brought to you by T CORE

data reports

OPEN d ACCESS

Crystal structure of (3E)-3-[(4-nitrophen-

oxy)methyl]-4-phenylbut-3-en-2-one Julio Zukerman-Schpector,^a* Stella H. Maganhi,^b

Paulo J. S. Moran,^c Bruno R. S. de Paula,^c Paulo R. Nucci Jr^d and Edward R. T. Tiekink^e

^aDepartmento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, ^bDepartmento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, ^cInstituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas, SP, Brazil, ^dPrograma de Pós Graduacão em Biotecnologia, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, and ^eDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia. *Correspondence e-mail: julio@power.uíscar.br

Received 10 August 2014; accepted 11 August 2014

Edited by P. C. Healy, Griffith University, Australia

In the title compound, $C_{17}H_{15}NO_4$, the conformation about the C==C double bond [1.348 (2) Å] is *E* with the ketone group almost co-planar [C-C-C-C torsion angle = 7.2 (2)°] but the phenyl group twisted away [C-C-C-C = 160.93 (17)°]. The terminal aromatic rings are almost perpendicular to each other [dihedral angle = 81.61 (9)°] giving the molecule an overall U-shape. The crystal packing feature benzene-C-H···O(ketone) contacts that lead to supramolecular helical chains along the *b* axis. These are connected by π - π interactions between benzene and phenyl rings [intercentroid distance = 3.6648 (14) Å], resulting in the formation of a supramolecular layer in the *bc* plane.

Keywords: crystal structure; hydrogen bonding; $\pi - \pi$ interactions.

CCDC reference: 1018885

1. Related literature

For background to biotransformations mediated by *Saccharomyces cerevisiae*, see: Rodrigues *et al.* (2004); de Paula *et al.* (2013).

2. Experimental

2.1. Crystal data

 $\begin{array}{l} C_{17}H_{15}NO_4 \\ M_r = 297.30 \\ Monoclinic, P2_1/c \\ a = 12.769 \ (3) \\ A \\ b = 9.4607 \ (2) \\ A \\ c = 13.0022 \ (4) \\ A \\ \beta = 108.145 \ (1)^{\circ} \end{array}$

2.2. Data collection

Bruker Kappa APEXII CCD

diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.686, T_{max} = 0.745$

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.113$ S = 1.062667 reflections 9377 measured reflections 2667 independent reflections 2118 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$

V = 1492.6 (4) Å³

Mo $K\alpha$ radiation

 $0.52 \times 0.23 \times 0.12 \text{ mm}$

 $\mu = 0.10 \text{ mm}^{-1}$

T = 290 K

Z = 4

201 parameters
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.16 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.12 \text{ e} \text{ \AA}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C5-H5\cdots O2^{i}$	0.93	2.45	3.140 (2)	131
Symmetry code: (i)	$-x, y - \frac{1}{2}, -z +$	1/2·		

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012), *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *MarvinS-ketch* (Chemaxon, 2010) and *publCIF* (Westrip, 2010).

Acknowledgements

We thank Professor Regina H. A. Santos from IQSC–USP for the data collection. The Brazilian agencies CNPq (305626/ 2013–2 to JZ-S), CAPES (808/2009 to JZ-S) and FAPESP (2012/22524–9 to SHM) are acknowledged for financial support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HG5405).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (2009). *APEX2* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chemaxon (2010). Marvinsketch. http://www.chemaxon.com
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Paula, B. R. S. de, Zampieri, D. S., Rodrigues, J. A. R. & Moran, P. J. S. (2013). Tetrahedron: Asymmetry, 24, 973–981.
- Rodrigues, J. A. R., Moran, P. J. S., Conceicão, G. J. A. & Fardelone, L. C. (2004). Food Technol. Biotechnol. 42, 295–303.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2014). E70, o1020-o1021 [doi:10.1107/S1600536814018327]

Crystal structure of (3E)-3-[(4-nitrophenoxy)methyl]-4-phenylbut-3-en-2-one

Julio Zukerman-Schpector, Stella H. Maganhi, Paulo J. S. Moran, Bruno R. S. de Paula, Paulo R. Nucci and Edward R. T. Tiekink

S1. Structural commentary

As part of a continuing interest in biotransformations mediated by *Saccharomyces cerevisiae*, such as the bio-reduction of α -haloketones and enones (Rodrigues *et al.*, 2004), the title compound, (3*E*)-3-[(4-nitrophenoxy)methyl]-4-phenylbut-3en-2- one, was synthesised to be used as a substrate in order to compare its behaviour with that of 3-halomethyl-4phenyl-3-buten-2-ones analogues (de Paula *et al.*, 2013). Herein, the crystal structure determination and spectroscopic details are described.

