearest neighbors.

FIG. 5. The two generalized %'~~~ier functions associ-
ated arith neighboring bonds j and) '.
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of atom I. Again referring to Fig. 4, we see that

&r(j))„, is of the type (1
I
e ~ rl 1),

&r'(j))„, is of the type (1 I (e ~ r) ll),
&~ (j,j'))„, is of the type (1

I
(a ~ r) I 2),

&r'(j, j')), is of the type (1 l(a ~ r)' l2).
In obtaining Eq. (20), a number of small terms
were dropped, based upon their numerical values
which we calculated using the Herman-Skillman
tables" for atomic orbitals. These small terms
are discussed below. It is not the purpose of this
paper to present all the details of the numerical
calculations. We shall only emphasize a few
major points. First of ali, we note that a judicious
choice of origin leads to some simplification. If
we choose it at the center of bond, we see that, by
symmetry, the diagonal part of the second term in
Eq. (19) is identically zero. The off-diagonal part
of that term we found to contain squares involving
terms like &I I+-rll) &1 I+ r 12), and &I I+ ~ rl6)
which we neglected. The largest of these squares
we found to be less than 0.2% of the dominant
term. We estimate the total error in neglecting
these quantities to be at most 5%. Thus, the main
contribution to Eq. (19) comes from the first term
of that equation, which yields P, Q, and R. The
only terms dropped here are of the type
(1I (e ~ r)'I 6), the total contribution of which we
showed to be proportional to the overlap S'= (1

I
6).

We computed both S and S' and found values of
about 0.55 and 0.08, respectively, for the four
elements considered. We believe that the Her-
man-Skillman orbitals are more spread out than
they should be in the real crystal, "and that they
hence overestimate these overlaps. For our

numerical calculations we chose S' to be zero and
S to be 0.50, a value which is consistent with that
often referred to in the literature.

We are now in a position to calculate 9 from
Eq. (4), which, with the help of Eq. (20), can be
written

2a/~
P yQ+y'R

' (22)

V. CORE EFFECT AND THE EVAI.UATION OF D

In this section we show how the presence of high-
lying core states (usual. ly d states) affects our
calculation and how the correction factor D, in-
troduced in Sec. II, arises from our formalism.
We then propose a scheme for the evaluation of
D from experimental data for those semicon-
ductors, such as Ge and Sn, which have high-lying
d states. Finally, we compare our calculated val-
ues with those quoted by Van Vechten, "which he
obtains from a simple empirical prescription for
D.

After having examined the e, (&u) data for various

To determine y, two methods are possible. We
can either select y from literature values of V, /
V, which give a fit to valence band features (see
Table I), or we can determine our own values for
y from a best fit of e, (0). The dielectric constant
is then calculated from Eq. (6b) using the values for
D given by Van Vechten. "

Our final results with literature values for y
are presented in Table II, while those using best
fit values for y are presented in Table III. In
Table II we also indicate the energy gaps, E„,
calculated by Phillips. ' These tables are discussed
in Sec. VI.

TABLE I. Literature values of V&/V2 and the corresponding antibonding parameters y. For the S& 0 case, y was
calculated using the expression derived in Appendix A.

Si Ge n-Sn Si
YS~O

Ge n-Sn
Yspo

Si Ge ~ Sn

Pandey and Phillips a

Chadi and Cohen
Harrison ~

Harrison and Ciraci"
Weaire and Thorpe
Hirabayashi ~

0.27 0.39
0.22 0.29 0.39
0.20 0.59 0.74
0.28 0.64 0.74

0.37
0.28 0.41 0.54

0.07 0.10
0.05 0.07 0.10

0.91 0.05 0.15 0.18
0.76 0.07 0.16 0.19

0.09
0 47 0.07 0.10 0.13

0.12 0.17
0.09 0.13 0.17

0.23 0.09 0.25 0.32
0 19 0 12 0 28 0 32

0.16
0.12 0.12 0.18 0.23

0.39
0.33

0.20

We calculated V~ and V2 from the parameters of Ref. 20 with the help of the relations given by Hirabayashi (Eqs. 3
of Ref. 18) and the integrals given by Slater and Koster [Eqs. (12) of Ref. 22].

