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The magnetic structure and fluctuations of tetragonal GdRhIn5 were studied by resonant x-ray diffraction at
the Gd LII and LIII edges, followed by a renormalization group analysis for this and other related Gd-based
compounds, namely Gd2IrIn8 and GdIn3. These compounds are spin-only analogs of the isostructural Ce-based
heavy-fermion superconductors. The ground state of GdRhIn5 shows a commensurate antiferromagnetic spin
structure with propagation vector �� = �0, 1

2 , 1
2

�, corresponding to a parallel spin propagation along the a� direction

and antiparallel propagation along b� and c�. The spin direction lies along a� . A comparison between this
magnetic structure and those of other members of the Rm�Co,Rh, Ir�nIn3m+2n family �R=rare earth, n=0,1;
m=1,2� indicates that, in general, �� is determined by a competition between first- �J1� and second-neighbor
�J2� antiferromagnetic �AFM� interactions. While a large J1 /J2 ratio favors an antiparallel alignment along the
three directions �the G-AFM structure�, a smaller ratio favors the magnetic structure of GdRhIn5 �C-AFM�. In
particular, it is inferred that the heavy-fermion superconductor CeRhIn5 is in the frontier between these two
ground states, which may explain its noncollinear spiral magnetic structure. The critical behavior of GdRhIn5

close to the paramagnetic transition at TN=39 K was also studied in detail. A typical second-order transition
with the ordered magnetization critical parameter �=0.35 was experimentally found, and theoretically inves-
tigated by means of a renormalization group analysis. Although the Gd 4f7 electrons define a half-filled,
spherically symmetrical shell, leading to a nearly isotropic spin system, it is argued that a significant spin
anisotropy must be claimed to understand the second order of the paramagnetic transition of GdRhIn5 and the
related compound Gd2IrIn8.
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I. INTRODUCTION

The recent discovery of a new class of heavy-fer-
mion superconductors, Cem�Co,Rh, Ir�nIn3m+2n �n=0,1; m
=1,2�,1–5 has triggered extensive research on their physical
properties. While it is well established that the spin fluctua-
tions are key ingredients to determine the superconductivity
in this family,6 the details of the pairing mechanism are not
presently known.7 Nonetheless, the relatively large critical
temperatures found for some compounds �Tc=2.3 K for te-
tragonal CeCoIn5 is a record-high value for Ce-based heavy
fermion systems�, and the evolution of this property with the
ratio of c and a lattice parameters8,9 indicates that ingredients
closely related with the crystalline environment must be
taken into account. This connection can be further explored
by direct investigations of the sensitivity of the electronic
structure on small deviations of the crystalline environment,
as well as of the influence of such an environment on the
nature and magnitude of the spin structures and the fluctua-
tions that presumably mediate the superconductivity. In line
with the second approach, the magnetic structures below TN
were resolved for a number of compounds, revealing inter-
esting trends. The cubic CeIn3 �Refs. 10 and 11� and tetrag-
onal Ce2RhIn8 �Ref. 12� show commensurate magnetic struc-
tures with antiferromagnetic �AFM� alignment of Ce spins
along the three nearest-neighbor directions �here called
G-AFM phase in analogy to the nomenclature used in the
manganites13�, and CeRhIn5 forms an incommensurate spiral
along the c� direction while still keeping the AFM coupling in
the ab plane.14,15 Recently, coexisting magnetic orders were

observed in the alloy system CeRh1−xIrxIn5 in the interval
0.25�x�0.6 where AFM and superconducting phases
overlap.16 The first AFM phase is identical to the spiral phase
of CeRhIn5, while the second one shows AFM alignment
along the three nearest-neighbor directions such as in CeIn3

�Refs. 10 and 11� and Ce2RhIn8.12 These results indicate that
distinct AFM ground states compete in this system, and that
such competion may favor or be related with superconduc-
tivity.

Magnetic phenomena and their connection to crystal
structures can be further explored by a thorough investiga-
tion of other members of the Rm�Co,Rh, Ir�nIn3m+2n family
�R=rare earth �Ce, n=0,1; m=1,2�. Since such compounds
are not heavy fermions and/or superconductors, the knowl-
edge thus obtained may be taken as a starting point to
understand the more complex and rich behavior of the Ce-
based compounds. Previous macroscopic studies on the
Rm�Co,Rh, Ir�nIn3m+2n family �R=Pr, Nd, Sm, Gd, and Tb�
indicate that the evolution of the Néel temperature �TN� with
R does not follow the de Gennes scaling,17,18 suggesting that
crystal field or other anisotropy effects may be important to
determine the critical temperatures and perhaps even the
magnetic ground state in this system. Neutron scattering
studies on NdIn3 indicate a ground state with AFM align-
ment along two nearest-neighbor directions and FM align-
ment along the third direction, the C-AFM structure.19 Addi-
tional phases with modulated moments along the FM
directions have also been identified below the Néel tempera-
ture for this compound.19,20 Similar C-AFM ground states
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have been identified in NdRhIn5 �Ref. 21�, Gd2IrIn8 �Ref.
22�, and TbRhIn5.23

