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Canonical symmetrization for the unitary bases. II. Boson 
and fermion bases" 

Chris W. Patterson and William G. Harter 

Instituto de Fisica. Departamento de Eletronica Quantica. Universidade Estadual de Campinas. Caixa Postal 
1170 Campinas. S.P. Brazil 
(Received 5 November 1975) 

The canonical Wey1 basis described in Paper I is generalized to give a boson and fermion calculus which 
generates the symmetric and antisymmetric bases of U(nm) respectively contained in the irreducible bases 
of U(n)xU(m). The boson calculus may be used to find the multiplicity free Clebsch-Gordan coefficients 

of U(n), 

I. INTRODUCTION 

In works by Biedenharn, Baird, Moshinsky, Louck, 
and Seligman,I-5 extensive use has been made of boson 
operators to generate an irreducible baSis of U(n) 
x U(m) which is simultaneously a symmetric basis of 
U(nm). Louck has shown that this boson basis is a 
basis for the n-dimensional, Ill-particle harmonic 
oscillator. 6 However, symmetrization of this boson 
basis using the "boson calculus" has so far failed to 
generate all the independent bases in this space which 
we shall denote as U(n) * U(m). The construction of a 
complete basis is presently a tedious task using lower
ing operator techniques. 7-10 Furthermore, the boson 
calculuS itself has no justification other than a con
structional validity. 

In this work, we shall show the simple relationship 
between the boson basis and the canonical Weyl basis 
described in an earlier workll (denoted hereafter as I). 
This relationship leads to a new boson calculus capable 
of generating all the independent bases of U(n) * U(m). 
Furthermore, we show that the canonical Weyl basis 
may be considered as the "special" boson basis of sub
space U(n) * Sp or Sp * U(m) of U(n) * U(m) first noted 
by Moshinsky. 12 This clarifies the fact that the genera
tors of the unitary group can be used as elements of the 
permutation group Sp when acting on this particular 
basis. We also show that the canonical Weyl bases'of 
the subspace Sp * Sp form a basis for the regular 
representation of Sp. As a result of this new boson 
calculus, it becomes a straightforward task to deter
mine the matrix elements of the irreducible representa
tions (IR's) of U(n), and by means of the factorization 
lemma, 13 to calculate the multiplicity-free Clebsch
Gordan coefficients of U(n). 

In a similar manner, we develop a fermion calculus 
to generate an irreducible basis of U(n) x U(m), which 
is simultaneously an antisymmetric basis of U(nm). We 
shall denote the subspace of all such irreducible bases 
of U(n)xU(I1l) as U(n)*U(m). The fermion calculus 
enables us to find the antisymmetric bases of U(nm) 
contained in the irreducible bases of U(n) x U(m). This 
is a very important task when dealing with fermions in 
atomic and nuclear physics. For example, in atomic 
l-shells one often needs to find the antisymmetric con
tent of U(4l + 2) in symmetrized orbit-spin states of 
U(2l + 1) x U(2). Similarly, in nuclear shells one often 
needs to find the antisymmetric content of U(8l + 4) in 
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states of U(21 + 1) x U(4) since the spin states now in
clude isotopic spin. In the atomic case, closed form 
expressions already exist for the antisymmetric con
tent in symmetrized orbit- spin states which were 
derived using a canonical Weyl basis. 14 

II. IRREDUCIBLE BASES FOR U(nm) AND U(n) X U(m) 

Let Icpl)fori=1,2, ... ,nand l1/Jn forj=1,2, ... ,m 
form bases for the lth particle of the fundamental 
representation of U(n) and U(m) respectively with 
generator relations: 

elm I cp;) = 0IROmp I cpl), 

e{n I 1/J~) = 0lkOnq I <p{) 0 

(1) 

The pth direct products 

I cp(i) '" I cp11CPi2 ' •• cpv, 
I 1/J(j» '" I 1/J{1<p~2 ••• 1/J~p) 

(2) 

form a reducible bases of U(n) and U(m) respectively 
with the generators: 

p 

E;m= 6 elm, 
1=1 

p 

Ei n = 6 ein
• 

1=1 

(3) 

As we have seen in I, we may reduce direct products 
(2) using the canonical prOjection operators of Sp as in 
(4) to form a canonical Weyl basis for U(n) and U(m) 
respectively: 

I 
[uJ \_N[UJp[U11'" \ 

(s) (m)/- s _ms 'I'(j)/, 
(4a) 

I 
[v 1 ) = N[vlp[V11 ",(j) 

(n) (r) r nr 'f' 0 

(4b) 

The upper bar (-) denotes permutations of the super
scripts and the lower bar C) denotes permutations 
of the subscripts. The reason for the change in notation 
for the Weyl basis on the left of (4b) will become 
evident later. 