"Reference 21.
c Reference 8.
Reference 9.

e Reference 5.
~ The values for C are those of Herman, for Si and Ge those of Bassani and Yoshimine, and for a-Sn those of Bassani

and Liu. Values quoted by Hirabayashi-in Ref. 18.
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TABI E II. Theoretical and experimental values of the static dielectric constant e~(0) and the
average gap g~. Literature values for y were used. Energies are in eV.

Element
Experimental ~

peak in e2(~)
&g (0)

E&' theor.
eg(0) ~

expt. p, (%)

C
Si
Ge

O, -Sn

0.09"
0.13
0.17~'
0.20 8

1.0
1.0
1.25
1.46

13.7
5.5
4.6
3.2

12.2
4.4
4.3
3.5

13.5 6.2
4.8 10.2
4.3 15.4~

3.1 24.1

5.7
12.0
16.0
24.0

4.5
9
15
19

Reference 13.
References 7 and 9.

cReferences 6 and 7.
Reference 21.

'See footnote a in Table I.
Kith our calculated value of D=1.21, we obtain the numerical result ef(0) =14.9.

ISince data by the authors of Refs. 20 and 21 did not exist for n-Sn, we chose to use the
value quoted by Hirabayashi (Ref. 18), obtained by Bassani and Liu from an orthogonal-
plane-wave band-structure calculation.

semiconductors" (including the ID- V compounds),
we make the following observation. Larger values
of D, as given by Van Vechten, correspond to
larger widths of the &, (&u) curves (see Fig. 6). This
observation indicates a correlation between the
effect of the high-lying core states, and the broad-
ness of the e, (&o) curves. To understand this
phenomena, let us compare the &,(v) curves for
Si (Fig. 1) and Ge (Fig 7). Since the scales are
different, the Ge curve looks, misleadingly, ex-
cessively broad. It is clear, however, that
transitions at both lower and higher energies are
enhanced in Ge as opposed to Si. The reason for
this enhancement is attributed to differences in
band structure of both elements, the most striking
being the I'„, I „and A, states which drop by a
few eV on going from Si to Ge. The transitions
associated with these states account for the en-
hancement of the lower part of the e, (&o) curve for
Ge. The X, states remain almost unchanged, ac-
counting for the main peaks in Ge and Si, which
are at about the same energy. Other states are
also modified, yielding a slightly broader curve
at high energies. This behavior is explained by the
existence of core d states in Ge. Because of their
s-like character, conduction states such as I'„

TABLE III. Numerical results using best fit values for
Energies are in eV.

and I, are able to penetrate the d shell which
lowers their energy considerably (for more
details, see Ref. 26). We emphasize at this point
that the core effect we are talking about is a po-
tential effect, and has nothing to do with real core
ezcitations which we discussed previously [see
Eq. (2c) and the discussion following it]. Because
of this broadness of the e, (s&) curves, our mo-
ment method, as described in Sec. II, breaks
down. More specifically, the third term of Eq. (6)
which is, in fact, a measure of the broadness of
e, (&o), becomes large. For the case of silicon,

1.5—

I.4—

13—

D I2—

I.O

Element

C
Si
Ge

n-Sn

0
0.16
0.18
0.20

References 7 and 9.

14.3
5.0
4.5
3.2

Experimental a

peak in &2{A))

12.2
4.4
4.3
3.5

0
13
16
19

I I I I

I.Q I.P I. 4 I.6 I.e
Half width of E'&(CJ) e V

FIG. 6. Plot of the core correction factor D as a func-
tion of the half-width at (1/e) times the maximum of the
e2(co) curves for various semiconductors. The choice
of semiconductors depended only on availability of the
data.
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Z4 Z,
Eq

Ge
EXP,

—--- THEORY

upper limits of all integrals by co, . Proceeding as
in Sec. II, we find the analog of &, namely,

30—
~e«(~e) =

c "}c
(d» z((d) d((} E2((d) d(d

0

3
N 20

where

—
( )

q.«(&.)= (d ('d (23a)

chic

((}(((} ) = —(d „g2((d) d((},
0

and where we have used

(23b)

0
0.5 l.5 3.5

E(eY)
4.5

FIG. 7. Spectral structure of ~2(~) in Ge. |D.Brust,
J. C. Phillips, and F.Bassao. i, Phys. Rev. Lett. 9, 94
(1962); and D. Brust (Ref. 12).]

this quantity is 10%, whereas for germanium it is
27% of the total contribution to c,(0), as indicated
in Sec. II. We can thus no longer neglect it.
Fortunately, we do not have to calculate it ex-
plicitly, since we can approach the problem in a
different manner.