In continuation of the attempt to build a minimum
comprehension of the magnetism of a spin-only system
�L=0� under similar crystal environments to
Cem�Co,Rh, Ir�nIn3m+2n �n=0,1; m=1,2� heavy-fermion su-
perconductors, we carried out an experimental and theoreti-
cal investigation of the magnetic structure and fluctuations of
a GdRhIn5 single crystal. We note that the magnetism of
Gd-based compounds is expected to be particularly simple,
due to the absence of large orbital moments and crystal-field
interactions associated with a half-filled 4f7 shell. The mag-
netic structure resolved here is of the C-AFM type, with
partly frustrated first-neighbor �J1� spin interactions. Based
on this result and previous studies on other members of the
Rm�Co,Rh, Ir�nIn3m+2n family, we conclude that the relative
orientation between neighboring R-spins is determined pri-
marily from a close competition between first- �J1� and
second-nearest-neighbor �J2� AFM exchange interactions.
This may be an important factor behind the complex mag-
netic behavior of the Ce-based compounds. The critical be-
havior close to the magnetic ordering transition in GdRhIn5
was also investigated. The magnetic order parameter shows a
power-law behavior close to the Néel temperature, character-
istic of a second-order transition such as in Gd2IrIn8.22 A
theoretical renormalization group analysis was performed.
Our results suggest that spin anisotropy terms, possibly aris-
ing from dipolar and other fairly weak interactions, must be
claimed to understand the second order of the paramagnetic
transition of GdRhIn5 and the related compound Gd2IrIn8.

II. EXPERIMENTAL DETAILS

A single crystal of GdRhIn5 was grown by the In-flux
method as described previously.17,24 The studied surface was
finely polished with Al2O3 powder, yielding a single-peaked
mosaic structure of �0.02° full width at half maximum
�FWHM�. The x-ray diffraction measurements were per-
formed on the XRD2 beamline, placed after a dipolar source
of the Laboratório Nacional de Luz Síncrotron, Campinas,
Brazil.25 The sample was mounted on the cold finger of a
commercial closed-cycle He cryostat with a cylindrical Be
window. The cryostat was fixed onto the Eulerian cradle of a
commercial 4+2 circle diffractometer, appropriate for single
crystal x-ray diffraction studies. The energy of the incident
photons was selected by a double-bounce Si�111� monochro-
mator, with water-refrigeration in the first crystal, while the
second crystal was bent for sagittal focusing. The beam was
vertically focused by a bent Rh-coated mirror placed before
the monochromator, which also provided filtering of high-
energy photons �third and higher order harmonics�. A verti-
cally focused beam was used in our measurements, deliver-
ing, at 7.24 keV, a flux of 3�1010 photons/s at 100 mA in a
spot of �0.6 mm �vertical� �2.0 mm �horizontal� at the
sample, with an energy resolution of �5 eV. Our experi-
ments were performed in the vertical scattering plane, i.e.,
perpendicular to the linear polarization of the incident pho-
tons. In most measurements, a solid state detector was used,
except in the polarization study, in which a scintillation de-

tector was placed after a Ge�111/333� analyzer crystal. At
the energy corresponding to the Gd LII edge, the analyzer
placed at the Ge�333� reflection selects ��→��� scattering
from the sample �i.e., scattered photons with the same polar-
ization as the incident photons�, while Ge�111� does not sig-
nificantly discriminate the photon polarization ���→���
+ ��→��� channel�.

III. MAGNETICALLY ORDERED PHASE

A. Polarization and resonance properties

Above �39 K, all the observed Bragg peaks were consis-
tent with tetragonal symmetry of GdRhIn5 �space group
P4/mmm�, without any detectable magnetic contribution.
Below TN=39 K, additional �h ,k , l� Bragg reflections �h in-
teger; k , l half-integers� were observed. Such reflections were
dramatically enhanced at the Gd LII and LIII edges �E=7.93
and 7.24 keV, respectively� due to resonance phenomena
�see below�. Polarization analysis at the Gd LIII edge using a
Ge�111/333� analyzer crystal demonstrated pure ��→���
scattering at these fractional positions at the reciprocal space,
showing that such reflections are magnetic in origin, with
dipolar resonances at this edge.26,27

The energy-dependence of the absorption-corrected inten-
sity of the �0, 1

2 , 7
2

� magnetic Bragg reflections at �12 K are
shown in Fig. 1 around the Gd LIII and LII edges �symbols�.
The energy-dependencies of the absorption coefficient, ��E�,
obtained from fluorescence emission, are also given as solid
lines. Resonant enhancements of over three orders of magni-
tude were observed at both edges. The intensity maximums
occur �2 eV above the absorption edges, which were de-
fined as the inflection points of ��E�. This result is consistent
with a dominant dipolar nature �2p→5d� of both resonances.
Intensity oscillations of the �0, 1

2 , 7
2

� magnetic peak were also
observed above the edges, which we ascribe to a magnetic
diffraction anomalous fine structure �DAFS�.28

B. Magnetic structure

The positions in reciprocal space where magnetic Bragg
reflections were observed lead to an AFM structure with

FIG. 1. �Color online� Energy-dependence of the integrated in-
tensity of the �0, 1