The conformation about the ethene bond in the title compound, Fig. 1, is *E*. The ketone group is almost co-planar with the double bond as seen in the C11—C8—C9—C10 torsion angle of 7.2 (2)° but the phenyl group is twisted away [C8—C11—C12—C17 160.93 (17)°]. The nitro group is co-planar with the benzene ring to which it is attached [O3—N—C4—C5 = 177.32 (17)°]. The terminal aromatic rings are almost perpendicular [dihedral angle = 81.61 (9)°] to each other so that overall the molecule has the shape of the letter U.

In the crystal packing, C5—H···O2 contacts, Table 1, lead to supramolecular helical chains along the *b* axis and these are connected by π — π interactions between benzene and phenyl rings [inter-centroid distance = 3.6648 (14) Å; interplanar angle = 2.70 (9)° for symmetry operation: *x*, 3/2-*y*, -1/2+*z*] to form a supramolecular layer in the *bc* plane, Fig. 2.

S2. Synthesis and crystallization

Potassium carbonate (1.66 g, 12 mmol) was added to a solution of 4-nitrophenol (1.53 g, 11 mmol) and 3-bromomethyl-4-phenyl-3-buten-2-one (2.39 g, 10 mmol) in acetone (10 mL). The reaction mixture was stirred for 6 h. Then, water (100 mL) was added and the product extracted with dichloromethane (3 x 50 mL). The organic layer was washed with brine, and dried over sodium sulfate. The solvent was removed under reduced pressure and the product purified by column chromatography (hexane/ethyl acetate, 8:2) to afford 3-[(4-nitrophenoxy)methyl]-4-phenyl-3-buten-2-one as a colourless solid. The product was recrystallized by slow evaporation of a 1:4 mixture of hexane and dichloromethane. The crystallised isomer, was shown by crystallography to be the *E* isomer; M.pt: 398.6–399.6 K. ¹H NMR (CDCl₃, 400 MHz): δ 2.54 (3*H*, s), 4.93 (2*H*, s), 6.99-8.21 (9*H*, m), 7.92 (1*H*, s). ¹³C NMR (CDCl₃, 100 MHz) δ 26.0, 62.3, 114.9, 125.9, 128.9, 129.6, 130.1, 134.1, 135.0, 141.8, 146.3, 163.5, 198.2. ESI±HRMS ((M+H)+) calcd.: 298.1079; found: 298.1049.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H) = 1.2 - 1.5 U_{eq}(C)$.

Figure 1

The molecular structure of the title showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Figure 2

A view of unit-cell contents in projection down the *c* axis. The C—H···O and π — π contacts are shown as orange and purple dashed lines, respectively.

(I)

Crystal data	
$C_{17}H_{15}NO_4$	F(000) = 624
$M_r = 297.30$	$D_x = 1.323 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>Ka</i> radiation, $\lambda = 0.71073 \text{ Å}$
Hall symbol: -P 2ybc	Cell parameters from 3883 reflections
a = 12.769 (3) Å	$\theta = 2.7-25.1^{\circ}$
b = 9.4607 (2) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 13.0022 (4) Å	T = 290 K
$\beta = 108.145 (1)^{\circ}$ $V = 1492.6 (4) Å^{3}$ Z = 4 Data collection	Irregular, colourless $0.52 \times 0.23 \times 0.12 \text{ mm}$
Bruker Kappa APEXII CCD	9377 measured reflections
diffractometer	2667 independent reflections
Radiation source: fine-focus sealed tube	2118 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\text{int}} = 0.021$
ω and φ scans	$\theta_{\text{max}} = 25.2^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 15$
(<i>SADABS</i> ; Sheldrick, 1996)	$k = -11 \rightarrow 8$
$T_{\min} = 0.686, T_{\max} = 0.745$	$l = -15 \rightarrow 13$