The third term of Eq. (5) represents a weighted
deviation of ro from an average energy & defined
in Eq. (4). Because of the 1/(o factor in the inte-
grand which weights low energies, this term be-
comes large if e, (~) is broad in that region. Like-
wise, it becomes large at high energies if e, ((d)

does not rapidly converge to zero, since in this
range, the integrand is proportional to ~. We hope
to improve this situation by truncating our inte-
grals at some frequency co,. As a result, the high-
energy tail of c,((d) is cut off and the third term
of Eq. (5) decreases. Moreover, introducing the
cut-off frequency a), has the effect of reducing
& to some new value , «, as shown below. Con-
sequently, the third term of Eq. (5) will repre-
sent the deviation of & from this new lower value

ff and should be much smal ler than before. We
will then set a lower bound on «, (0) by dropping
this term, and we will show that an appropriate
choice of ~, will maximize it. The correction fac-
tor D will emerge from this process. With the help
of experimental data once again, we were able to
perform the integration in Eq. (1) numerically up
to any finite frequency u, . We found that if u, is
greater than or equal to a value roughly twice the
peak of &,((d), the error in e,(0) is at most 5%}.

Physically, this corresponds to neglecting transi-
tions between valence bands and high conduction
bands. Thus, if we introduce a cutoff frequency
in Eq; (1), the resulting approximation to c,( }i0s
still good as long as we bear in mind the condition
on co, . We shall henceforth replace the infinite

(4(} v (}f1("c}
(24)E(,}=f a, ( }d = — ' 4

0 2
Equation (24) is the usual sum rule, modified by
the presence of high-lying core levels. co~„ is the
valence-electron plasma frequency and q,«(~, ) is
a number describing how many electrons ef-
fectiveiy contribute to the sum rule" (see Appendix
B). Equation (24) is another result of the broad-
ness of the e, ((d) curves. For diamond and silicon,
ri,«saturates at the value of 4. Equation (23a)
illustrates how the introduction of (d, modifies our
average gap. We can now obtain our lower bound
on e, (0) from Eqs. (1) and (3) by dropping the
third term in Eq. (3) and writing

2c,(0) —1 ~ — e, ((u}d(d
0

2 f'(~, )
w g((d, )

(25)

where f (((},) = f,"'c,((d) d((} and g((d, ) was defined
in (24). We must now determine the appropriate
(d~ to maximize Eq. (25), namely, the solution of
the equation

f'(~. )
d~, g(~. ) .,=.„

This relation yields

(28)

(27)

where we have used Eq. (23a). The curve r},ff(((} )

[i.e., g(((},}]is shown in Fig. 8 for various semi-
conductors. We must disregard the knees in these
curves, which arise from the core part of e, (&(})

that we have omitted from the start. The f((d, )
curves have the same general shape except that
they rise faster in the low-energy range and satu-
rate faster in the high range. This result is due to
the weighting factor ru in g(~, ). From Eq. (27) it
appears that cu„will satisfy the condition we estab-
lished before [for Ge, we find &o„= 8 eV, i.e.,
roughly twice the peak of e, ((d)]. Moreover, since
g((d, ) falls faster than f(&u, ) in that range, it follows
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J,nSb

"eff

0
0 IO

K(eV)
20

FIG. 8. gruff vs energy (~,) for group-IV and -III-V
semiconductors. IH. R. Philiyp and H. Ehrenreich
(Ref. 26)].

clearly that &p CQnnot correspond to a minimum of
f'/g but must be a maximum, wltich is what we set
out to find. Combining Eqs. (23}-(25},we obtain

e, (0) =I+((o~/(o')D, (28)

where D = 4/q, «(v~), the form we quoted in Sec. II
[Etl. (6b)].