2 , 7
2

� Bragg reflection �symbols� across the Gd LIII

and LII edges. Data were corrected by the absorption coefficient �
obtained from the fluorescence yield �solid lines�.
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propagation vector �� = �0, 1
2 , 1

2
�. Since there is a single mag-

netic ion per chemical unit cell in the tetragonal structure of
GdRhIn5, the relative neighboring spin orientations are un-
equivocally determined from the ��-vector. According to this,
linear ferromagnetic chains along the a� direction are antifer-
romagnetically coupled along the other two axes �i.e., a
C-type AFM structure�. The direction of the magnetic mo-
ments may be obtained from the intensities of some magnetic
Bragg peaks. The expression for such intensities shows a
simple form in the present case for dipolar resonances and
colinear magnetic structures, and is given by IM����
	 �m� ·ks

� �2, where m� is the magnetic moment, and ks
� is the

wave vector of the scattered light.26,27 Comparisons of the
observed intensities with calculated ones for the magnetic

moments along a� , b� , and c� directions are given in Table I.
Good agreement between calculated and experimental data
are obtained for the magnetic moments pointing towards the
direction of the ferromagnetic chains, i.e., the a� direction.
Figure 2 displays the magnetic structure of GdRhIn5, as de-
termined above. This structure is consistent with a 155Gd
Mössbauer spectroscopy study in this compound, which in-
dicated a colinear magnetic structure with the spins lying in
the ab plane.29

C. Search for symmetry lowering of the crystal or
electronic structure

It is interesting to note that the magnetic structure shown
in Fig. 2 does not have a tetragonal symmetry, in the sense
that the ferromagnetic chains are aligned along one specific
direction in the ab plane, namely the a� direction. It is there-
fore valid to ask whether a symmetry lowering of the crystal
and/or electronic structure from the P4/mmm space group
also occurs, either by an orthorhombic distortion of the lat-
tice parameters or by the presence of a charge density wave.

These possibilities were also investigated by synchrotron
x-ray diffraction.

First, a hypothetical orthorhombic distortion was probed
by measuring the Bragg interplane distances dhkl of a set of
�00l�, �h0l�, and �0kl� charge reflections, using a monochro-
matic x-ray beam with energy E=14 472 eV and resolution
�
E /E=1.0�10−3�. The irradiated �001� surface was the
same used in the magnetic diffraction investigation. A scin-
tillation detector was placed after a Si�111� analyzer crystal.
We used the usual relation dhkl

2 =1/ ��h /a�2+ �k /b�2+ �l /c�2�
for orthogonal axes, obtaining the lattice parameter c directly
from d00l. The a and b parameters were then obtained from
dh0l and d0kl. Table II shows the results at 20 and 300 K,
indicating a metrically tetragonal phase within experimental
errors. We should mention that the lattice metrics at interme-
diate temperatures were not investigated in the present work.

The possibility of an orthorhombic structure presenting a

mosaic of domains with interchanged a� and b� axes was also
considered. In this case, a two-peak structure is expected at
each �h0l� or �0kl� reflection. Such a structure was not ob-
served in our measurements, rather yielding single symmet-
ric Lorentzian line shapes. In this case, the upper limit for the
orthorhombic distortion is set by the measured peak widths.
This information is also given in Table II in terms of

� / tan���. A larger 
� / tan��� for �h0l� and �0kl� reflections
with respect to �00l� reflections would be consistent with an
orthorhombic distortion or anisotropic strain in the ab plane.
Nonetheless, it is seen that no additional broadening of the
�h0l� or �0kl� peaks with respect to �00l� was observed
within our resolution. In addition, the peak widths are the
same at 20 and 300 K, showing the absence of any
temperature-dependent distortion or strain. Using the data of
Table II, the upper limit of the hypothetical orthorhombic
distortion is inferred to be ��b−a� /a��2�10−4 for both
single-domain or mosaic �multidomain� distortions. We con-
clude that no relevant bulk lattice distortion or anisotropic
strain associated with the anisotropy of the magnetic struc-
ture along the a� axis take place in this compound.

The possible presence of charge density waves �CDWs�
was probed by a systematic search in reciprocal space at
x-ray energies of 7930 eV �resonant condition at Gd LII ab-
sorption edge� and at 7106.7 eV �below the Gd LIII absorp-
tion edge�. A set of charge reflections—�001�, �002�, �011�,

TABLE I. Comparison between observed and calculated inten-
sities of magnetic Bragg reflections at 12 K, normalized by the
most intense reflection, assuming the moments m� along each one of
the three axis of the unit cell. Experimental data were taken on
resonance conditions, 2 eV above the Gd LII edge.

