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A calculation of the local density of spin-wave states in a dilute ferromagnet is presented. It is based on a
Green's-function formulation solved within the cluster —Bethe-lattice approximation. The method is compared

with an exact solution for the one-dimensional dilute ferromagnet. We also study clusters of nine atoms in the

bcc structure, and clusters of 7, 19, and 27 atoms in the simple-cubic structure. Our study shows: (i) a

stability condition for ferromagnetism in agreement with percolation theory; (ii) a local structure dependence

of the spin-wave structure; (iii) the existence of localized spin-wave states due to both isolated magnetic

clusters and nonpropagating magnon modes.

I. INTRODUCTION

The study of spin waves in dilute ferromagnets'
is ideally suited for the application of the cluster-
Bethe-lattice method. The Bethe-lattice approxi-
mation is a well-known approximation which has
been used for the calculation of the partition func-
tion of magnetic systems, ' as well as for the cal-
culation of the density of states in interacting
many-electron systems. '

This approximation consists essentially in sub-
stituting for the infinite periodic lattice an in-
finite system of connected "atoms, "with the same
coordination number as the lattice of interest,
but without closed rings of bonds. Alternatively,
in diagrammatic terms, the Bethe-lattice ap-
proximation corresponds to the sum of all paths
in the lattice which are self-retracing and con-
tain no closed loops. Within this approximation
it is possible to obtain, for instance, an analytic
expression for the one-particle Green's function
in an interacting electron system. '

It is also possible, naturally, to apply the same
approximation to obtain the local electronic den-
sity of states in noninteracting systems, within
the tight-binding scheme. Yndurain et gl. ' have
extended the Bethe lattice systematically by using
it to write down approximate boundary conditions
for finite clusters of atoms embedded in infinite
systems. They have called this approach the
cluster —Bethe-lattice (CBL) method. In this meth-
od it is possible to compute, for instance, the
local density of electronic states at the central
atom of a cluster of atoms, attaching Bethe lat-
tices of the same coordination number as the lat-
tice of interest, to the "dangling bonds" of the
atoms at the surface of the cluster. The advantage
of the method resides mainly in the fact that the

boundary conditions, which allow us to embed the
finite cluster in an infinite system, can be ex-
pressed in a simple analytic form. In many cases
it is then possible to obtain an exact, closed-form
solution to the problem. The usefulness of this
approach to the study of the local density of elec-
tronic states of amorphous systems' and alloys'
has by now been extensively demonstrated.

When we decided to study the spectrum of the
one-spin-wave states in alloys and amorphous
magnetic systems, we found that the formal sim-
ilarity of the formulation with the above-mentioned
problems naturally led to the application of the
CBL method to study these systems. Alloys and

amorphous magnets have attracted considerable
interest in view of the fundamental problems they
pose as to the nature of their collective (mag-
netic) excitations. '

As our preliminary results' have shown, the
method does yield very reasonable results for
the local density of one-spin-wave states in the
case of simple clusters. In this work we extend
our previous treatment of the dilute ferromagnet
to include, in addition to first nearest neighbors
in a bcc lattice, clusters of first, second, and
third nearest neighbors in a simple-cubic lattice.
These clusters have, respectively, 7, 19, and
27 atoms.

It is well known that the Bethe-lattice approxi-
mation, when applied to uniform systems, re-
sults in a band narrowing. ' Such a band narrowing
can be traced to the restricted number of lattice
paths which are summed over. In the CBL ap-
proximation, though, states appear outside the
Bethe-lattice density of states, as expected in-
tuitively, since we can imagine approaching the
uniform system by considering successively larger
clusters. In disordered systems, however, the
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band narrowing may be a real physical effect,
owing to the destruction of phase coherence of
the electromc (or magnetic) excitations. Even
so, we also expected to find band "tails" extending
outside the main. body of the density of states,
a feature which the CBL method is particularly
well suited to reproduce. This point is investi-
gated in the present work, by considering the
large clusters mentioned above.

Disordered magnetic systems have also been
studied within the coherent-potential approxi-
mation, by Harris et a/. ,

' Theumann, ' and Tahir-
Kheli, " among others. Our method provides in
a certain sense, a complimentary way of looking
at such alloy systems. Approximations like the
coherent-potential approximation reintroduce
at some point the translational periodicity of the
empty lattice, so as to make use of Bloeh's theo-
rem. This feature makes them appropriate to the
study of extended states but not convenient for the
study of local properties. In the CBL approxi-
mation, on the other hand, the emphasis is put
on the local properties of the system, the ex-
tended properties being treated in a very con-
venient, but nonetheless crude, way.

