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Abstract.

In this work we present a generalization of our previous work of the X−boson approach to
the periodic Anderson model (PAM), adequate to study a novel class of intermetallic 4f and
5f orbitals materials: the topological Kondo insulators, whose paradigmatic material is the
compound SmB6.

For simplicity, we consider a version of the PAM on a 2D square lattice, adequate to describe
Ce−based compounds in two dimensions. The starting point of the model is the 4f − Ce ions
orbitals, with J = 5/2 multiplet, in the presence of spin-orbit coupling. Our technique works
well for all of the parameters of the model and avoids the unwanted phase transitions of the
slave boson mean field theory. We present a critical comparison of our results with those of the
usual slave boson method, that has been intensively used to describe this class of materials. We
also obtain a new valence first order transition which we attribute to the ~k dependence of the
hybridization.

1. Introduction

In this work we study a novel class of intermetallic 4f and 5f orbitals materials: the topological
Kondo insulators; in which strong interactions between itinerant and predominately localized
degrees of freedom give rise to a bulk insulating state at low temperatures, while the surface
remains metallic. This effect arises due to inversion of even parity conduction bands and odd
parity very narrow f electron bands. For an odd number of band inversions, the metallic
surface states are chiral and therefore remain robust against disorder and time reversal invariant
perturbations.

The topological Kondo insulators have been studied employing the slave boson mean field
theory (SBMFT) [1], both in the limit of the Coulomb repulsion U → ∞ [2, 3], and for finite
correlation U [4]. This approximation is attractive because with a small numerical effort, it is
capable of qualitatively describe the Kondo regime, but as the temperature is increased or when
(µ >> Ef,τ = Ef ) at low temperatures, and also for all parameters at intermediate temperatures,
the SBMFT presents an unphysical second order phase transition with the conduction and the
localized electrons decoupling from each other. In the impurity case this transition occurs when
T > TK , and defines the Kondo temperature.
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To circumvent these problems, maintaining the simplicity of the calculation and the ideas
involved, we have developed the X-boson method [6], inspired by the slave boson formalism. To
solve the problem of non-conservation of probability (completeness) that appears when we use
the X Hubbard operators, we use the chain cumulant Green’s functions.

The SBMFT continues to be an attractive approach to treat the extreme Kondo limit of
the Anderson model, where the localized occupation number is equal to nf = 1 at very low
temperatures, but it is less adequate to describe intermediate valence (IV) systems like the new
topological Kondo insulator SmB6, where the localized occupation number associated with the
opening a gap at low temperatures, is nf ≃ 0.7− 0.8 [8] in this compound. On the other hand,
the X-boson approach does not capture the Kondo peak physics in the limit of nf = 1, as the
SBMFT does, but it is more adequate to describe IV systems because this formalism does not
present spurious phase transitions for any of the system parameters.

We generalize our previous work of the X−boson approach to the periodic Anderson model
(PAM) for f electrons states with a total angular momentum J and z-axis component M , while
the conduction electron states are described by a momentum k and spin σ; in our previous
calculation we considered J = 1/2. The spin-orbit coupled Wannier states of the conduction
electrons are then decomposed in terms of plane-wave states, and this gives rise to momentum-
dependent form factors with symmetries that are uniquely determined by the local symmetry
of the f states.

2. The 2D periodic Anderson model

The present paper deals with the periodic Anderson model (PAM) in the limit of infinite Coulomb
repulsion (U = ∞), adequate to treat Ce-based compounds in two dimensions (2D) [5], and we
employ the Hubbard X operators to write its Hamiltonian in the form

H =
∑

kσ

Ek,σc
†
k,σck,σ +

∑

jτ

Ef,jτXj,τ +
∑

jτ,kσ

(
Vστ (~k)X

†
j,0τ ck,σ + V ∗

στ (
~k)c†k,σXj,0τ

)
, (1)

where we follow the notation of the paper in the reference [3]. The first term is the Hamiltonian of