We are now left with the problem of solving Eq.
(2'I) for r)„„(u&~). Assuming that f(&u~) has effec-
tively reached its saturation value, f(~), Eq. (2'I)
becomes easy to solve graphically since ~ is then
a constant [see Eq. (23b)] which we ean calculate
from Etl. (22). With this assumption, we find q,ff
=3.3 for Ge and 3.0 for InSb. The corresponding
values for D are 1.21 and 1.34, respectively, which
are close to the values of Van Vechten, namely,
1.25 and 1.42. With the new value +,«, we find that
the third term of Eg. (5) which was previously 2'l%
has now fallen to about 10%. If on the other hand

f(v, ) does not saturate much faster thang(&o, ), as
in the cases of diamond and Si, the above proce-
dure fails, and Eq. (21) would have to be solved
rigorously. Fortu'nately, the whole analysis of this
section is unnecessary for these semiconductors,
in which the d states are absent. Our numerical
results, as well as the similarity between Eq. (28)
and the Phillips-Van Vechten form, strongly sug-
gest the use of the values for D quoted by Van
Vechten, .

VI. COMPARISON WITH EXPERIMENT AND OTHER

MODELS

From Tables I, II, and III we observe that, al-
though the values of y are small, they show a defi-

nite trend in descending the column-IV semicon-
ductors. The generalized Wannier function be-
comes more delocalized as we move from diamond
to Sn, in keeping with the fact that these elements
become more metallic as one approaches Sn. Our
predicted values of e, (0}, using literature values
of y from Table I, lie within about 10% of the ex-
perimental values. In addition, the mean optical
gaps we have calculated are close to the experi-
mental peaks in e, (&u) and agree well with the gape
obtained by Phillips. Harrison's values for V, /V,
for the four elemental semiconductors do not give
us as good results for our predicted e, (0), as can
be seen by comparing Tables I and III. We do not
use the Harrison values in our computations for
the following reason. We are interested in the val-
ues of V, /V, which give the best fit for the val-
ence-band wave function. Harrison et al. deter-
mined V, either from its bond-length dependence
(first set of values in Table I), or from the ab-
sorption peak of e,(e} (second set of values in Ta-
ble I), and V, from atomic values. Pandey and
Phillips and Chadi and Cohen, on the other hand,
determined their parameters precisely from a fit
to the valence band.

Assuming no bonding-antibonding mixing, we ob-
tain energy gaps of 14.2, 6.1, 5.'7, and 4.45 eV,
respectively, for C, Si, Ge, and Sn. These values
give results for the dielectric constant that are ex-
cellent for diamond, but about 30%, 35%, and 45%
too low (respectively) for the other three elemental
semiconductors. Turning to th8 work of Harrison
and Pantelides" for a moment, we quote the values
of their multiplicative scale factor. For C, Si, Ge,
and Sn they are, respectively, 1.06, 1.22, 1.43,
and 1.74. Had we neglected bonding-antibonding
coupling and used the gaps indicated above, we
would have had to introduce a similar factor in our
expression for e, (0) in order to obtain good corre-
spondence between theory and experiment. In this
case, the values we would have needed for that
correction factor are, respectively, 1.00, 1.22,
1.26, and 1.39. Harrison and Pantelides explain
this scale factor as a parameter which describes
the metallic trends of the matrix elements appear-
ing in the expression for e, (&u). This is precisely
the character we have attributed to our y. This
discussion suggests that Harrison's scale factor
is necessitated, at least in part, by neglect of anti-
bonding mixing in the valence band.

It is interesting to examine how a small antibond-
ing correction accounts for the relatively large
discrepancy noted above. The explanation is two-
foM. First, because the Wannier function has six
antibonding tails, there exists many states between
which the electrons can hop. This gives a large
value for g, almost 20 times as large as P, and
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more than 10 times as large as Q (see Table VI).
Secondly, s, (0) is proportional to (P —yQ+ y'R)'
which further enhances the contribution of the @-
dependent parts. The reason why B is by far the
largest of the three coefficients can be seen by
noting that the expression for R contains many di-
agonal matrix elements of r' between orbitals of
the antibonding "tails, " evaluated at distances of
the order of a bond length or more from the center
of bond origin. In P and Q, on the other hand, the
contribution comes from overlap integrals evaluat-
ed at shorter distances from the origin. Physical-
ly, this tells us that these "outer" states, the more
delocalized ones, play a large role in the behavior
of the more metallic semiconductors.