In the present work, we study the dilute fer-
romagnet, as an example of the application of
the CBL method to disordered magnetic systems.
The dilute ferromagnet is a binary substitutional
alloy, of the form A„B, , (0~x~1). Atoms of
type A have a localized magnetic moment, where-
as atoms of type B are nonmagnetic. To make
use of the power of the method in dealing with
local properties we introduce short-range-order
effects. %'e define a parameter p which is the
probability that the nearest neighbor of a mag-
netic atom is also magnetic. Hence xP is the
fraction of magnetic-magnetic nearest-neighbor
pairs I the alloy.

In See. II, we discuss the Hamiltonian, the equa-
tion of motion for one- spin- wave states, and the
CBL approximation in a form appropriate for
the dilute fexromagnet. In Sec. III, we present
an exact solution to the problem of a dilute fer-
romagnet in one dimension and compare it with
the Bethe-lattice solution. In Sec. IV, w'e study
the simple clusters of (1+8) atoms, in a body-
centered-cubic lattice. We show the connection
between our approach and the usual pereolation-
theory ideas. In Sec. V, we examine more com-
plicated clusters for a simple-cubic lattice and,
finally, in Sec. VI, we present our conclusions.

the spatial distribution of magnetic atoms, from
the different character of magnetic atoms forming
the system, or from both. Hence we employ the
generalized Heisenberg Hamiltonian:

(2.2)

(2 2)

(2.4)

To solve the dynamical problem we employ
Zubarev's formalism. " Since we are interested
below in ferromagnetic systems, we define the
simple Green's function:

(2.5}

The double angular brackets in (2,5) indicate the
time Fourier transform of the thermal average
of the retarded commutator of the two operators.
For T =0, which is the situation we deal with,
the therma1. average reduces to the ground-state
expectation value.

The equation of motion for the Green's function
can readily be derived. Within the one-spin-wave
appxoximation, which cox responds to the decou-
pling

(2 5)

'we obtain

In (2.7) we hs.ve

(2.7)

(2.1)

In (2.1) the summation extends over all magnetic-
atom sites (j).

We define two exchange coupling constants,
which are position dependent: the longitudinal
coupling &(j,j') and the transverse coupling
I(j,j'). The spin operator 5(j), corresponding
to the spin quantum number S(j), is site dependent
in the case of constitutional disorder. It obeys
the usual commutation rules

II. DISORDERED MAGNETIC SYSTEMS

A. Hamiltonian and equations of motion

We want to deal with a disox dered system of
localized spins. The disorder ean originate from

(2.8)

(2.9)

Several quantities of physical interest can be
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computed from G(j, j'~u). The inelastic-neutron-
scattering cross section by one-spin-wave excita-
tions of the magnetic system described by (2.1},
for instance, is related to the dynamic structure
factor, defined by

I.O
SEGREGATED

S(k ~) Q eik'(RP-RPt) G(j jl~~) (2.10)

where N is the number of magnetic atoms in the
crystal.

The local density of one-spin-wave states at
site ) is given by

0.5

p, ((u) = —(1/v)fmG(j, j~(u). (2.11)

B. Dilute ferromagnet

As a prototype disordered magnetic system we
take a substitutional alloy A„B, „. Atoms A have
a localized magnetic moment (spin S) and atoms
B are nonmagnetic (spin zero). The exchange
constants J and I are taken to be of the form

J for nearest-neighbor
J(j, j') =1(j,j') = magnetic atoms

0 otherwise.
(2.12)

Moreover we assume J to be positive. In the uni-
form case (x =1) our problem reduces then to the
case of an isotropic Heisenberg ferromagnet with
nearest- neighbor -only coupling.

To describe the short-range-order effects in the
alloy we introduce a parameter P, the probability
that a given nearest neighbor of a magnetic atom
be magnetic. In Fig. 1 we indicate the nature of
the magnetic alloys resulting from specific choices
of the parameters x and p. In constructing that
diagram we restricted ourselves to lattices such
that a, perfectly ordered binary alloy (x =0.5) can
be formed. Such lattices can be divided into two
interpenetrating equivalent sublattices such that
all nearest neighbors of an atom in one sublattice
lie in the other one. The following limits are
worth pointing out: (i) p =O, x =0.5 corresponds
to the ordered alloy in which all nearest neighbors
of an A atom are of the B type and vice versa;
(ii) p=x corresponds to the completely random
alloy; and (iii) p =1 corresponds to the segre-
gated alloy.

In the spirit of the CBL method we try to solve

This is the quantity which we calculate using the
CBL method.

It is interesting to observe that in disordered
magnetic systems, as can be seen from (2.8) and

(2.9), "diagonal" and "off-diagonal" disorder are
intimately connected. To solve Eqs. (2.7}we
must thus find a way of dealing with the nonperiodic
energies E(j) and "overlap integrals" T(j, j').