We define the direct product basis I iJ>1(Z) in Eq. (5): 

I cp\) x I <p{) = I iJ>{(l) 

Then the I il>{ (I) for i = 1,2, ... ,n and j = 1,2, ... , m 
form bases for the !th particle of the fundamental 
representation of U(nnz) with generator relations: 

Copyright © 1976 American Institute of Physics 
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ei:(Z) 1 q,~(k» = OlkOmpOnq 1 q,{(l), (6) 

where e~n(l) = elm xe{no 

The direct product basis 

1 ¢(O) x 11J(j» = 1 q,H(I)q,{~(2) ... q,1!(P)"' 1 q,H~), (7) 

is a reducible basis of U(n) xU(m) with generators 
E im xEin, We may reduce this basis using (4) and find 
the irreducible bases 1 z~!) x 1 z~?; of U(n) x U(In) are 
simply 

I 
[II] )xl [1'] )=N[VlN[UlP[VlP[Ullq,(~» (8) 

(s) (m) (n) (r) r s nr _ms (,). 

The pth direct product basis I q, if i) also forms a 
reducible bases of U(nm) with generators: 

p 

E{~ = 6 e{~(Z). (9) 
1=1 

Again, we may reduce the bases of U(nm) using the 
canonical projection operators of Sp to form a canoni
cal irreducible Weyl basis 1 (t;~lo» as in (10): 

I 
[AJ ) V[~lp~ll'h(j) 

(I) (0) =. t ot '¥(i) • 

III. BOSON BASES 
A. Boson calculus 

(10) 

From (10) we find the symmetric states of U(nm) are 

I[PO ... O])=_I- 6 [q]Iq,~n>. 
YPT Q0c Sp 

(11) 

We may construct linear combinations of these sym
metric states of U(nm) from the irreducible bases of 
U(n) xU (m) in (8) using the Clebsch-Gordan coefficients 
of the canonical bases of Sp since the bases in (8) are 
also irreducible bases 1/,;:1> x If~!> of ~~xSp. We find that 

I (s)[~ ](1')= (Z[II~)1 /2 ~ I (S;II](II) x I (1l)[11 ~r»' 
N[Ul y[Ul 
j r "s '\' - [ul [ul 1 (j) 

= TzI~ t,( P nr !!.ns q, <i» 

is symmetric under all permutations [q] of ~~ as can 
easily be verified directly: 

[q]6 p~~lp~~l = 6 [qlP~~l[q]!!.~~l 
n - n 

= 6 p;~lp~~l. 
t -

(12) 

Hence, 1 (s~~l(r) must be some linear combination of 
symmetric bases (11) of U(nlll). We shall denote the 
subspace of all bases 1 (s)~(r» of the direct product 
space Iq,~m as U(n) * U(I1l). We wish to find the sym
metric content of U(IZII1) in our bases 1 (sf~l{r» of 
U(n) * U(m). This is equivalent to determining the sym
metric canonical irreducible bases of U (nlll) contained 
in the irreducible basis I z~l> x I Zm of U(n) x U(III). 

We shall accomplish this task by using boson opera
tors to generate our bases. We may write our sym
metric basis in terms of boson operators as in (13) 
below: 
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(13) 

where alI i 10) = afiaf2 ... af: 1 0), and ar = (if. The boson 
operators obey the following commutation relations: 

[ ai, an = [aj , (i{:] = 0, 

[ai, a{:l == Ojj,Oii ' • 

(14a) 

(14b) 

We may now expand the generators of U(n), U(m), and 
U(nm) in terms of the boson operators as followS l5 : 

p 

Eim= 6 ara~, 
1=1 

(15a) 

p 

Ei
n= 6 afa~, 

1=1 
(15b) 

(15c) 

From (13) we see that l{sf~~T» may be put in terms of 
boson operators as in (16): 

I 
[u]) - N;UlN;Ul '\' -[ul [ul (j) 1 

(8) *(r) - (Z[Ulp!)1/2 t,( Pnr!!'ns ali) 0). 

