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The paper introduces a novel Itô’s formula for time- dependent tempered gen-
eralized functions. As an application, we study the heat equation when initial
conditions are allowed to be a generalized tempered function. A new proof of the
Üstunel-Itô’s formula for tempered distributions is also provided.
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1. Introduction

The study of stochastic partial differential equations (SPDEs) in algebras of generalized
functions could be traced back to the early 1990s, see [1–4]. The interest for singular
stochastic processes, such as the white noise process, for solving differential equations
driven by these type of processes are the main reasons for treating SPDEs in the framework
of the algebras of generalized functions (see by example [4,5]).

The aim of this article is to present an Itô formula for generalized functions in a
strong sense. The main technique is the construction of an algebra of tempered generalized
functions via the regularization scheme induced by expansions in Hermite functions. This
approach allows us to obtain a strong Itô’s formula for elements in the algebra, that is,
the formula is valid in a strong sense of the algebra of tempered generalized functions. In
particular, we deduce the Üstunel-Itô’s formula (see [6]) for tempered distributions (see also
[7,8]). Moreover, we deduce a new Itô’s formula for time dependent tempered distributions.
See sections 2 and 3 of the present paper to the relevant definitions and details.

As an application of our results, we shall show the existence and uniqueness of the
solution to the heat equation with the initial condition being a tempered generalized function;
this makes crucial use of ours results. See section 4 for details.

2. Generalized functions

2.1. Tempered distributions

Let S(Rd) be the Schwartz space on R
d i.e. the space of rapidly decreasing smooth real-

valued functions on R
d .
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We shall make use of the multiindex notation; a multi-index is a sequenceα=(α1, ..., αd)

∈ N
d
0 where N0 is the set of non-negative integers. The sum |α| = ∑n

j=1 α j is called the
order of α. For every multi-index α, we write

xα = xα1
1 · · · xαd

d

and
∂α = ∂

α1
1 · · · ∂αd

d

where ∂ j = ∂
∂x j

.

The Schwartz topology on S(Rd) is given by the family of seminorms

‖ f ‖α,β =
(∫

Rd
|xα∂β f (x)|2dx

) 1
2

where α, β ∈ N
d
0 .

The Schwartz space S ′(Rd) of tempered distributions is the dual space of S(Rd).
The Hermite polynomials Hn(x) are defined by

Hn(x) = (−1)ne
x2
2

dn

dxn
e− x2

2 (1)

and the Hermite functions hn(x) are defined by

hn(x) = (
√

2πn!)− 1
2 e− 1

4 x2
Hn(x) (2)

for n ∈ N0.
The α-th Hermite function on R

d is given by

hα(x1, ..., xd) = hα1(x1) · · · hαd (xd)

where α = (α1, ..., αd) ∈ N
d
0 .

The Hermite functions are in the Schwartz space on R
d and the set {hα : α ∈ N

d
0} is an

orthonormal basis for L2(Rd).
We consider the directed family of norms {| · |n : n ∈ N0} on S(Rd), given by

|ϕ|2n :=
∑
β∈N

d
0

(2|β| + d)2n
(∫

Rd
ϕ(x)hβ(x)dx

)2

.

We observe that the families of seminorms {| · |n : n ∈ N0} and {‖ · ‖α,β : α, β ∈ N
d
0}

on S(Rd) are equivalent.
Let x ∈ R

d , and denote by τx the translation operator defined on functions by the
formula τxϕ(y) = ϕ(y − x). It follows immediately that τx (S(Rd)) ⊂ S(Rd) and that τ−x

is the inverse of τx , thus, we can consider τx acting on the tempered distributions by

τx T (ϕ) = T (τ−xϕ).

Lemma 2.1 Let n ∈ N0. Then there exists a polynomial Pn with non-negative coefficients
such that for all x ∈ R

d ,
|τxϕ|n ≤ Pn(|x |)|ϕ|n (3)

for all ϕ ∈ S(Rd).
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Proof Using Proposition 3.3 from [9], for each n ∈ N0 there exist constants C1(n) and
C2(n) such that