00 ORDERED 05 I.O
FIG. 1. Clustering properties of alloys in the x-p

parameter space. If p&x the magnetic atoms tend to
form clusters, if p=x the alloy is random, and if p&x
the magnetic atoms tend to stay apart from each other.
For a lattice composed of two interpenetrating sub-
lattices, such that all nearest neighbors of an atom in
one sublattice lie in the other sublattice, the region
P&2 —x ', for x —0.5, is inaccessible.

and

Ea = 2&S + 2p (z —1}JS

T (n, n -1)= -2JS,
T(n, n+1) =-2PZS,

(2.13)

(2.14)

where the index n indicates the corresponding
"generation" in the Bethe lattice. There are
z(z —1)" ' atoms in that generation.

Eqs. (2.7) by replacing the real structure with its
closed loops of atoms by a Bethe lattice without
closed loops outside a finite cluster of atoms.
Let us then consider a magnetic atom in the Bethe
lattice. There is a single path connecting this
atom with the central cluster. Hence, if a mag-
netic excitation, originating at the central cluster,
reaches this atom, the path must be formed by
magnetic atoms only. Indeed, the presence of a
single nonmagnetic atom along the path is enough
to block off the excitation, because of (2.12). Thus
we distinguish two types of nearest neighbors for
a magnetic atom in the Bethe lattice: the atom
immediately preceding it and the z —1 atoms im-
mediately following it. Obviously a necessary
condition for a given magnetic atom to contribute
to the solution of Eqs. (2.7} is that the atom im-
mediately preceding it in the Bethe lattice be mag-
netic. Keeping the fact above in mind, and using
the interpolation scheme of Ref. 6, we write for
the magnetic atoms in the Bethe lattice which are
connected with the central cluster:
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We observe that this approximation corresponds
to saying that a relevant magnetic atom —i.e.,
one that contributes to the spin-wave spectrum of
the central atom —has one magnetic atom preced-
ing it in the tree and P(z —1}magnetic atoms
following it. In this respect, we have replaced a
fluctuating number of magnetic neighbors in each
following generation by an average number. This
"mean-field" approximation is therefore a very
good one when fluctuations are very small (p very
close to 1}or when the number of magnetic neigh-
bors is large, p(z —1}&1. The scheme is not
very satisfactory when P is small and it gives its
worst possible answers in the case of small z,
in particular z =2, the linear chain. This is so
because for small Pz fluctuations will occur in the
number of magnetic nearest neighbors such that
the continuity of the tree will be broken. The
finite, "island" character of the resulting struc-
ture differs drastically from the average Bethe
lattice we use here.

In the following sections we apply the approxi-
mation above to the CBL calculation of the one-
spin-wave local density of states (SW-LDOS) for
several cases: a one-dimensional chain, where
our approximation breaks down but where we can
test how badly, and two three-dimensional cubic
lattices, where our method should give sensible
answers.

III. ONE-DIMENSIONAL DILUTE FERROMAGNET

In this section we discuss the one-dimensional
dilute ferromagnet with nearest-neighbor inter-
action only. We also present the corresponding
Bethe-lattice solution, based on the scheme pro-
posed in Sec. IIB. The Bethe-lattice solution is
shown to be a very bad approximation, incapable
of reproducing any one of the moments of the exact
density of states, except near P =1. We argue
that this result is directly connected with the ab-
sence of magnetic order, a fact which plays an
important role in the interpretation of the CBL
results for higher dimensionalities. We discuss
briefly the connected problem of the critical tem-
perature of the dilute magnetic system.

The one-dimensional dilute ferromagnet is
formed by finite chains of magnetic atoms sepa-
rated from each other by one or more nonmag-
netic atoms. If we consider only nearest-neighbor
interactions these finite chains do not interact
with each other. The conditions for the existence
of a ferromagnetically ordered ground state are
clearly absent. The finite length and noninter-
action of the chains prevents the formation of a
long-range ordered state even at T =0. The ap-
plication of an infinitesimal external magnetic

field, at T =0, causes the spins in the various
chains to align along the field direction. Under
this circumstance we can then talk about "one-
spin-wave" excitations of the system. It must be
kept in mind, however, that these excitations can
exist only as long as the external field is present.

Since the finite chains of magnetic atoms are
isolated from each other, the spectrum of the
one-dimensional dilute ferromagnet is the weighted
average of the spectra of each finite chain. The
probability that a magnetic atom belongs to a
chain of n magnetic atoms is given by

I.=xp"-'(I —p)' (3.1)

The discrete spectrum of a chain of n atoms can
be shown to be

g„(v) =4 sin'(vv/2n), 0 & v & n —1 (3.2)

where we have taken 2JS =1 and neglected the in-
finitesimal contribution due to the external field.