It follows from (14) that 

[q]a~n 1 0) = [q-l]a~n 1 0) 

and, hence, 

P-[Ula(j) 1 0·\ = p[ula ({) 1 0' nr (i) / _Tn (,) I· 

(16) 

(17) 

(18) 

Using (18), we may simplify the expression for I (sf~l{r» 
in (16) to find 

I 
[It] )= y[uly[ul(Z[ul/pl)I/2p[ula ({) 10) (19) 

(8) * (1~) 1 r 1 s _rs (tl • 

If we let 

(20) 

then we have the following relation between our basis of 
U(n) * U(I1I) and the boson operators: 

I 
[u] )= ,H[ulp[ula ({) 1 0) (21a) 

(s) * (1') rs _rs (,) 

or, similarly, 

I 
[II] ) 'I[Ulp-[Ul (i) 1 0) 

(1') * (s) = 'v rs rs a(j) • (21b) 

Equations (21) illustrate the reciprocity between upper 
and lower projection operators for bases of U(!J/) * U(n) 

Since p;~l = C;~lO;~l, where C;~l is a positive constant, 
and since the seminormal canonical projection opera
tors O;~l may be easily generated, we now have a con
venient and straightforward method of finding the sym
metric content of U(nm) in the irreducible bases of 
U(n) x U(III) which we call the boson calculus. As an 
example of the use of the boson calculus, we find the 
highest weight bases IP) x 1~1) of U(3)XU(3) in terms 
of boson operators. Using Eq. (21a) with seminormal 
projection operators, we have 

Qf~IUaiaia~ 1 0) = 2~12~13~12alala~ 1 0), 
3 3 

= 8(alaia~ - ala~ai) 1 0). 

Normalizing, we find 1 p) x 1 p) in terms of the sym
metric Weyl bases of U(6) with three particles 

C.W. Patterson and W.G. Harter 1138 
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Similarly, 

Q(100Jata~a~ I 0) = 4~123ata~a~ 10) 

= (ata~a~ + aia~a~ + alaia~ + ala~ai 

+ a~a~ai + a~aia~) I 0). 

Collecting terms and normalizing, we find 

1~2)xl~2) 

1~3)xl~2)= 
1123) x 1122) 

2/16 1/16 1/16 

0 

\~ 
12 
\1 

\~ 

2 ~) 2 

1 ~) 2 

2 ~) 2 

(23b) 

(23c) 

(24) 

The bases generated by our boson calculus must be 
identical to those generated by Baird and Biedenharn16 

by antisymmetrizing the columns of the "boson tableau". 
However, column antisymmetrization can only be ap
plied to derive certain bases, and merely represents a 
simplification of the permutational content of the 
canonical projection operators when acting on such 
bases. Column antisymmetrization can be used for all 
bases 1 ~~!) x 1 f~!) where both 1 ~~!) and 1 fm have non
degenerate weights. For example, uSing column sym
metrization to generate the basis in Eq. (22), we have 

1~I)x 1~1)= Js [:i at]IO) 

_1_ ( 1 2 1 2) I 110) = v'3 a1a2 - a2a l a1 

(25) 

We have antisymmetrized with respect to the subscripts 
of the columns in the "boson tableau. " Because of the 
reciprocity in Eqs. (21), we could have equally well 
antisymmetrized with respect to the superscripts. 

In the case where one of the bases 1 ~~!) or 1 ~m has a 
semimaximum weight [a highest weight for U(n - 1) or 
U(m -1) respectively] and the other has a nondegenerate 
weight, we may again use column antisymmetrization to 
derive a boson basis. ThUS, corresponding to our pre
vious result, we have 

1!3)xl~2)= ~[:i a~JIO) 
- ~ (a1a2 _ a1a2)a2

1 0) -,[2 12 213 

~ ( 1 2 2 2 1 2) I 0' = ,[2 a1 a2a3 - a1 a2a3 /. (26) 
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. h 1 [uJ) 1 [uJ) h However, In most cases were (8) or (r) ave 
degenerate weights, column antisymmetrization fails to 
generate an orthonormal basis, and lowering operator 

. . d 112) 112) techmques must be employed. Thus, to hn 3 x 2 , 

we must lower the basis 1 p) x 1 ~2) as shown below: 

(27) 

In general, this lowering technique is very tedious and 
our boson calculus represents a considerable simplifi
cation for deriving the boson bases. 