|ϕ|n ≤ C1(n)
∑

|α|,|β|≤2n

‖ϕ‖α,β ≤ C2(n)|ϕ|n

for all ϕ ∈ S(Rd).
Thus,

|τxϕ|n ≤ C1(n)
∑

|α|,|β|≤2n

(∫
Rd

y2α(∂βτxϕ)
2(y)dy

) 1
2

= C1(n)
∑

|α|,|β|≤2n

(∫
Rd
(y + x)2α(∂βϕ)2(y)dy

) 1
2

≤ Pn(|x |)|ϕ|n,
where Pn is a polynomial of degree lower or equal to 2n. �

Multiplication on S(Rd) has the following property: for all n ∈ N0 there exists r, s ∈ N0
and Cn ∈ R such that

|ϕψ |n ≤ Cn|ϕ|r |ψ |s (4)

for all ϕ,ψ ∈ S(Rd) (see for instance [10] ). We shall make use of this property.
The Hermite representation theorem for S(Rd) (S ′(Rd)) states a topological isomor-

phism between S(Rd) (S ′(Rd)) and the space of sequences sd (s′
d ).

Let sd be the space of sequences

sd = {(aβ) ∈ 	2(Nd)) :
∑
β∈N

d
0

(2|β| + d)2n | aβ |2< ∞, for all n ∈ N0}.

The space sd is a locally convex space with the family of norms

‖(aβ)‖n =
⎛⎜⎝∑
β∈N

d
0

(2|β| + d)2n | aβ |2
⎞⎟⎠

1
2

,

where n ∈ N0.
The topological dual space to sd , denoted by s′

d , is given by

s′
d = {(bβ) : for some (C,m) ∈ R × N

d
0 , | bβ |≤ C(2|β| + d)m for all β},

and the natural pairing of elements from sd and s′
d , denoted by 〈·, ·〉, is given by

〈(bβ), (aβ)〉 =
∑
β∈N

d
0

bβaβ,

for (bβ) ∈ s′
d and (aβ) ∈ sd .

It is clear that s′
d is an algebra with the pointwise operations:

(bβ)+ (b′
β) = (bβ + b′

β)

(bβ) · (b′
β) = (bβb′

β),

and sd is an ideal of s′
d .
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Theorem 2.1 (N-representation theorem for S(Rd) and S ′(Rd)) (a) Let h : S(Rd) → sd

be the application

h(ϕ) =
(∫

ϕ(x)hβ(x)dx

)
.

Then h is a topological isomorphism. Moreover,

‖h(ϕ)‖n = |ϕ|n
for all ϕ ∈ S(Rd).

(b) Let H : S ′(Rd) → s′
d be the application H(T ) = (T (hβ)). Then H is a topological

isomorphism. Moreover, if T ∈ S ′(Rd) we have that

T =
∑
β∈N

d
0

T (hβ)hβ

in the weak sense and for all ϕ ∈ S(Rd),

T (ϕ) = 〈H(T ),h(ϕ)〉.
Proof See for instance [11] p. 143 or [12] p. 260. �

The sequences h(ϕ) and H(T ) will be referred to as the Hermite coefficients of the
rapidly decreasing function ϕ and the tempered distribution T , respectively.

Corollary 2.2 For every T ∈ S ′(Rd) there exists n ∈ N0, such that

|T |2−n :=
∑
β∈N

d
0

(2|β| + d)−2nT (hβ)
2 < ∞.

Proof By Theorem 2.1, (T (hβ)) ∈ s′
d . Thus, there exists (C, l) ∈ R × N0 such that

|T (hβ)| ≤ C(2|β| + d)l for all β ∈ N
d
0 . Now, taking n = l + 1 the Corollary follows. �

2.2. Tempered generalized functions

The aim of this subsection is to give an extension to the multidimensional case of the theory
of tempered generalized functions introduced by the authors in [13]. Let S1

T (R
d) be the

set of functions f : [0, T ] × R
d → R such that for each t ∈ [0, T ], f (t, ·) ∈ S(Rd) and

for each x ∈ R
d , f (·, x) ∈ C1([0, T ]). It is clear that S1

T (R
d)N

d
0 has the structure of an

associative, commutative differential algebra with the natural operations:

( fβ)+ (gβ) := ( fβ + gβ)

a( fβ) := (a fβ)

( fβ) · (gβ) := ( fβgβ)

∂α( fβ) := (∂αx fβ) for each α ∈ N
d
0 .