the conduction electrons (c-electrons), with momentum ~k and spin σ, the second term describes
independent localized electrons (f -electrons), with pseudospin τ belonging to one representation
γ of some multiplet state at the site j. The last term is the hybridization Hamiltonian giving
the interaction between the c-electrons and the f -electrons. As there is no local hybridization
process between s and f electrons in rare earth ions, the hybridization process results from
the nearest-neighbor hopping from the f electrons at a site j to the s electron at the vicinity
of this site. To determine the structure of the Vστ (~k) we must specify the representation γ of
the localized electron and the corresponding conduction electrons. Considering the j = 5/2

multiplet structure the hopping hybridization matrix can be written as Vστ (~k) = V [Φ]στ (~k),

where [Φ]στ (~k) is the form factor, which is associated with the ~k dependence and the non
trivial orbital structure of the hybridization. Following the derivation presented in reference
[3], the form factor can be written as [5] Φ(k) = ~d(k) ◦ ~σ, where for a 2D square lattice,
~d(k) = 2[sin(kx), sin(ky)] and ~σ are the Pauli spin matrices.

The X operators are very convenient to work with local states associated to the sites j of a
lattice, and are defined in general by Xj,ab=|j, a〉 〈j, b|, where the set {|j, a〉} is an orthonormal
basis in the space of local states of interest. When U → ∞ the identity Ij at site j should satisfy
the completeness relation: Xj,00 + Xj,ττ + Xj,ττ = Ij , where τ is the pseudospin component
opposite to τ, and the Xj,aa are the projectors into | j, a〉.

3. The X-boson approach

The Hamiltonian can be treated by a generalization of the X-boson approach [6] for the lattice
case, and the cumulant Green’s function (GF) are then given by
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Gf
kσ(z) =

−Dτ (z − εkσ)

E(z) , Gc
kσ(z) =

−
(
z − Ẽf,τ

)

E(z) , Gfc
kσ(z) =

−|V |Dτ∆(~k)

E(z) , (2)

with E(z) =
(
z − Ẽf,τ

)
(z − εkσ)− |V |2Dτ∆

2(~k), where z = ω+ iη, with η → 0+ and the roots

of E(z) are given by

ωk,σ(±) =
1

2

(
εk,σ + Ẽf

)
± 1

2

√(
εk,σ − Ẽf

)2
+ 4|V |2Dτ∆2(~k), (3)

where ∆2(~k) = 1
2Tr[Φ(~k).Φ∗(~k)]. The correlations appear in the X-boson approach through

the quantity Dτ = R + nf,τ , with R = 〈X0,0〉 and nf,τ = 〈Xτ,τ 〉. In the X-boson approach the
quantity Dτ must be calculated self-consistently through the minimization of the corresponding
thermodynamic potential with respect to the parameter R, at the same time Ẽf,τ = Ef,τ + Λ,
where Λ is a Lagrange multiplier. We shall consider a spin independent tight-binding conduction
band on a 2D square lattice

εk = −2t[cos(kx) + cos(ky)], (4)

where we employ the hopping between neighboring sites of the 2D square lattice, t = 1 as the
energy unit. In the X-boson method [6], after the minimization of the thermodynamic potential
Ω = −kBT ln(Q), (where Q is the grand partition function) with respect to the R parameter we
obtain the X-boson parameter Λ

Λ =
−V 2

π2

∫ π

−π
dkx

∫ π

−π
dky∆

2(~k)
nF (ωk(+))− nF (ωk(−))√(
εk − Ẽf

)2
+ 4V 2Dτ∆2(~k)

, (5)

where nF (x) is the Fermi-Dirac distribution nF (z) = [1 + exp (β z)]−1, Ns is the number of sites

and ∆2(~k) = 4[sin2(kx) + sin2(ky)]. After the numerical calculation of the parameter Λ, we
calculate the occupation numbers employing the Green’s functions and we use the completeness
relation 〈Xj,00〉 + 〈Xj,ττ 〉 + 〈Xj,ττ 〉 = Ij , to calculate the parameter R = Dτ − nf,τ . All the
calculations are repeated again until the convergence of the X-boson parameters Λ and R is
attained.