Refinement

Refinement on F ² Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.038$	H-atom parameters constrained
$wR(F^2) = 0.113$	$w = 1/[\sigma^2(F_0^2) + (0.0515P)^2 + 0.3426P]$
S = 1.06	where $P = (F_0^2 + 2F_c^2)/3$
2667 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
201 parameters	$\Delta \rho_{\rm max} = 0.16 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.12 \ {\rm e} \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.0115 (17)
map	

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.18817 (9)	0.97520 (13)	0.36449 (8)	0.0543 (3)	
O2	0.07283 (12)	1.20609 (17)	0.47397 (12)	0.0841 (5)	
03	0.28681 (13)	1.06055 (17)	-0.07967 (11)	0.0831 (5)	
O4	0.16374 (15)	0.90131 (18)	-0.12490 (11)	0.0920 (5)	
Ν	0.22052 (14)	0.98328 (17)	-0.05788 (12)	0.0623 (4)	
C1	0.19856 (12)	0.98711 (17)	0.26230 (12)	0.0448 (4)	
C2	0.27428 (14)	1.07139 (18)	0.23691 (13)	0.0522 (4)	
H2	0.3210	1.1291	0.2893	0.063*	
C3	0.28067 (14)	1.06981 (18)	0.13101 (14)	0.0538 (4)	
H3	0.3328	1.1257	0.1139	0.065*	
C4	0.21123 (13)	0.98717 (17)	0.05269 (12)	0.0483 (4)	
C5	0.13386 (14)	0.90499 (19)	0.07617 (13)	0.0541 (4)	
H5	0.0858	0.8499	0.0227	0.065*	
C6	0.12779 (14)	0.90476 (19)	0.18155 (13)	0.0528 (4)	
H6	0.0755	0.8485	0.1981	0.063*	
C7	0.24741 (14)	1.07108 (18)	0.44897 (12)	0.0503 (4)	
H7A	0.2314	1.1681	0.4251	0.060*	
H7B	0.3261	1.0557	0.4664	0.060*	
C8	0.21127 (13)	1.04372 (17)	0.54754 (12)	0.0473 (4)	
C9	0.11652 (14)	1.13064 (19)	0.55156 (14)	0.0559 (4)	
C10	0.07616 (17)	1.1245 (2)	0.64904 (16)	0.0726 (6)	
H10A	0.0178	1.1918	0.6405	0.109*	
H10B	0.1358	1.1466	0.7131	0.109*	