�h ,k , l� Iobs m� �a� m� �b� m� �c�

�0,− 1
2 , 7

2
� 96�3� 100 11 21

�0, 1
2 , 7

2
� 100 100 11 21

�0,− 3
2 , 7

2
� 68�2� 93 100 21

�0, 3
2 , 7

2
� 68�2� 93 100 21

�0,− 1
2 , 9

2
� 99�2� 90 11 35

�0, 1
2 , 9

2
� 96�2� 90 11 35

�0,− 3
2 , 9

2
� 83�2� 83 100 35

�0, 3
2 , 9

2
� 79�2� 83 100 35

�0,− 1
2 , 11

2
� 95�2� 77 11 53

�0, 1
2 , 11

2
� 90�2� 77 11 53

�1,− 1
2 , 11

2
� 40�1� 41 21 100

�1, 1
2 , 11

2
� 43�1� 41 21 100

FIG. 2. �Color online� Magnetic structure of GdRhIn5.

MAGNETIC STRUCTURE AND CRITICAL BEHAVIOR OF… PHYSICAL REVIEW B 74, 214428 �2006�

214428-3



�022�, �021�, �102�—was chosen to define the borders of the
one-dimensional scans in reciprocal space. Several scans
along high symmetry h, k, and l mixed and unmixed direc-
tions were performed at T=11.5 K. The search was com-
pleted by two-dimensional hk, hl, and kl maps with a com-
mon border at the �022� reciprocal space position
�
h ,
k ,
l=0.5�. We did not find any extra peak that might
be assigned to previously unknown ordered structures. Al-
though our scan procedure had been unable to directly reveal
the existence of new electronic or structural phases in
GdRhIn5, we cannot completely rule out the possibility of
the existence of low-symmetry incommensurate phases such
as CDWs, since we did not investigate the whole reciprocal
space volume.

D. Discussion: Rise of the C-AFM magnetic structure and
competition with G-AFM: the role of long-range

exchange interactions

In the Rm�Co,Rh, Ir�nIn3m+2n �R=rare earth�Ce� family,
the main coupling between the R ions comes from the
Ruderman-Kittel-Kasuya-Yosida �RKKY� mechanism.30 If
we consider antiferromagnetic couplings only between the
first-�J1� and the second-nearest-neighbors �J2�, the magnetic
ground state is determined by their relative strength �
�J1 /J2. The G-AFM structure represented in Fig. 3 frus-
trates J2 but satisfies J1 and would be favored by �1. On
the other hand, the C-AFM structure satisfies part of J1 and

all J2 interactions and thus may be favored if J1 and J2 are
comparable in magnitude. For the RKKY interaction, � usu-
ally depends on the first- and second-neighbor distances
among the rare-earth ions and on the topology of the Fermi
surface of each compound. However, in these compounds the
topology and volume of the Fermi surface depends little on
the particular rare-earth ion since the localized 4f electrons
do not hybridize considerably with the conduction band, with
the possible exceptions of some Ce-based compounds. Also,
we note that the tetragonal a-lattice parameter shows only
small variations along the Rm�Co,Rh, Ir�nIn3m+2n series
��2% �.17 It is therefore not completely surprising that the
magnetic structures of all known Rm�Co,Rh, Ir�nIn3m+2n

�R=Nd to Gd� compounds are similar, characterized by
ferromagnetic chains along a specific first-nearest-neighbor

direction �a�� with an AFM coupling along b� and c�, i.e., the
C-AFM structure �see Fig. 2 and Refs. 19–22�.

The orientation of the magnetic moment in any of these
magnetic structures is determined by anisotropic interactions.
The direction of the staggered moment for GdRhIn5 is in
agreement with other tetragonal compounds with the same
antiferromagnetic wave-vector and staggered moment direc-
tion, such as GdAu2Si2 �Ref. 31� and GdCu2Si2.32 It has been
argued that in these cases the magnetic dipolar interaction is
the dominant source of anisotropy �being of the order of tens
of �eV�.31 The same appear to hold for GdRhIn5. Nonethe-
less, we should mention that other possible sources of aniso-
tropy for Gd compounds, such as a spin-orbit coupling of the
conduction electrons33 or crystal electric field via excited
states34–37 might in principle be relevant to the problem.

The same general conclusions for the ground state may
remain valid when the spin anisotropy due to the relevant
crystal field effects is introduced in the Hamiltonian for R
�Gd. In this case, the crystal field effects determine the spin
direction with respect to the unit cell axes and may affect
TN,38 but the relative orientation between neighboring
R-spins is still determined mainly by �.

The extension of the above scenario for the Ce-based
compounds is not straightforward. This is because the Ce 4f
electrons may be hybridized with the conduction band. In
cases where the Ce 4f electrons are itinerant, the RKKY
mechanism is no longer applicable. On the other hand, for
compounds with localized 4f moments, the above scenario
of J1 /J2 competition might be useful. Particularly, deHaas

TABLE II. Extraction of the a, b, and c lattice parameters at 20 K and 300 K from selected �00l�, �h0l�,
and �0kl� Bragg peaks. The width of radial ��–2�� scans are also given in terms of 
� / tan��� �full width at
half maximum�, where � is the Bragg angle.