In order to define the 1-time-dependent tempered generalized functions, we consider the
subalgebra H′

T,1,d of S1
T (R

d)N
d
0 given by{

( fβ) ∈ S1
T (R

d)N
d
0 : for each n ∈ N0,

(
sup

t∈[0,T ]
| fβ(t, ·)|n

)
,

(
sup

t∈[0,T ]
|∂ fβ
∂t
(t, ·)|n

)
∈ s′

d

}
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and HT,1,d its differential ideal given by{
( fβ) ∈ S1

T (R
d)N

d
0 : for each n ∈ N0,

(
sup

t∈[0,T ]
| fβ(t, ·)|n

)
,

(
sup

t∈[0,T ]
|∂ fβ
∂t
(t, ·)|n

)
∈ sd

}
.

The 1-time-dependent tempered algebra on R
d is defined by

H1
T (R

d) := H′
T,1,d/HT,1,d

The elements of H1
T (R

d) are called 1-time dependent tempered generalized functions. Let
( fβ) ∈ H′

T,1,d we shall use [ fβ ] to denote the equivalence classes ( fβ)+ HT,1,d .

Remark 2.1 In order to introduce the 0-dependent tempered generalized functions, we
consider the set S0

T (R
d) of functions f : [0, T ] × R

d → R such that for each t ∈ [0, T ],
f (t, ·) ∈ S(Rd) and for each x ∈ R

d , f (·, x) ∈ C([0, T ]). Let H′
T,0,d be the subalgebra

given by {
( fβ) ∈ S0

T (R
d)N

d
0 : for each n ∈ N0,

(
sup

t∈[0,T ]
| fβ(t, ·)|n

)
∈ s′

d

}
and HT,0,d its differential ideal given by{

( fβ) ∈ ST (R
d)N

d
0 : for each n ∈ N0,

(
sup

t∈[0,T ]
| fβ(t, ·)|n

)
∈ sd

}
.

The 0-time dependent tempered algebra on R
d is efined by

H0
T (R

d) := H′
T,0,d/HT,0,d

Remark 2.2 In a similar way we can define the tempered algebra

H(Rd) := H′
d/Hd

where
H′

d := {( fβ) ∈ S(Rd)N
d
0 : for each n ∈ N0, (| fβ |n) ∈ s′

d}
and

Hd := {( fβ) ∈ S(Rd)N
d
0 : for each n ∈ N0, (| fβ |n) ∈ sd}.

The elements of H(Rd) are called tempered generalized functions.

Proposition 2.3 (1) H(Rd) is a subalgebra of H0
T (R

d) (H1
T (R

d)).

(2) Let [ fβ ] ∈ H1
T (R

d). Then

∂

∂t
[ fβ(t, ·)] :=

[
∂ fβ
∂t
(t, ·)

]
∈ H0(Rd)

for every t ∈ [0, T ].
(3) Let h ∈ C1([0, T ]) and [ fβ ] ∈ H(Rd). Then h[ fβ ] := [h fβ ] ∈ H1

T (R
d).

Proof The proofs are straigthforward from the definitions. �
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We observe that there exists a natural linear embedding ι : S ′(Rd) → H(Rd), given by

ι(T ) = [Tβ ],
where Tβ = ∑

γ≤β T (hγ )hγ . Moreover, we have that
(a) For all ϕ ∈ S(Rd), ι(ϕ) = [ϕ],
(b) For all ϕ,ψ ∈ S(Rd), ι(ϕψ) = ι(ϕ) · ι(ψ),
(c) For all α ∈ N

d
0 , ι ◦ ∂α = ∂α ◦ ι.

The translation operator τx : H0
T (R

d) → H0
T (R

d) (x ∈ R
d ) is defined by

τx [ fβ ] := [τx fβ ].
It follows from Lemma 1.1 that τx is well defined. Analogously, τx : H1

T (R
d) → H1

T (R
d)

(x ∈ R
d ) is well defined.

In the algebra H(Rd), we have a weak equality, namely, the association of tempered
generalized functions. More precisely, we say that the tempered generalized functions [ fβ ]
and [gβ ] are associated, and denote this association by [ fβ ] ≈ [gβ ], if for all ϕ ∈ S(Rd),

lim
β→∞

∫
Rn
( fβ(x)− gβ(x))ϕ(x)dx = 0.

We observe that ≈ is a equivalence relation on H(Rd).

Proposition 2.4

(1) Let T be a tempered distribution and x ∈ R
d . Then ι(τx T ) ≈ τx ι(T ).

(2) Let T and S be tempered distributions such that ι(T ) ≈ ι(S). Then T = S.