H10C	0.0492	1.0313	0.6555	0.109*	
C11	0.25497 (13)	0.94713 (18)	0.62529 (12)	0.0475 (4)	
H11	0.2227	0.9440	0.6803	0.057*	
C12	0.34410 (13)	0.84741 (17)	0.63703 (12)	0.0459 (4)	
C13	0.38193 (14)	0.80114 (19)	0.55154 (14)	0.0550 (4)	
H13	0.3484	0.8336	0.4815	0.066*	
C14	0.46774 (15)	0.7087 (2)	0.57213 (15)	0.0612 (5)	
H14	0.4936	0.6793	0.5162	0.073*	
C15	0.51684 (15)	0.65826 (19)	0.67625 (16)	0.0611 (5)	
H15	0.5762	0.5964	0.6894	0.073*	
C16	0.47913 (15)	0.69833 (19)	0.76078 (15)	0.0608 (5)	
H16	0.5117	0.6624	0.8300	0.073*	
C17	0.39348 (15)	0.79129 (18)	0.74136 (13)	0.0531 (4)	
H17	0.3673	0.8180	0.7977	0.064*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0564 (7)	0.0642 (7)	0.0451 (6)	-0.0149 (6)	0.0200 (5)	-0.0061 (5)
O2	0.0779 (10)	0.0976 (11)	0.0751 (9)	0.0393 (9)	0.0214 (7)	0.0182 (8)
O3	0.0911 (11)	0.0998 (11)	0.0756 (9)	-0.0136 (9)	0.0507 (8)	0.0119 (8)
O4	0.1264 (13)	0.1010 (12)	0.0552 (8)	-0.0303 (11)	0.0376 (8)	-0.0145 (8)
Ν	0.0741 (11)	0.0658 (10)	0.0540 (9)	0.0029 (9)	0.0300 (8)	0.0076 (8)
C1	0.0415 (8)	0.0499 (9)	0.0447 (8)	0.0009 (7)	0.0157 (7)	0.0023 (7)
C2	0.0462 (9)	0.0575 (10)	0.0518 (9)	-0.0100 (8)	0.0135 (7)	-0.0011 (8)
C3	0.0481 (9)	0.0578 (10)	0.0591 (10)	-0.0071 (8)	0.0221 (8)	0.0081 (8)
C4	0.0495 (9)	0.0511 (9)	0.0481 (8)	0.0033 (8)	0.0208 (7)	0.0057 (7)
C5	0.0525 (10)	0.0609 (10)	0.0489 (9)	-0.0106 (8)	0.0160 (7)	-0.0052 (8)
C6	0.0478 (9)	0.0622 (10)	0.0518 (9)	-0.0138 (8)	0.0203 (7)	-0.0042 (8)
C7	0.0500 (9)	0.0507 (9)	0.0492 (9)	-0.0047 (8)	0.0139 (7)	-0.0037(7)
C8	0.0444 (9)	0.0505 (9)	0.0458 (8)	-0.0007 (7)	0.0124 (7)	-0.0064 (7)
C9	0.0490 (10)	0.0609 (11)	0.0543 (10)	0.0056 (9)	0.0111 (8)	-0.0054 (8)
C10	0.0601 (12)	0.0882 (15)	0.0759 (12)	0.0178 (11)	0.0303 (10)	-0.0007 (11)
C11	0.0457 (9)	0.0556 (9)	0.0421 (8)	-0.0020 (8)	0.0149 (7)	-0.0065 (7)
C12	0.0434 (9)	0.0458 (8)	0.0475 (8)	-0.0036 (7)	0.0127 (7)	-0.0038 (7)
C13	0.0553 (10)	0.0597 (10)	0.0502 (9)	0.0060 (9)	0.0166 (8)	-0.0012 (8)
C14	0.0585 (11)	0.0613 (11)	0.0695 (11)	0.0063 (9)	0.0282 (9)	-0.0033(9)
C15	0.0475 (10)	0.0535 (10)	0.0817 (13)	0.0032 (8)	0.0193 (9)	0.0038 (9)
C16	0.0577 (11)	0.0582 (11)	0.0610 (10)	0.0024 (9)	0.0104 (8)	0.0111 (8)
C17	0.0568 (10)	0.0517 (10)	0.0506 (9)	-0.0025 (8)	0.0164 (7)	0.0007 (7)

Geometric parameters (Å, °)

01—C1	1.3804 (17)	C8—C11	1.348 (2)	
O1—C7	1.4436 (19)	C8—C9	1.477 (2)	
О2—С9	1.220 (2)	C9—C10	1.511 (3)	
O3—N	1.217 (2)	C10—H10A	0.9600	
04—N	1.222 (2)	C10—H10B	0.9600	