Miller
indices

a, b, or c
20 K


� / tan��� �degrees�
20 K

a, b, or c
300 K


� / tan��� �degrees�
300 K

�006� c=7.4302�3� Å 0.0364�5� c=7.4479�4� Å 0.0367�6�
�004� c=7.4299�3� Å 0.0372�6� c=7.4473�4� Å 0.0377�6�
�308� a=4.5919�8� Å 0.0370�8� a=4.6066�8� Å 0.0378�9�
�207� a=4.5922�8� Å 0.0363�8� a=4.6059�8� Å 0.0369�8�
�044� b=4.5935�6� Å 0.0373�8� b=4.6078�6� Å 0.0386�8�
�043� b=4.5934�6� Å 0.0359�8� b=4.6081�6� Å 0.0376�8�

FIG. 3. �Color online� Two-dimensional representation of the
C-AFM and G-AFM spin structures. The first- and second-nearest-
neighbor exchange interactions �J1 and J2, respectively� are also
indicated.
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van Alphen measurements on Ce1−xLaxRhIn5 showed no sig-
nificant change in the Fermi surface topology or volume over
the entire doping range �0�x�1�,39 showing that the 4f
electrons remain localized. Thus, we focus our discussion on
the magnetic structure of CeRhIn5 with localized moments.
This compound shows AFM alignment along two directions

�a� and b��, and a spiral alignment along the tetragonal c�
axis,14 defining a propagation vector �� = � 1

2 , 1
2 ,0.297�. This

magnetic structure may be seen as an intermediate case be-

tween the G-AFM structure (�1
� = � 1

2 , 1
2 , 1

2
�) and a C-AFM

structure with the FM chains along the c� direction (�2
�

= � 1
2 , 1

2 ,0�). Notice that the C-AFM structure is expected to
be a competitive ground state, since � is expected to be
similar for CeRhIn5 and GdRhIn5 due to presumably similar
Fermi surfaces. On the other hand, the G-AFM state also
appears to be competitive for the Ce-based compounds, since
it is the ground state of CeIn3 �Refs. 10 and 11� and
Ce2RhIn8.12 It is therefore not implauable to infer that the
incommensurate magnetic structure of CeRhIn5 is actually a
result of a close competition between the G-AFM and
C-AFM ground states, paving the way for the stabilization of
an intermediate spiral phase, perhaps with the aid of very
long-range RKKY interactions �J3, J4, etc�.

IV. CRITICAL BEHAVIOR

A. Experimental

The critical behavior of the sublattice magnetization at the
paramagnetic transition was investigated. Figures 4�a� and
4�b� show the T dependence of the intensity of the �0, 1

2 , 11
2

�
magnetic Bragg peak of GdRhIn5 in different T intervals.
Close to and below TN=39 K, this could be fitted by a
power-law behavior, I	 �1−T /TN�2�, which is characteristic
of a second-order transition. The experimental determination
of the critical parameter � depends slightly on the tempera-
ture interval in which the fitting is performed. For fits in T
intervals �TN−T� /TN�0.01, �0.03, and �0.05, one obtains
�=0.370�16�, 0.346�5�, and 0.339�4�, respectively. Quoted
errors in parentheses are statistical only, and represent one
standard deviation. Figure 4�c� shows the T dependence of
the width of the �0, 1

2 , 11
2

� magnetic peak, as obtained in radial
��–2�� scans. Much below TN, the width is instrumental
only, indicating long-range order with correlation length
above �5000 Å. For 0.998TN�T�TN, a peak broadening
above the instrumental resolution was noticed. The inset of
Fig. 4�c� displays the magnetic correlation length in this T
interval, obtained from the peak broadening data. We should
mention that, above TN, the intensities were below our detec-
tion limit for this sample, thus the short-range dynamic cor-
relations in the paramagnetic phase could not be investi-
gated.

These results for GdRhIn5 may be compared to the previ-
ously reported measurements for Gd2IrIn8, where a larger
critical parameter �=0.39 was obtained for the critical inter-
val �TN−T� /TN�0.10.22 The comparison becomes clear in
Fig. 4�b�, where the critical behavior of Gd2IrIn8, using data
of Ref. 22 is directly compared to GdRhIn5. In the ordered

phase �T�TN�, both compounds appear to show identical
behavior, described by the same critical exponent ��0.35.
However, while the magnetic intensities tend to zero as T
�TN for GdRhIn5, a significant residual scattering was ob-
served near and above the transition for Gd2IrIn8, which may
be mostly ascribed to persistent magnetic order or correla-
tions in the near surface region.22,40 This effect smooths out
the transition observed by x-ray diffraction, and interferes
severely in the extraction of the � critical exponent. We con-
clude that, although both compounds were equaly finely pol-
ished before measurements, the Gd2IrIn8 surface showed this
effect in a larger degree, leading to a less reliable extraction
of the � exponent. Perhaps the most relevant information
from this analysis is that a direct comparison of the magnetic
intensities of Gd2IrIn8 and GdRhIn5 near TN reveals an iden-
tical behavior in the T interval where the surface effects are
negligible, consistent with an identical critical exponent �
�0.35. This conclusion is in agreement with the prediction
that both compounds belong to the same universality class
for magnetism �see below�.