The density of states is obtained numerically through the relation

ρ(ω) =
−1

π
Im

∫ π

−π
dkx

∫ π

−π
dky

1

ω − ωk(±) + iη
, (6)

where ωk is given by the Eq. 3.
In a similar way as it is done with the slave boson Hamiltonian [1], we have shown [6] that

the X-boson Hamiltonian Eq. 1 can be written in an uncorrelated form Hu as

Hu =
∑

k,σ

εk c†k,σck,σ+
∑

k,τ

ε̃f f †
k,τfk,τ+NsΛ(R−1)+

∑

k,στ

(
V σ,τ (k)f

†
k,τ ck,σ + V σ,τ (k)

∗c†k,σ fk,τ
)
,

(7)
with V στ (k) =

√
DτVστ (k). This Hamiltonian can be easily diagonalized, and following Tran’s

work [3], we can write

Hu =
∑

k

Ψ†(k)Hu(k)Ψ(k) +NsΛ(R− 1), (8)
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with

Hu(k) =




εk V Φk 0 0
V Φ∗

k ε̃f 0 0
0 0 εk −V Φk

0 0 −V Φ∗
k ε̃f


 , (9)

where Ψ†(k) = (c†k,↑f
†
k,(−)c

†
k,↓f

†
k,(+)) is a four component Dirac spinor, with εk = Ek − µ,

ε̃f = Ẽf +Λ− µ and Φk = 2[sin(kx)− isin(ky)]. Expanding Φk for small values of kx and ky,
we obtain an effective Dirac theory given by the Hamiltonian

Hu(k) =




εk 2V (kx − iky) 0 0
2V (kx + iky) ε̃f 0 0

0 0 εk −2V (kx + iky)
0 0 −2V (kx − iky) ε̃f


 , (10)

whose spectrum can be written in a Dirac form E±(p) = ε ±
√
A2(p2x + p2y) +M2, with

ε = (εk + ε̃f )/2, M = (εk − ε̃f )/2 and A = 4V . This discussion shows that the X-boson
captures the behavior of the Dirac cones in the spectral density at around k ≈ 0, as indicated
in Fig. 3.

4. Results and discussion
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Figure 1. Slave boson occupa-
tion numbers.
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Figure 2. X-boson occupation
numbers.

In Figs. 1 and 2 we compare the occupations numbers calculated employing both the SBMFT
[1] and the X-boson approach [6]. We choose the following set of parameter: Ef = −1.0t,
V = 0.8t and T = 0.001t. The new interesting result, is that both methods show a first
order transition in the occupation numbers in the local magnetic moment regime (LMM)[7].
In the SBMFT the transition is not physical, because it occurs in the region where nf > 1,
but in the X-boson case the corresponding transition, presented in Fig. 2, is physical because
it occurs in a region where nf < 1. It is possible to observe in Fig. 1 that the proximity of
the spurious transition of the SBMFT distorts all the occupation numbers in the intermediate
valence (IV) region, indicating that the SBMFT is not completely adequate do describe the
topological Kondo insulators. This X-boson first order transition is not observed when we
consider a constant hybridization V (cf. Fig. 12 of our paper [6]), and in this case we obtain a
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crossover from the IV to the Kondo region. We can associate this first order transition to the
j = 5/2 multiplet structure of the hopping hybridization matrix employed to describe the Ce

ions, which introduces a ~k dependence and a non trivial orbital structure in the hybridization.
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Figure 3. Single-particle band
spectrum for the X-boson.
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Figure 4. Density of states of
the conduction electrons for the
X-boson and slave boson.

In Figs. 3 we represent the X-boson single-particle band spectrum for Ef = −3.15t, V = 0.8t,
T = 0.001t, along the x axis, k = kx, and several ky values for µ = 0.0 in the IV regime,
corresponding to an insulator situation. The Fig. 3 represents a strong topological Kondo
insulator, because the spectral function presents a small gap at the border of the zone boundary
and the Dirac cones crosses the chemical potential at µ = 0.0 [2]. In Fig. 4 we plot the density
of states of the conduction electrons for the X-boson and the slave boson methods, calculated
with the same parameters of Fig. 3. The X-boson presents a typical insulator situation, with
the localized occupation number being nf = 0.66 whereas the slave boson breaks down in this
region producing an unphysical density of states of nf = 1.37. Due to numerical instabilities [9]
associated with the analytic continuation of the Green’s functions to the real axis, we represent
the density of states for η = 0.01, but it is clear from the figure that it represents an insulator.
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