8. Weyl bases 

Let III =p and 1 (s;~l(r» be a basis of U(n) * U(P), where 
(r) has a weight with maximum degeneracy; that is, let 
</J(j) = </Ji</J~ ••. I/t; so that the standard tableau of U(P), 
Tf~!, is the same as the standard tableau of Sp, T\~!. 
Then from Eq. (21a) we have 

I 
[u) )- ,'I[ulp[UJ 1 2 •• , p 10' (5) * (r) - .• rs _rs a i1a i2 alp /. (28) 

Comparing this with Eq. (4a), we see there is a one-to
one correspondence between the boson bases 1 (si~l(r» 
and Weyl bases 1 (siul,», Since 1 (si~l(r» transforms like 
a Weyl basis under permutations [q,] and generators 
E jj , we have 

I [u] )_1 [u] ) 
(5) * (r) - (5) (r) 

(29a) 

when 

Also, 

jH;~l=N~ul (29b) 

when Tf~; = Tf~l. 

The commutivity of boson operators in Eq. (28) illu
strates the fact that a reordering of the notation for 
single particle states leaves the Weyl basis unchanged. 
It is evident that the Weyl bases 1 (s;~l(r» form a sub
space U(n) * Sp::::: U(n) * U(P). 

Now let n ==P and 1 (s)[:I,) be a basis of U(P) * U(m), 
where (s) has a weight with maximum degeneracy; that 
is, let <p(j) == <pt<p~' .. <pt so that T\~l == T~~i. Then from 
Eq. (21b) we have 

I [u] )="VI(UJp(UJai1ai2 ••. ajpI0). 
(5) * (r) r s sr 1 2 I> 

(30) 

Comparing this with Eq. (4b), we see there is a one
to-one corespondence between the boson bases 1 (s~~J(r» 
and the Weyl bases 1 (s;"{r»' Since 1 (s;~l(r» transforms 
like a Weyl basis under permutations [q] and generators 
Eli, we have 

I 
[tt] ) [ [u] ) 

(5) * (r) - (5) (r) 
(31a) 

when Tf~l = Tf~!. 
Also, 

C.W. Patterson and W.G. Harter 1139 
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M;~l=N;UJ (31b) 

when Tr~5 = T\~? 

It is evident that the Weyl bases I (s;~l< r» form a sub
space Sp * U(m) c U(P) * U(m). The reason for our choice 
of notation in (4b) is now clear. 

Moshinsky17 has shown that for the "special" Gel'fand 
bases I (s;ulr» of U(n) * Sp 

EnmEmn = (1) + (nm), (32a) 

and similarly for the "special" Gel'fand bases I (rfuis» 
ofSp*U(JII): 

(32b) 

Equation (32a) is easily verified since both generators 
E mn of U(n) and stale permutations 0) of Sp commute 
with the pm·ticle operators £;~l. Thus, we have 

EnmEmnp[ull rl-. • ) 
_YS '-Ph) 

=p[ulEnmEmnl rl-. 1 ?""~""'!""'i! ) 
_TS o.p'1'2···'nO··ZmO 'Olp 

- p[ul[ I rl-.~ ? "'~"",!,''''i! ) + I rl-. 1 2 ... ·'.'.· .. '!' •. '~ )] 
- _TS '+"tl"2···'no"'mO.olp '+"11i20.Gf,n··Olmo .• ,p 

- p[ul[(-l) (-)11 rl-. 1 2 .... n .. 'm "'p ) - _rs + nm 'l'i1 i 2'''in'''im'''i p 

= [(1) + (nm)]£;~ll cP(n) 

Equation (32b) may be verified in a similar manner. 
Other more complicated expressions may also be 
derived for the r-cycles of Sp in terms of the genera
tors of U(n) or U(m) when operating on these "special" 
Gel'fand bases. However, it is more important to note 
that the upper and lower Gel'fand invariant operators 

m 

l"m= . . 6 . E'1'2E'2'3 .•. E''''1, 
11_ '2. 0" Ot lk 

(33a) 

(33b) 

of U(m) and U(Il) may be expanded in terms of the upper 
and lower state v-cycle class operators of S~, K~m for 
y= 1, 2". " lz and K:n for r= 1, 2", ., k respectively as 
has been shown in I. The boson bases I (s;~l(r» in (21a) 
are eigenvectors of these upper and lower class opera
tors since these bases transform like irreducible bases 
I \~l) of Sp under lower permutations (q), and like 
irreducible bases I i~D of Sp under upper permutations 
0). It is for this reason that the projected bases 
I (s;~l(r» forms a Gel'fand bases I ~~5) x I ~~5) of U(n) 
x U(III) for different standard tableaus T~~5 = T~~lcP <i) of 
U(n) and different standard tableaus Ti~l = TI~N(j) of 
U(III). 