Proof

(1) Let ϕ ∈ S(Rd); applying Theorem 2.1 and elementary properties of the translation,
we obtain

lim
β→∞

∫
Rd
τx Tβ(y)ϕ(y)dy = lim

β→∞

∫
Rd

Tβ(y)τ−xϕ(y)dy

= T (τ−xϕ)

= τx T (ϕ)

= lim
β→∞

∫
Rn
(τx T )β(y)ϕ(y)dy.

(2) For all α ∈ N
d
0 ,

T (hα)− S(hα) = lim
β→∞ Tβ(hα)− Sβ(hα) = 0.

Theorem 2.1 implies that T = S. �
Remark 2.3 We would like to recall that the algebra H(Rd) is identical to (a sequential
version of) the space GS(Rd ), introduced by Colombeau [14] and it has been studied
extensively by Garetto and their coauthors (see [15–17]). They introduced the space GS(Rd )

via the family of seminorms {‖ · ‖α,β,∞ : α, β ∈ N
d
0}. Notice that it does not matter which

family of seminorms is being used in this definition, as long as it generates the same locally
convex topology (see [15]).
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Our approach differs in that we have introduced the algebra H(Rd)) via the seminorms
‖ ‖m since we are thinking in approximations of distributions (induced by Hilbert spaces)
in terms of orthogonal series in contrast with the classical theory where the approximation
is done by convolution. See [5] for an application of this idea to stochastic distributions.

Remark 2.4 We would like to mention that other general properties of H(Rd) can be
studied in this setting. For example the concepts of point value, integral and Fourier
transform for elements in H(Rd) can be defined, see [13] for the one-dimensional case.

3. Itô’s formula for tempered generalized functions

Let (�,F , {Ft : t ∈ [0, T ]},P) be a filtered probability space, which satisfies the usual
hypotheses. This is, (�,F ,P) is a complete probability space such that it is filtered by
a non-decreasing right-continuous family {Ft : t ∈ [0, T ]} of sub σ -fields of F and F0
contains all the events of probability 0. For a recent account of stochastic calculus, we refer
the reader to the book of Ph. Protter [18].

Definition 3.1 Let X be an R
d -valued continuous jointly measurable process, V a contin-

uous finite variation process and [ fβ ] ∈ H0
T (R

d). Define the integral of τX [ fβ ] in relation
to V , from 0 to t , and denoted by

∫ t
0 τXs [ fβ ]dVs , by:[∫ t

0
τXs fβ(s, ·)dVs

]
,

where the integral is given in the sense of Bochner–Stieltjes.

For each ω ∈ � and t ∈ [0, T ], we have that [∫ t
0 τXs fβ(s, ·)dVs(ω)] is well defined as

an element of H0
T (R

d). In fact, since τXs(ω) fβ(s, ·) ∈ S0
T (R

d) and making use of definitions
and the Lemma 2.1 we see that∣∣∣∣∫ t

0
τXs fβ(s, ·)dVs(ω)

∣∣∣∣
n

≤
∫ t

0
|τXs (ω) fβ(s, ·)|nd|V |s(ω)

≤
(∫ t

0
Pn(|Xs(ω)|)d|V |s(ω)

)
sup

s∈[0,T ]
| fβ(s, ·)|n (5)

where |V |t (ω) is the total variation of V in [0, t].

Theorem 3.1 Let f = [ fβ ] ∈ H1
T (R

d) and X = (X1, . . . , Xd) be an R
d-valued

continuous semimartingale. Then

τXt f = τX0 f +
∫ t

0
τXs∂s f (s, ·)ds −

∫ t

0
τXs ∇ f · d Xs

+1

2

d∑
i, j=1

∫ t

0
τXs∂i j f d〈Xi , X j 〉s (6)

where
∫ t

0 τXs ∇ f · d Xs is defined as [∑d
i=1

∫ t
0 τXs∂i fβd Xi

s].
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Proof Applying the classical Itô’s formula to fβ , we have

τXt fβ(t, x) = τX0 fβ(0, x)+
∫ t

0
τXs∂s fβ(s, x)ds −

d∑
i=1

∫ t

0
τXs∂i fβ(s, x)d Xi

s

+1

2

d∑
i, j=1

∫ t

0
τXs∂i j fβ(s, x) d〈Xi , X j 〉s . (7)

Taking equivalence classes in (7), we obtain that
∫ t

0 τXs ∇ f · d Xs ∈ H0
T (R

d) and hence
(6) holds in H0

T (R
d). �

Corollary 3.2 Let f = [ fβ ] ∈ H(Rd) and X = (X1, . . . , Xd) be a continuous
semimartingale. Then

τXt f = τX0 f −
∫ t

0
τXs ∇ f · d Xs + 1

2

d∑
i, j=1

∫ t

0
τXs∂i j f d〈Xi , X j 〉s .