W'e must mention that since the initiation of this
work, an independent attempt has been made by
Decarpigny and Lannoo's to calculate e, (0}from a
molecular model, also using a moment method.
The procedure they follow is close to ours but they
evaluate their matrix e1ements using bonding com-
binations of Slater-type orbitals, the exponents for
the free-atom functions being those of Clementi et
al. Their results for s, (0) are too low by 30%,
53%, 55%, and 60%, respectively, for C, Si, Ge,
and Sn, a discrepancy they explain by local-field
effects. For the III-V semiconductors, even after
including local-field effects, their results for s, (0}
are still too low by 12% for GaAs to 46% for AlP.
There is documentation both for'9 and against" in-
cluding a local-field correction, the most recent
evidence pointing against it. We shall not debate
this issue here but merely point out that since the
work of Decarpigny and Lannoo is so similar to
ours, our results are an overwhelming indication
that the local field effect is at most a small cor-
rection to this calculation of s,(0), certainly not a
30%-60% contribution. If we compare their energy
gaps to our predictions when we neglect bonding-
antibonding coupling, we find that the ratio of their
gaps to ours is almost constant, but larger than
unity. The significance of this is twofold. First,
their neglect of antibonding mixing accounts far the
fact that their agreement with experiment is less
good as they descend the Periodic Table (where
antibonding mixing becomes more important —see
discussion earlier in this section). Secondly, the
wave functions they used yield consistently a
smaller quantity for the integral fe, (ap}d~ than
ours do, and hence a larger gap. This difference
is possibly due to the more simplified nature
of the Slater-type orbitals as compated to the
actual atomic wave functions which me use. %'e

note further that we repeated our computations
using the Gaussian wave functions of sP' character
constructed by Kane for the case of Si. The re-
sulting values for tire and e, (0) were better than

those me obtained from Herman-Skillman orbitals,
To summarize, we have established a model-in-

dependent method to calculate s, (0) directly for
semiconductors, with an error of the order of 10%.
Our method was not based on a specific model for
the electron Hamiltonian, rather on the sharpness
of the e, (&u) curve. Consequently, we expanded
s, (0) via the Kramers-Kronig relation in terms of
the moments of e, (&a}, and found that the expansion
converged to within 10% if we kept only the zsroth
and the first moments The. first moment was de-
termined via the f sum rule and was found to be
proportional to the valence electron plasma fre-
quency, as is well known. The zeroth moment, on
the other hand, could be calculated if the valence-
and conduction-band tooos functions were known.
Having realized that conduction bands were inade-
quately described by analytically simple models or
expressions, we chose to eliminate the conduction
bands entirely via closure. The result was an ex-
pression for e, (0}and I+ in terms of localized
functions describing the valence bands. For dia-
mond and Si, the problem was thus reduced to
finding these valence-band wave functions, where-
as for Ge and Sn, we also had to account for the
effect of high-lying core d states which interact
with the valence bands. This new feature led us to
introduce the factor g) which we calculated for Ge.
Unfortunately, no data was available for Sn, so in
our final numerical results as shown in Table 0,
we used Van Vechten's values for both Ge and Sn
for conpistency.

The second part of- the work consisted of deter-
mining appropriate localized functions for the val-
ence bands. We started by using fight-binding
sums of purely bonding combinations of sp' hybrids
centered on adjacent atoms and found numerical
results for s, (0) that were good for diamond but far
too low for Si, Qe, and Sn. We then went back a
few steps and accounted for the smaQ but impor-
tant coupling between bonding and antibonding
states, thus obtaining the generalized Wannier
functions. These functions were essentially bond-
ing in character but contained, in addition, anti-
bonding combinations of sp' hybrids introduced
via a power-series expansion in the quantity y
= V,/4V, . Closed forms for s, (0) and Iv were then
obtained in terms of the atomic orbitals, and the
Herman-Skillman values for the latter yielded our
numerical results. It must be pointed out that due
to the relative arbitrarinesss in our choice of y for
a-Sn (see Table I}and to some ambiguity in the
corresponding literature value for s, (0), our re-
sults for this element are not to be taken too seri-
ously. They only serve to show the right trend.