Finally, let JJI=P, n=p, and Tf~I=T~~I, Ti~i=Tf~l. 
Then the boson basis 

Ii [a] ) _ 'I[u1p[U1 1 2 PI 0) 
(s) * (1') -., rs _78 a1a 2 ... a p 

is a canonical irreducible basis of Sp under permuta
tions [q.l and [(J]. The bases I (s)[:lr» form a subspace 
Sp * Sp c U(P) * U(jJ) and are a bases for the regular 
representation of -"p. 

From Eqs. (29b) and (20) we have the relation 

(l[U1/!)! )1/2.V;Ul,v~u1 = .V;U1 

when Ti~l = Tf~l. Therefore, 

1140 J, Math, Phys" Vol. 17, No.7, July 1976 

N;U1 = (p! /1 lul)1 /2 = VH([u]) . 

when Tl~i = Tf~l. This also follows directly from 
evaluating (3 0 25) of 1. 

C. Factorization lemma18 

(34) 

One of the most important aspects of the boson 
calculus is that we may use it to determine the matrix 
elements of the !R's of the unitary group. Then, by 
means of the factorization lemma, we can generate the 
multiplicity-free Clebsch-Gordan coefficients of the 
unitary group. 

Let D[11(U) be the fundamental or self-representation 
of U(n) given by 

(35) 

and let n = /1l so that i (s)[:ir» is a basis of U(Il) * U(Il). 
We multiply the boson bases I (s)[:1r» by the constant 
L ([u]) such that 

L([u1) I(S;I:](y»=L([U])M;~l£,;~laHll 0) 

contains the term a~n I 0) just once when (i) and (j) have 
highest weight in D(n), Then Louck has proven that19 

(36) 
(') " , 

where ltd) =uHug . .. u;p. For example, from Eq. (25) 
we have that L([210]) = \13. From (24) it follows that 

Dg1~~(U) J2/2 J2/2 ulu~u~ 
3 2 

Dg1U(U) o - (3/!2 
2 2 

Dm°izz(U) 1 1 1 

Ciftan and Biedenharn have shown that2Q 

L([u 1) = vH([Iil), (38) 

where H([u 1) is the product of hook-lengths described in 
1. 

We now have an explicit means of calculating the 
canonical Clebsch-Gordan coefficients of D(n) by using 
the factorization lemma. Let 

D [v1 () ,~{( ) ~I[vlp[v1 (j) 
(q)(p) a = '"' \Ll) J)' pq _po aq). 

The factorization lemma can then be written as 

(S)[~ ](1') \ Dz~l(p) (a) \ (II) [*A ~IJI» 
_(H([U]))1/2 ~ C[V1[;\.][U15C[vJ[~][u15 (39) 
- H([A1) T (q)(n)(s) <p)(m)(r) 

where [lI15 is the 6th IR [It J contained in the direct prod
uct [/1] X[A]. Since the left-hand side of (39) can be 
calculated explicitly using the seminormal canonical 
projection operators, we can directly evaluate the 
product of Clebsch-Gordan coefficients of the unitary 
group on the right of (39), Because of the sum on the 
right on (39), only the multiplicity-free coefficients can 
be uniquely determined o 
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IV. FERMION BASES 

From (10) we find the antisymmetric states of U(nm) 
are 

1 [11· . '1]) = !. z: Eq[q] 1 <I>~g). vp, qE..S p 
(40) 

We may construct linear combinations of these anti
symmetric states of U(nm) from the irreducible bases 
of Urn) x U(m) using the Clebsch-Gordan coefficients 
of the canonical bases of Sp. We find that 

l(s}~~17)= (l[U\1/2 ~Eanml(s~u(~»)xl(n;~~)' 

is antisymmetric under all permutations [q] of Sp for 
any standard tableau T~~l). This can be shown, using 
(1. 23) of I, since 

[q] z: E plul p[ul = z: E [7j]p~l[q]p[ul 
n °nm rw _ns n anm 111' _ _ "S 

" p-[Ulp[Ul = Eq LJ Ea ri' Is' t 1m -

(41) 

Hence, I (sf~lm) must be some linear combination of 
antisymmetric bases (40) of U(nm). From (8) we see the 
b . I [ul ). . d 'bl b . I [Ul) I [ijl) f aS1S (s)*(~) is an lrre UCl e aSls (s) X (r) 0 

U(n) x U(m). We shall denote the subspace of all bases 
I (s)~h» of the direct product space I <I>~{l) as 
U(n) *,U(m). 

