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Abstract. The low pressure gas breakdown described by Paschen's law in Townsend theory, 

i.e. the breakdown voltage as a function of gas pressure p and the electrode distance d, provides 

an accurate description of breakdown in DC discharges when the ratio between inter-electrode 

gap distance d and electrode radii R tends to zero. On increasing of the ratio d/R, the Paschen's 

curves are shifted to the region of higher breakdown voltage and higher pd values. A modified 

Paschen's law recently proposed is well satisfied in our measurements. However, the value of 

constant b changes not only due to gas type but also according to electrode gap distance; 

furthermore, gas breakdown voltages are considerably modified by plasma-wall interactions 

due to glass tube proximity in the discharge. 

1.  Introduction 

By classical Townsend theory, for a parallel electrodes DC discharge at low pressure, the breakdown 

voltage is given by [1] 
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where A and B are constants depending on the gas type. This expression arises from only kinetic 

considerations of gas ionization. In practice, we have a loss of electrons by diffusion in the discharge 

chamber. When we take into account the hydrodynamic conditions of the system [2], the equation (6) 

of [3] leads to the same equation (1), but with 
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where µ and D are the mobility and the coefficient of the transverse diffusion of electrons respectively, 

and α is the first Townsend's coefficient which is a function of pressure, voltage and gap distance. The 

second term multiplying 1/γ is usually negligible. So, when we disconsider it in eq. (2), we recover an 

import result 
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which is known as Stoletov's point and indicate where the ionization capability of electrons is 

maximum [4]. Here pd(min) denotes the value of pd when Vbr is minimum. This ratio is verified 

experimentally with good agreement [3]. 

In order to have a simple equation to describe the breakdown voltage behavior, Lisovskiy et al. [3] 

propose the following empirical relationships: 
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where Vbr
*
 = f(pd) and pd

*
 are the ordinary values of Paschen's curves when no diffusion is taken in 

account, i.e., when the ratio d/R tends to zero in equation (2).  

By this way, we get the following Paschen’s curves:  
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Figure 1. Paschen’s curves for nitrogen, (a) without and (b) with the scaling law (b = 0.12) [3]. 

2.  Methodology 

The discharges were made in chamber called “RFDC device”, built for basic low temperature 

experimental plasma studies. The RFDC device is made of big glass cylinder of 30 cm diameter and 

20 cm high, covered by two insulated brass plates. The vacuum is obtained by a mechanical pump and 

small turbo molecular pump of 70 l/s which can hold working pressure from 10
-2

 to 1 Torr. The DC 

voltage can reach up to 1000 V. 

Before taking measurements, we clean the cathode surface by igniting the dc glow discharge at 

pressure about 0,1 Torr, with current of 10-30 mA, just to remove the monolayers of gases remaining 

on the cathode surface in a discharge not yet sufficient to produce the cathode spots. 

Using two distinct diameter brass electrodes, 25 mm and 47 mm, with and without a cylindrical 

glass tube, just enough to cover all the electrodes distance gap inside our chamber, we analyze the 

dependence of Vbr(min) with d/R. From these relationship, we get the Vbr(min)
*
  and b coefficients.  

3.  Results and discussion 

The behavior of breakdown voltage as a function of d/R ratio is presented in figures 2, 3 and 4. We 

obtain values of b equal to 0.131, 0.201 and 0.095 for argon, nitrogen and oxygen while Lisovskiy et 

al, using stainless steel electrodes, got 0.16, 0.12, and 0.03, respectively. 
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Figure 2. Behaviour of minimum breakdown 

voltage as a function of d/R for argon. 

 Figure 3. Behaviour of minimum breakdown 

voltage as a function of d/R for nitrogen. 
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Figure 4. Behaviour of minimum breakdown 

voltage as a function of d/R for oxygen. 

 

 

These results are in good agreement with the empirical relationship (4), except for nitrogen when 

d/R is greater than 4. For example, for nitrogen at d/R = 5.6, b should be 0.25 in equation (2) to give 

the real minimum breakdown voltage V br(min) with the same ordinary breakdown voltage V br(min)
*
.  

When a glass tube of about same diameter as electrode is added (figures 5, 6 and 7), the proposed 

scaling law do not provide a good description of minumum breakdown voltage for all range of d/R. 

Analyzing the breakdown voltage with d/R in the range 0 to 3, the same interval considered by 

Lisovskiy, we got b equal to 0.097 for argon and 0.13 for nitrogen. The oxygen data don't change 

appreciably on this range. 

For the electrode with R = 29.5 mm, the minimum breakdown voltage with glass tube is lower than 

the normal breakdown voltage, similarly as shown above, but both datas (with glass) do not overlap 

each other. 

Thus we emphasize the large variation in the value of coefficients b, particularly for nitrogen, 

which is similar to value obtained by [3] when the discharge chamber (or glass tube) is large enough 

just to cover the electrodes; and the non compatibility of the model for high values of d/R. 
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Figure 5. Behaviour of minimum breakdown 

voltage as a function of d/R for argon (with 

glass tube). 

 Figure 6. Behaviour of minimum breakdown 

voltage as a function of d/R for nitrogen (with 

glass tube). 
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Figure 7. Behaviour of minimum breakdown 

voltage as a function of d/R for oxygen (with glass 

tube). 

 

4.  Conclusion 

The simple scaling law proposed by Lisovskiy et al. can describe very well the breakdown voltage in a 

limited range of d/R which can differ for each gas.  However, the correction factor in the scaling law 

could depend not only on the gas type but also on others parameters such as D and µ. The diffusion 

and mobility of electrons and ions have an import role in the discharge ignition, so the presence or 

absence of wall close to electrodes affects the discharge. They may strongly alter the b coefficient and 

restrict even more the range of validity of the scaling law for Paschen’s curves. 
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