FIG. 4. �Color online� Temperature-dependence of the �a�, �b�
integrated intensity and �c� width of radial ��−2�� scans of the
�0, 1

2 , 11
2

� magnetic Bragg reflection of GdRhIn5 and � 1
2 ,0 ,4� reflec-

tion of Gd2IrIn8 �taken from Ref. 22�. A fit to a critical power law
behavior, �TN−T�2�, characteristic of a second-order transition, is
given in �b� as a line. The inset shows the correlation length L,
obtained from the data in �c� after deconvolution of the instrumental
width. The experiment was performed in resonance conditions,
2 eV above the Gd LII-edge.
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B. Renormalization group analysis

The experimental critical behavior described above may
be compared with theoretical expectations based on the sym-
metry of the crystal and magnetic structures of this com-
pound. As demonstrated by Muckamel et al.,41,42 the
Ginzburg-Landau-Wilson �GLW� Hamiltonian for the class
of antiferromagnetic problems is written in terms of a stag-
gered order parameter �OP� with a total number of compo-
nents N=nm, where n is the number of spin components
allowed by the irreducible representations of the paramag-
netic space group, or equivalently, the number of degrees of
freedom for the critical spin fluctuations, and m is the num-
ber of ways the unitary cell may be enlarged by all distinct
AFM ordering wave vectors allowed by the symmetry of the
crystal. The total number of components may easily exceed
N�4,43 opening up the possibility to classical fluctuation-
induced first-order transitions, such as those already reported
experimentally.41,42 The criterion for the study of phase tran-
sitions using renormalization group �RG� theoretical meth-
ods is based on the stability of the fixed points in the RG
flow, in the sense that the phase transition is of second order
when the flow continuously approaches a fixed point which
is stable with respect to the fluctuations of the staggered
field, and indicates something else like an abrupt or a
smeared transition otherwise, when the flow exhibits a run-
away.44

Because of the critical exponents universality, the phase
transition is sensitive only to a few parameters like the di-
mension d of the system, the number of components N of the
OP and the symmetry of the crystal, which reflects in the
anisotropies of the Hamiltonian. As shown by Brézin et al.,43

for N�4, the isotropic fixed point is always unstable with
respect to anisotropies in the original Hamiltonian, while for
N�4 this fixed point is always stable because the O�N� sym-
metry is dynamically generated near the critical point.

Here, we concentrate the analysis on a few compounds of
the Gdm�Rh,Ir�nIn3m+2n series, including the title compound.
In the cubic GdIn3 crystal, the observed AFM propagation
vector �� = � 1

2 , 1
2 ,0�46 represents an ordering state which is de-

generated with the states represented by the propagation vec-
tors �0, 1

2 , 1
2

� and � 1
2 ,0 , 1

2
�, resulting in m=3 distinct AFM

propagation vectors allowed by the crystal symmetry. Since
n�3 is the total number of spin degrees of freedom, the
staggered OP of GdIn3 has a total number of N=3n�9 com-
ponents. In the tetragonal Gd2IrIn8 crystal, the cubic symme-
try is broken in the �001� direction by nonmagnetic planes of
Ir.22 This crystal orders antiferromagnetically along the ��
= � 1

2 ,0 ,0� direction, which is equivalent by symmetry to the
�0, 1

2 ,0� direction, giving m=2 and N=2n�6 OP compo-
nents. Since the magnetization of GdRhIn5 orders along the
�� = �0, 1

2 , 1
2

� direction �which is equivalent by symmetry to the
� 1

2 ,0 , 1
2

� direction�, its staggered OP has the same number of
components of Gd2IrIn8, N=2n�6.

In isotropic magnetic systems, the equality n=3 holds for
the number of spin degrees of freedom, and all of the above
relations for N are valid with the equality sign. As we will
show below, the renormalization group results indicate that if
GdRhIn5, Gd2IrIn8, and GdIn3 were perfectly isotropic spin

systems, first-order transitions would be obtained for all
three compounds,43 in contrast with the second-order transi-
tions observed for GdRhIn5 �see Fig. 4� and Gd2IrIn8 �see
Ref. 22�. We conclude that spin anisotropy must be properly
taken into account for a correct analysis of the critical be-
havior or these compounds. As noted in Sec. III D, a number
of distinct possible sources of anisotropy may be anticipated
for Gd compounds with half-filled 4f7 shell, such as dipolar
interactions,31 spin-orbit coupling of the conduction
electrons33 or crystal electric field via excited states.34–37 The
strength of such interactions is typically of the order of tens
of �eV.31,33 Even though this energy scale is about three
orders of magnitude weaker than typical exchange energies
in Gd systems, we note, for example, that there are consistent
evidences that in Gd metal the dipolar interaction is not only
responsible for the ground state anysotropy but also deter-
mines its critical behavior.48,49

In order to proceed with our analysis, the major source of
anisotropy must be identified. Since there are recent indica-
tions that dipolar interactions are the major source of
anisotropy31 and responsible for the specific heat behavior in
an extensive variety of Gd compounds,45,50,51 we pay atten-
tion to the possible influence of the dipolar coupling in the
critical behavior of these materials. The dipolar anisotropy
breaks the rotational symmetry of the Gd spins by lowering
the size of the space of degenerated states where the spins
are allowed to fluctuate. In the RG sense, the influence of the
dipolar interaction will be decisive if it proves to be a rel-
evant source of anisotropy in a previously isotropic
Hamiltonian.47 The difficulty of the RG method here is that it
leads to rather inconclusive results when the RG flow has no
stable fixed points, since the flow rapidly moves toward a
region where the technique is no longer valid. To see this, we
write down the most general classical Hamiltonian that de-
scribes the physics of the isotropic Gd spin problem, which
corresponds to a GLW Hamiltonian of m coupled O�n� sym-
metric models,