In conclusion, we have been successful i,n des-
crilng diamond following the above scheme with
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no parameters at all, and the other group-IV semi-
conductors with only one. Various possibilities for
extending this work are clear. A treatment of the
III-V semiconductors is feasible with only a few
modifications and is now in process. Nontetra-
hedral structures, ranging from elements such as
Te and Se to compounds like the rock salts, can
also be treated within our framework. However,
the atomic orbitals to be used in the more ionic
cases are still to be determined, since it is clear
that the neutral ones are no longer appropriate.
Finally, a study of amorphous materials should
alamo be possible, as well as the problem of mag-
netic susceptibility. The two limitations of our
theory, of course, must be borne in mind. First,
our method is perturbative. The bonding-antibond-
ing coupling must be small, which restricts us to
materials that are more insulating than conducting.
Secondly, the curves describing the imaginary part

I

of the frequency-dependent susceptibilities (either
electric or magnetic} must be relatively well peak-
ed in order for our moment method to be a good
description.
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APPENDIX A: CALCULATION OF ANTIBONDING

PARAMETER

%1th the notation established in Sec. III, the Hall-
%eaire Hamiltonian, 4 neglecting overlap, may be
written

if =V. Q Q[lqj'(r-g)&&yp(r- It- 5)l +lqjn(r g--5)i&&qJ(r-g)ll

+V, g g[lq,'(r-It, )&&&,.(r-H, )l+ly,n(r-It, -5,)&&&,'.(r R, --5,)l], (Al}

If» = -V25» +2Vx(1+8qP). )(1-5».),
Hi~ —+V25» +yV|(1+8)8~ )(1-5» ),
H» =Hei ='Vi(1-8&8~ }(1-5»»

where

8, = exp(-i k 5,) .
The four vectors 6& are given by

(A2)

(A3)

(A4)

(A5)

a -1
1

6 1
2 4

5 =—
1

a -1
6 =—

3 4 -1
g 1

5 =—
1

where a is the lattice constant. Diagonalizing 0"
and H", we obtain the eigenvalues

Ei= V2 —Vi, E2 = V~ —Vi,

E~= VI+V|(1-p), E~~ Vi+(1Vp)+,
(A6)

where 6, is the vector -joining atom I to atom IE in
the primitive cell. In the representation defined
by Egs. (10), the above Hamiltonian takes the form
of Eq. (11). Its matrix elements, defined in Eg.
(IVc), are given by the following expressions:

and a similar set for the antibonding levels with

V,- -V„where

4(I3'-I) =(r y, +r. r, +r,r.
+yfy, +y,*y„+y„y,)+ c.c.

y, = exp(=.'fk, a) .
The energy bands shown in (A6) are not actually
needed for our computation. They become harder
to calculate as one includes more parameters in
the model. They only serve here to illustrate that
the bonding levels are separated from the antibond-
ing levels by an energy difference of approximately
6 = 2V„which justifies treating the bonding-anti-
bonding coupling as a perturbation. From the sec-
ular equation we can, in principle, also find ex-
pressions for the coefficients a&„' of the eigenfunc-
tions in Eqs. (12). We emphasize again, however,
that explicit expressions are not needed.

%e are now in a position to obtain the final form
of our generalized Wannier function via Etl. (18a)
and with the help of the matrix elements in (A4}.
The parts of these matrix elements which are inde-
pendent of k yield the antibonding tails around
atoms I whereas the k-dependent parts are essen-
tially phase factors responsible for a shift in site,
thus yielding antibonding tails around atom, s 11.
The resulting expression is given by Eq. (18b) and
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Fig. 2, with y, =,=4 V,/V, .
We shall now repeat the calculation, including

overlay. The matrix elements of the Hamiltonian,
in this case, are defined to be

M. = &SJ(r-B,)lHI&g( -R -6,)&

= &CP( -%, -6,)IIflsl( -R,)&,

M, = &y~(r H-)lffly~ (r-B,)&

= &Cg('-ll, -6,)lrfls,'(r-B, -6,)& (~ ~~'),

instead of V, and V,. Note also that the particular
form of Eq. (Al) is no longer valid because it re-
quires orthogonality of all the orbitals. We can
start, however, with a Hamiltonian in matrix form
such as that given in Ref. 4, p. 2518 in which we
make the substitution V, M, and V,-M, . We can
then find the matrix elements of the Hamiltonian
in the representation defined by Eqs. (10). We ob-
tain the analogs of Eqs. (A2)-(A5), namely,