Remark 3.1 From the viewpoint of the authors, the Itô formula (6) for nonlinear general-
ized functions is a fundamental step towards the study of generalized solutions of SPDEs
driven by singular stochastic processes.

Remark 3.2 We emphasize that the Itô’s formula (6) holds in a strong sense, it is an identity
in the algebra of tempered generalized functions. On the other side, the one-dimensional
Itô’s formula showed in [13] holds in a weak sense of the algebra, it is an identity of
generalized numbers, see [13] for details.

3.1. Itô’s formula for tempered distributions

In order to prove the Üstunel-Itô’s formula for tempered distributions (see [6,8]), we need
the following result from the stochastic integration theory in nuclear spaces (see [19]). Let Tt

be a S ′(Rd)-valued continuous predictable process and Xt be a continuous semimartingale,
then

∫ t
0 Tsd Xs is the unique S ′(Rd) valued semimartingale such that for all ϕ ∈ S(Rd),(∫ t

0
Tsd Xs

)
(ϕ) =

∫ t

0
Ts(ϕ)d Xs .

Lemma 3.1 Let T ∈ S ′(Rd), X be an R
d-valued continuous semimartingale and V be a

continuous finite variation process. Then∫ t

0
τXs ι(T )dVs ≈ ι

(∫ t

0
τXs T dVs

)
.

Proof Let ι(T ) = [Tβ ] and ϕ ∈ S(Rd). Since limβ→∞ Tβ = T , we have

lim
β→∞ τXs (ω)Tβ(ϕ) = τXs (ω)T (ϕ)

for all s and ω ∈ �.
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Applying the Corollary 2.2 and Lemma 2.1, we have that there exists q ∈ N0 such that

|τXs (ω)Tβ(ϕ)| ≤ |Tβ |−q |τXs (ω)ϕ|q
≤ Pq(|Xs(ω)|) |T |−q |ϕ|q .

By the dominated convergence theorem, we obtain

lim
β→∞

∫ t

0
τXs Tβ(ϕ)dVs =

∫ t

0
τXs T (ϕ)dVs .

We conclude that

lim
β→∞

∫ t

0
τXs(ω)ι(T )dVs(ω)β(ϕ) = lim

β→∞

∫ t

0
τXs (ω)Tβ(ϕ)dVs(ω)

=
∫ t

0
τXs(ω)T (ϕ)dVs(ω)

= lim
β→∞ ι

(∫ t

0
τXs (ω)T dVs(ω)

)
β

(ϕ), �

Now, we prove the Itô’s formula for tempered distributions (see Rajeev [8] and Üstunel
[6]) as a consequence of the formula (6).

Proposition 3.3 (Itô’s formula for tempered distributions) Let T ∈ S ′(Rd) and X =
(X1, . . . , Xd) be a continuous semimartingale. Then

τXt T = τX0 T −
d∑

i=1

∫ t

0
τXs∂i T d Xi

s + 1

2

d∑
i, j=1

∫ t

0
τXs∂i j T d〈Xi , X j 〉s .

Proof Applying Itô’s formula (6) to ι(T ) and making use of Proposition 2.4 and Lemma
3.1, we deduce that

ι

⎛⎝τXt T − τX0 T − 1

2

d∑
i, j=1

∫ t

0
τXs∂i j f d〈Xi , X j 〉s

⎞⎠ ≈
∫ t

0
τXs ∇ι(T ) · d Xs .

According to an easy modification of Lemma 3.1 (we make use of the dominated
convergence theorem for stochastic integrals), we can to prove that

∫ t

0
∇τXs ι(T ) · d Xs ≈ ι

(
d∑

i=1

∫ t

0
τXs∂i T d Xi

s

)
. (8)

Then, from the Proposition 2.4 and equality (8) we conclude the proof. �

Let C1([0, T ],S ′(Rd)) be the space of differentiable functions from [0, T ] to S ′(Rd).
We observe that C1([0, T ],S ′(Rd)) is embedded in H1

T (R
d) via the natural extension of ι,

we leave the details to the reader.