H0��� =� ddx	1

2

�,i

�r0��i
2 + ����i�2� + u


�,i,j
��i

2 ��j
2

+ v 

���



ij

��i
2 ��j

2 + w 

���



ij

��i��i��j��j� ,

�1�

where � ,�=1, . . . ,m indexes the distinct AF wave vectors
and i , j=1, . . .n�d labels the spin components in a given
orthogonal basis, like x , y , z. Note that all terms are written
as powers of scalar products of the spin components �� � ·�� �

because of the assumed rotational symmetry of the spins near
the phase transition. The quartic terms differ only by the
different ways to combine the Greek indexes that label the
equivalent AF wave vectors. This Hamiltonian has a stable
isotropic fixed point for N=nm�4, which would lead to a
second order phase transition, but no stable fixed points were
found for N�4, in agreement with the analysis of Ref. 52
Including a general dipolar interaction term, which in the
antiferromagnetic case has the form �Ref. 47�
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HD =� ddx

�i
����i��2 − f��i�i��2 + h


j

�i�i�� j� j� ,

�2�

where f and h are proportional to the dipolar coupling con-
stant �g�B�2, with g�B being the total magnetic moment of
the Gd ion, our RG flow suggests that the total Hamiltonian

H = H0 + HD �3�

preserves the same fixed points of the isotropic spin problem
for n=d �see Appendix A for details�. In particular, the scal-
ing of the dipolar parameters from equation

df

dl
= − � f f ,

dh

dl
= − �hh , �4�

with

� f = �h =
32

3
� 1

8�2�2

„2u2 + �m − 1��v2 + w2�… � 0,

indicates that the dipolar interaction is irrelevant in the vi-
cinity of the isotropic fixed point for N�4 �n=d�, which
corresponds to the case m=1. For larger m, however, �m=2
for GdRhIn5, Gd2IrIn8, and m=3 for GdIn3�, we have not
identified stable fixed points for the total Hamiltonian H0
+HD �n=d� and although this would point to the direction of
a fluctuation induced first order transition, as in the isotropic
model, it is not clear what happens in this case. The fact that
the f and h parameters flow initially to zero is expected,
since we do not include sources of anisotropy in the bare
Hamiltonian as the cubic term �v� from Ref. 47. Neverthe-
less, as pointed out in this reference, such terms could well
be self generated in a higher loop expansion.

If we assume that dipolar interaction is relevant at the
phase transition, it must break the spin rotational invariance
of Hamiltonian �1�. Once this symmetry is broken, the quar-
tic terms should be written in the most general way allowed
by the crystallographic group. In the particular case of the
Gd series compounds we have studied, we have not identi-
fied bicritical, tricritical or multicritical points associated to
the paramagnetic phase transition, meaning that the spin
fluctuations are confined inside subspaces of degenerated
spin configurations. In other words, each of these subspaces
in the spin space correspond to an irreducible representation
of the AF order parameter. The number and the size of all the
irreducible representations allowed follows directly from the
crystallographic point group symmetry and from the position
of the ordering wave-vector �� in the Brillouin zone �BZ�. In
the case of GdRhIn5, the P4/mmm space group associated
with the special point �� = � 1

2 ,0 , 1
2

�, at the border of the BZ,
has three irreducible representations of dimension m, with
the spin pointing along the unit-cell axes of the crystal �for
details, see Appendix B�. In this case, the number of spin
degrees of freedom for each representation is just n=1. The
most general Hamiltonian would be

H =� ddx	1

2

�

�r0��
2 + c�����2�

+ u

�

��
2��

2 + v 

���

��
2��

2 ,� �5�

with the dipolar interaction in this case simply renormalizing
the gradient term. For m=2, as in the case of GdRhIn5, this
Hamiltonian has one O�m� symmetric fixed point43 with �
=0.36 in two-loop expansion. The ordering wave vector ��
= � 1

2 ,0 ,0� of Gd2IrIn8 �also from space group P4/mmm�
gives the same three irreducible representations of dimension
m, and therefore GdRhIn5 and Gd2IrIn8 both lie in the same
universality class. In GdIn3, the Pm3m group acting on a BZ
with the ordering wave-vector �� = � 1

2 , 1
2 ,0� admits one irre-

ducible representation of size N=m, with the spin pointing
along the c� axis, and another one of size N=2m with the
spins confined in the ab plane. The Hamiltonian of the first
representation follows the general form of Eq. �5�, showing
one isotropic fixed point for m�4. The second representa-
tion is larger �N=6� and its Hamiltonian follows Eq. �3�,
where no stable fixed points were found for N�4, which
would indicate the possibility of a fluctuation-induced first-
order transition for this case, even if the anisotropy is in-
cluded. The magnetic phase transition of GdIn3 is currently
under study and will be the subject of a more detailed analy-
sis soon.