It is important to determine the antisymmetric con
tent of U(nm) in our bases I (s/~lr» of U(n);; U(rn), for 
this will be equivalent to determining the antisymmetric 
irreducible bases of U(nm) contained in the irreducible 
basiS I z~l) x I f~?) of Urn) x U(m). In what follows we shall 
show a simple and straightforward means of finding this 
antisymmetric content. 

For this purpose it is convenient to use fermion 
operators to generate our bases. We may write our 
antisymmetric basis in terms of fermion operators as 
in (42) below: 

(42) 

where a H II 0) = af1af~ ••. a{~ I 0), and a{t = li{. The fermion 
operators obey the following anticommutation relations: 

[a{ , an = [af, an = 0, 

[at ant = oj}'I';;!'. 

(43a) 

(43b) 

We may also expand the generators of U(n), U(m), and 
U(nm) in terms of the fermion operators as in (15). 

From (42) we see that I (S)~l;:» may be put in terms 
of fermion operators as in (44): 

U _ I l' is'""' - [Ii] [U] (j) I []) 
V[·lV[ul 

(s)*(r:> - (l[UlPI)1/2~E.nmP;r.:~nsa(j)IO). (44) 

By using the anticommutation relations (43), it follows 
that 

[q]a~mO) =EQ[q:-l]a~HIO). (45) 
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From the above relation and (1. 23) of I, we have 

p[U] (j) I 0' p[ul (j) I 0' liT' a q ) y =Ean.--rn a(O /. 

Using (46), we may simplify the expression for 
I (s)~l;:» in (44) to find 

I 
[u] ) = NfulN[ul(l[ul/pl )1/2£ p[ula(U 1 0). 

(s)*'(r:> r s °rm_rs (,) 

If we let 

vrful _ .V[iJl ,,[ul (I [ul/p I )1/2 
1 :J rs - J. r 1" s " 

(46) 

then we have the following simple relation between our 
basis of U(n):; U(m) and the fermion operators: 

I [u] )=E ,1lIulp[ula(~)IO) 
(s) *'(r:> arm rs _rs (,) , (47a) 

or similarly, 

I 
[u] \- U[ulp[ul (il I 0' 

(y);(sy-£orm'rs rsa(j) /. (47b) 

Equations (47) illustrate the reCiprocity between upper 
and lower projection operators for bases of U(m):; Urn) 
and U(n):; U(m). 

We now have a convenient and straightforward method 
of finding the antisymmetric content of U(nm) in the 
irreducible bases of Urn) x U(m) which we call the 
fermion calculus. From the expression ~~~laHi I 0), we 
may find the antisymmetric content of U(nm) in the 
bases I i~5> x I i~?) when the a~n are fermion operators, 
or we may find the symmetric content of U(mn) in the 
bases I i~l) x I im when the a\g are boson operators. 
Hence, the fermion calculus can be generated by the 
seminormal projection operators O;~l acting on fermion 
operators, and the boson calculus can be generated by 
the same seminormal projection operators acting on 
boson operators. 

To illustrate this point, we use the results of Eqs. 
(23a) and (23b) to find the antisymmetric content of 
I !2) x I F> and I i3> x I F) respectively by letting the a H ~ 
be fermion operators. Our case is somewhat special 
since (r) =(17. The fermion basis analogous to Eq. 
(23c) is shown below. 

Q[100lafa~a~ I 0) = 4::!:123ala~a~ I 0), 

=4~~~-~~~+~~~-~~~ 

+ a~a~ai - aiaia~) 10). 

For convenience we let 1/!1=~,+, <Jf=1/!-, <1>1=<1>1+, etc. 
Collecting terms and normalizing the above bases, 
we find 

1!2)X)~>- ') 0 2-
3+ 

1;3)xl~)- = ') 2+ . 
3-

~)x 1+ - -) ') 1/,[3 2-
3-
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(48) 
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