M2 I,»' 1-s»'2(1-s)

APPENDIX B

ln writing Eq. (6) we omitted core terms which
we can write explicitly as

4m'
g YRlcllcc {~)d~

0 core

x Q l&vkl~ ~ rick'&I' ~

VO
aa'

(Bl)

Our aim here is to show that these terms are
small compared to the remaining ones in Eq. (6).
We shall, in fact, obtain an upper bound for the
above expression by considering the well-known f
sum rule in solids. For some valence band v, this
sum rule"' can be written, in isotropic materi-
als,

2 g l&vkle ~ pl6k&l'

m, ~ z, (k) —E„(k)

s'Z„(k)
I'2g jp

x(1+8~8) )(1-6q).),
M2 M~
1+s "' 2(1+s)

x(1+8,8, )(1-6»,),

(A7)

(AS)

=
ga 2 2 [Eo(k) E (k)] l &vkl~ rl6k'&I'.

In the last expression we have used the relation"
between momentum and position matrix elements

The energy bands are identical to those given in
Eq. (AS) with the following substitutions:
For the bonding case,

V~ M2/(1+S) and V~ M~/(1+S),

for the antibonding case,

V,- -Mg(1-S) and V,-M,/(1-S).

i16-„-„,(1-6„„.)(nkle rln'k'& = -iv, 6„p6
[ (k) ("k))

x &nkl'1 ln k &. (B3)

In integral form, the sum rule is equivalent to the
first moment of e,(~) which, with the help of Eq.
(2b), can be written

OO 4 2 2
~e2'"""((u) d(u =, Q [z, (k) —E„(k)]

0 aa

The rest of the procedure is unchanged and we can
find our generalized Wannier function exactly as
before. Note that the average energy separation
between bonding and antibonding bands is now ap-
proximately 6, =2M/(l-S'). The final result is
given by Eq. (1Sb) with y, ,=-,"(M,/M, )(l -s')'~'.

Finally, we must relate M, to V, and M, to V,
since most literature values are given for the zero
overlap case and we need the Se 0 values in our
computations. Equating the average energy sepa-
ration A in both cases yields immediately V, =M,/
(1-S'). As for V„we obtain the corresponding
relation by equating the width of the valence band
(at k=0) for S=0 and SIO. We obtain V, =M,/(1
+S). With the help of these relations, we find y,„
in terms of V, and V,:

r .,=-'(V,/V. )[(1+S)/(1 —S)]". (A10)

&&l&vkl~ rlek'&l'.

Writing the sum over conduction bands (e) as the
sum over aQ bands 5 W v minus the sum over core
states (o), Eq. (B4) splits into two terms. The
first can be evaluated with the help of the sum rule
(B2), yielding the valence-electron plasma fre-
quency. The second gives a positive correction to
this term and thus describes the effective number
of electrons that contribute to the sum rule. This
is the origin of the core correction factor D as
explained by Van Vechten and others.
express these results in the following expressions:

0
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4l „=(4ve /m)(N /V),
D= I+X „/N~,

(86)

Eq. (86) by letting E„E-,=nE „, ihe smallest
energy difference between valence and core states.
Combining Eqs. (30), (22), (Bl), (85), and (86) we
obtain our final result

pr,.„=,Q(E„-Z,))(oa(~ rook'&[*. (86)

Since the core states lie below the valence bands,
Eq. (86) consists of a sum of positive terms W.e can
thus obtain an upper bound for expression (81) via

Eg 4P Cf(d e, (co)d(u ~(D —1)
&Emm

Fce diamond and Si for which D = j., this term is
equal to zero. For Qe, the high-lying core d
states are about 30 eV below the valence states.
With our value for S~ and Van Vechten's value for
D (see Table Ii), we obtain an upper bound of 4%.
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