V. CONCLUSIONS

In summary, our resonant x-ray diffraction experiments
show a C-AFM magnetic structure for GdRhIn5 with the
spins lying along the FM chain direction. This structure is
rationalized in terms of a competition between first- and
second-neighbors exchange interactions. This scenario was
extended to other members of the Rm�Co,Rh, Ir�nIn3m+2n �R
=rare earth� family, in particular the Ce-based heavy-fermion
superconductors. The critical behavior close to the paramag-
netic transition was investigated, revealing a second-order
transition with critical exponent ��0.35 for GdRhIn5 and
Gd2IrIn8. A renormalization group analysis predicts that both
compounds belong to the same universality class, in agree-
ment with experiment. However, a first-order transition is
predicted in the absence of spin anisotropy terms in the
Hamiltonian, in contrast to our results, indicating that such
terms may be important to stabilize a critical point in this
family. Indeed, we show that if relevant dipolar interactions
are assumed, then the renormalization group analysis pre-
dicts a second order phase transition for GdRhIn5 and
GdIr2In8 with �=0.36 in two-loop � expansion, in good
agreement with our experiments.

APPENDIX A: RG PROCEDURE

Since the dipolar interaction is marginally relevant at the
one loop level, the RG calculation has to go to a second loop
expansion. Following the standard RG procedure along the
lines of Ref. 48 for n=d=4−�, where � is the perturbative
parameter of the expansion �which we set to �=1 in the end�,
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we integrate out of the partition function the fluctuation
modes with wave-vectors b−1� �k��1 �which we denote by
��dk and b1� and rescale the spins. This leads to a renor-
malization of the dipolar part of the Hamiltonian �2� accord-
ing to

�2�q� = − 16„2u2 + �m − 1��v2 + w2�…

� �
�

dkGij�k�

lm

Ilmm�k − q�

− 32„2u2 + �m − 1�vw…

� �
�

dk

m

Gim�k�

l

Ilmj�k − q� , �A1�

where

I�
��p� = �
�

ddkG�
�k�G���k + p� .

We assume that the dipolar interaction is strong enough in

the critical region, i.e., T−Tc�
�g�B�2

a3 , so that the bare propa-
gator is given by

Gij�k� =
1

k2�
ij − h0
kikj

k2 + f0� ki

k
�2


ij ,

with f0 and h0 being proportional to the dipolar coupling
constant and to geometric factors reflecting the lattice sym-
metry �see Eq. �23� from Ref. 47�. After performing the in-
tegrals on Eq. �A1� and expanding �2�q� to second order in
q, which though rather cumbersome is straightforward, we
obtain Eq. �4�. Since f and h flow initially to zero, the avail-
able fixed points up to this order correspond to the fixed
points of the isotropic Hamiltonian �1�. The RG of the iso-
tropic problem has been studied in detail by Ref. 52, which
indicates the absence of stable fixed points for N=nm�4.
The absence of stable fixed points within the isotropic model
remains inaltered with the inclusion of long-range correlated
quenched disorder.53 In one-loop at least, the disordered iso-
tropic model produces no new stable fixed points54 beyond
the two unphysical fixed points previously found by Halper-
ing and Weinrib.53

APPENDIX B: IRREDUCIBLE REPRESENTATIONS
OF GdRhIn5

The simplest way to obtain all the irreducible representa-
tions allowed by the crystallographic point group for a given
ordering point �� in the BZ is to decompose the spins in a
given basis fixed with respect to ��, and then apply all the

point group symmetry operations to see how the spin com-
ponents in the original basis will change. The idea is that if
we properly choose the original spin basis, then we are able
to identify the subspaces where the spins will be confined by
the application of the symmetry operations allowed by the
crystal point group only. For GdRhIn5, which ordering wave
vectors are

���=1 = �1

2
,0,

1

2
� ,

���=2 = �0,
1

2
,
1

2
� ,

we will define the spin basis by ���1,� ,��2,���3,��, where

��1,�=1 = �1,0,0� ,

��2,�=1 = �0,1,0� ,

��3,�=1 = �0,0,1� ,

��1,�=2 = �0,1,0� ,

��2,�=2 = �− 1,0,0� ,

��3,�=2 = �0,0,1� .

Denoting �i,� as �i,1=�i and �i,2= �̄i for the ith spin com-
ponent with respect to the �th ordering wave vector, the
symmetry operations of the P4/mmm point group generators
are

C4�001�: �1 ↔ �̄1, �2 ↔ �̄2, �3 → �̄3 → − �3,

C2�100�: �1 → − �1, �2 → �2, �3 → �3,

�̄1 → − �̄1, �̄2 → �̄2, �̄3 → − �̄3,

i: � j → − � j, �̄ j → − �̄ j .

We see that once a spin points along one of the i directions
�which are fixed with respect to ���� the application of the
crystallographic point group symmetry operations will “trap”
it on the same i direction of the “rotated” � basis, and there-
fore, the spin space for each representation is one dimen-
sional. This results in three irreducible representations of size
N=m=2.
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