N—C4	1.479 (2)	C10—H10C	0.9600
C1—C2	1.371 (2)	C11—C12	1.449 (2)
C1—C6	1.391 (2)	C11—H11	0.9300
C2—C3	1.405 (2)	C12—C17	1.409 (2)
С2—Н2	0.9300	C12—C13	1.412 (2)
C3—C4	1.368 (2)	C13—C14	1.362 (2)
С3—Н3	0.9300	С13—Н13	0.9300
C4—C5	1.364 (2)	C14—C15	1.388 (3)
C5—C6	1.396 (2)	C14—H14	0.9300
С5—Н5	0.9300	C15—C16	1.383 (3)
С6—Н6	0.9300	С15—Н15	0.9300
C7—C8	1.514 (2)	C16—C17	1.364 (2)
C7—H7A	0.9700	C16—H16	0.9300
C7—H7B	0.9700	C17—H17	0.9300
0, 11,2			0.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
C1—O1—C7	119.76 (12)	O2—C9—C8	117.72 (16)
O3—N—O4	121.10 (16)	O2—C9—C10	121.91 (16)
O3—N—C4	118.91 (16)	C8—C9—C10	120.37 (15)
O4—N—C4	119.97 (15)	C9-C10-H10A	109.5
C2—C1—O1	124.46 (14)	C9-C10-H10B	109.5
C2—C1—C6	119.02 (14)	H10A—C10—H10B	109.5
O1—C1—C6	116.50 (13)	C9—C10—H10C	109.5
C1—C2—C3	119.38 (15)	H10A—C10—H10C	109.5
C1—C2—H2	120.3	H10B-C10-H10C	109.5
С3—С2—Н2	120.3	C8—C11—C12	130.43 (15)
C4—C3—C2	120.91 (15)	C8—C11—H11	114.8
С4—С3—Н3	119.5	C12—C11—H11	114.8
С2—С3—Н3	119.5	C17—C12—C13	118.71 (15)
C5—C4—C3	120.38 (15)	C17—C12—C11	116.61 (14)
C5—C4—N	119.08 (15)	C13—C12—C11	124.66 (14)
C3—C4—N	120.53 (15)	C14—C13—C12	119.73 (16)
C4—C5—C6	119.06 (15)	C14—C13—H13	120.1
С4—С5—Н5	120.5	C12—C13—H13	120.1
С6—С5—Н5	120.5	C13—C14—C15	120.28 (17)
C1—C6—C5	121.22 (15)	C13—C14—H14	119.9
С1—С6—Н6	119.4	C15—C14—H14	119.9
С5—С6—Н6	119.4	C16—C15—C14	121.17 (17)
O1—C7—C8	108.12 (13)	C16—C15—H15	119.4
O1—C7—H7A	110.1	C14—C15—H15	119.4
С8—С7—Н7А	110.1	C17—C16—C15	119.14 (17)
O1—C7—H7B	110.1	C17—C16—H16	120.4
С8—С7—Н7В	110.1	C15—C16—H16	120.4
H7A—C7—H7B	108.4	C16—C17—C12	120.90 (16)
C11—C8—C9	120.21 (15)	С16—С17—Н17	119.5
C11—C8—C7	125.92 (15)	C12—C17—H17	119.5
C9—C8—C7	113.82 (14)		
C7—O1—C1—C2	10.0 (2)	O1—C7—C8—C9	-90.67 (16)

C7—O1—C1—C6	-171.34 (14)	C11—C8—C9—O2	-172.68 (17)
O1—C1—C2—C3	176.97 (15)	C7—C8—C9—O2	5.0 (2)
C6-C1-C2-C3	-1.7 (2)	C11—C8—C9—C10	7.2 (2)
C1—C2—C3—C4	1.1 (3)	C7—C8—C9—C10	-175.10 (16)
C2—C3—C4—C5	0.3 (3)	C9—C8—C11—C12	177.64 (16)
C2—C3—C4—N	-178.36 (15)	C7—C8—C11—C12	0.2 (3)
O3—N—C4—C5	177.32 (17)	C8-C11-C12-C17	160.93 (17)
O4—N—C4—C5	-4.2 (3)	C8-C11-C12-C13	-20.7 (3)
O3—N—C4—C3	-4.0 (3)	C17—C12—C13—C14	-2.8 (3)
O4—N—C4—C3	174.52 (17)	C11—C12—C13—C14	178.89 (16)
C3—C4—C5—C6	-1.0 (3)	C12—C13—C14—C15	1.0 (3)
NC4C5C6	177.68 (15)	C13—C14—C15—C16	1.0 (3)
C2-C1-C6-C5	1.0 (3)	C14—C15—C16—C17	-1.3 (3)
O1-C1-C6-C5	-177.76 (15)	C15—C16—C17—C12	-0.6 (3)
C4—C5—C6—C1	0.4 (3)	C13—C12—C17—C16	2.6 (2)
C1	174.07 (13)	C11—C12—C17—C16	-178.98 (16)
O1-C7-C8-C11	86.91 (19)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C5—H5…O2 ⁱ	0.93	2.45	3.140 (2)	131

Symmetry code: (i) -x, y-1/2, -z+1/2.