Proposition 3.4 (Itô’s formula for time-dependent tempered distributions)
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Let Tt ∈ C1([0, T ],S ′(Rd)) and X = (X1, ..., Xd) be a continuous semimartingale.
Then

τXt Tt = τX0 T0 +
∫ t

0
τXs∂s Ts(·)ds −

d∑
i=1

∫ t

0
τXs∂i Tsd Xi

s

+ 1

2

d∑
i, j=1

∫ t

0
τXs∂i j Tsd〈Xi , X j 〉s .

Proof Applying Itô’s formula (6) to ι(Tt ) we have

ι(τXt Tt − τX0 T0) ≈
∫ t

0
τXs∂s ι(Ts)ds − 1

2

d∑
i, j=1

∫ t

0
τXs∂i j ι(Ts)d〈Xi , X j 〉s

+
∫ t

0
τXs∂s ι(Ts)ds.

According to an easy modification of Lemma 3.1 we obtain∫ t

0
τXs∂s ι(Ts)ds ≈ ι

(∫ t

0
τXs∂s Tsds

)
. (9)

d∑
i, j=1

∫ t

0
τXs∂i j ι(Ts)d〈Xi , X j 〉s ≈ ι

⎛⎝ d∑
i, j=1

∫ t

0
τXs∂i j Tsd < Xi , X j >s

⎞⎠ . (10)

∫ t

0
τXs ∇ι(Ts) · d Xs ≈ ι

(
d∑

i=1

∫ t

0
τXs∂i Tsd Xi

s

)
. (11)

From the Proposition 2.4 and equalities (9), (10) and (11), we conclude the proof. �

4. Heat equation in H1
T (Rd)

Now, we introduce next the concept of expected value (or expectation) for certain H(Rd)-
valued random variables. More precisely, let X be a R

d -valued random variable with
E(|X |n) < ∞ for all n ∈ N0 and let f = [ fβ ] ∈ H(Rd). The expectation of τX f is
E(τX f ) := [E(τX fβ)].

We observe that E(τX f ) is well defined as an element of H(Rd). In fact, by Lemma
2.1, it follows that:

|E(τX fβ)|n ≤ E(Pn(|X |))| fβ |n,
for all β ∈ N

d
0 .

The sequel of the present section is concerned with the Cauchy problem for the heat
equation, {

ut = 1
2�u

u0 = f ∈ H(Rd).
(12)
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Definition 4.1 We say that u ∈ H1
T (R

d) is a generalized solution of the Cauchy problem
(12) if ut = 1

2�u in H0
T (R

d) and u0 = f in H(Rd).

Proposition 4.1 For every f ∈ H(Rd) there exist a unique solution to the Cauchy
problem (12) in H1

T (R
d).

Proof Step 1 ( Existence) By Itô’s formula (6), we have

τBt f = f −
∫ t

0
∇τBs f · d Bs +

∫ t

0

1

2
�τBs f ds. (13)

We observe that: E(
∫ t

0 �τBs f ds) = ∫ t
0 E(�τBs f )ds; in fact, this is a consequence of

inequality (5), that E(|Bt |n) < ∞ and that E(
∫ t

0 |Bs |nds) < ∞ for all n ∈ N0.
Taking expectation in (13), we obtain that

E(τBt f ) = f +
∫ t

0

1

2
�E(τBs f )ds.

Thus E(τBt f ) solves the Cauchy problem (12).

Step 2 (Uniqueness) Suppose that u = [uβ ] and v = [vβ ] are two generalized solutions of
(12), we denote the difference uβ − vβ by aβ . By the definition, aβ satisfies{

d
dt aβ = 1

2�aβ + hβ
aβ(0, ·) = gβ,

(14)

with hβ ∈ HT,0,d and gβ ∈ Hd . Applying the Feynman–Kac formula (see [20]) to aβ we
get

aβ(t, x) = Ẽ(gβ(x + B̃t )+
∫ t

0
hβ(s, x + B̃s) ds) (15)

where B̃ is a d-dimensional Brownian motion with B̃0 = 0 in an auxiliary probability space.
It follows that supt ‖aβ(t, x)‖n ∈ sd , for each n ∈ N0. From this fact and equation (14),

we have that supt ‖ d
dt aβ(t, x)‖n ∈ sd . We conclude that (aβ) ∈ HT,1,d and thus (12) has

an unique solution. �

Remark 4.1 The proof of existence and uniqueness of Proposition 4.1 can be extended
easily to the following Cauchy problem,{

ut = 1
2�u + g,

u0 = f ∈ H(Rd)
(16)

where g ∈ H0
T (R

d).
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