The density of one-spin-wave states can then be
written down immediately:

00 fl -g

p(~) =x(1 -p)'Q p" ' Q 6(~ —(u„(v)). (3.3)
n=l V=O

It is convenient to separate explicitly in (3.3) the
contribution of the states for which &u„=0 (v=0).
We find

p(~) =x(1 —p)6(u )
OO ]

p(~) = 1+p

(4p —(~-I —p)') '
z (v[2(1 + p) —(u]

(3.5)

where

(1 ~ pl/2)2

We observe that there is a &-function contribu-
tion to the density of states, which vanishes for
P =1. It is trivial to show that this density of
states tends to the exact result as P -1, with the
proper inverse-square-root singularities at the

+x(1 —P}' QP" ' Q 6((u —~„(v)). (3.4)
n=g

We observe that the weight of the & function at
the origin vanishes for P =1. This & function is
connected with the finite size of the chains of mag-
netic atoms and hence its contribution disappears
only when the chains become infinitely long. We
notice that P, =1 is the classical percolation limit
in one dimension.

The Bethe-lattice SW-LDOS in one dimension
is obtained by solving Eqs. (2.7), (2.13), and
(2.14) for z =2. We obtain
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TABLE I. Moments of the density of states ((co —co) )gy for a one-dimensional dilute ferro-
magnet.

Exac t solution
of a dilute lattice

Bethe solution
of a dilute lattice

Perfect lattice
p=f

(coo),„=xp p 2p
((u ),y = x f+p (cu ),„=f

—40(f -p)
240 —238p+ f2p +6p

-f f20(f —p)

p'(5+ 9p+ 5p'+ p') 20

band edges.
Comparing (3.4) and (3.5) we notice that the

Bethe-lattice results yield the wrong weight for
the contribution of the & function at the origin-
and, hence, also for the "band states" (~&0). In
Table I we surnrnarize the results for the weight,
center of gravity, and a few lower moments of
the density of states for the exact dilute, Bethe-
lattice dilute, and perfect one-dimensional "ferro-
magnets. " The following points are worth em-
phasizing: (i) Both the exact dilute and the Bethe-
lattice dilute results tend to the results for the
perfect ferromagnet as x- I, P - I; (ii) the exact
dilute and perfect ferromagnet have the same
density-of-states center of gravity, wher'eas the
Bethe-lattice density of states has a center of
gravity which shifts towards lower values as P -0;
(iii) the Bethe-lattice and perfect ferromagnets
have symmetric densities of states about their
respective centers of gravity; (iv) the exact dilute
ferromagnet has an asymmetric density of states,
the states tending to pile up in the interval 0& a &2
as P-0; (v) the Bethe lattice is a reasonable ap-
proximation to the exact result only near P =1.

That the Bethe lattice should be a bad approxi-
mation in one dimension may seem particularly
surprising in view of the fact that it is a "one-
dimensional" type of approximation. For the per-
fect ferromagnet, indeed, the Bethe lattice yields
the same result as the exact calculation (the Bethe
lattice is the exact calculation). However, for the
dilute ferrornagnet in one dimension we are always
below the percolation limit, i.e., below the value
of P such that an infinite chain ean exist. This is
indicated clearly by the presence of the &-function
contribution to the density of states at the origin.
We take, at higher dimensionalities„ the appear-
ance of such a contribution —owing to finite iso-

lated clusters of magnetic ions —as an indication
of the breakdown of the Bethe-lattice or cluster-
Bethe-lattice approximation. Indeed, we restrict
ourselves later on only to values of P & P, = (z —1) ',
where z is the lattice coordination number, be-
cause for smaller values of P the & function at the
origin appears in the Bethe-lattice density of
states. We can say that, for values of P & P„ the
critical temperature for the magnetic system is
T,&0. The critical temperature approaches zero
as p-p, . In the case of a dilute Ising ferromag-
net within the Bethe-lattice approximation, we can
compute the transition temperature explicitly. "
We find

P(s —1)—1

showing that T,(P =P,) =0.

(3.6}

IV. (1+x)-ATOM CLUSTERS: bee LATTICE

In this section we apply the CBL formalism to
the calculation of the SW-LDOS of a (1 +@)-atom
cluster in a body-centered-cubic configuration
(s =8). Even in this simple case several inter-
esting features of the method will become appar-
ent.

Our system consists now of a (1+a)-site cluster
with a central magnetic ion 0 connected to z atoms,
v of which are also magnetic (v =0 through z). The
bonds of each one of these v magnetic atoms are
saturated with Bethe lattices of coordination num-
ber z and probability P.

The equations of motion reduce in this case to

((u —E,'"')G,',"'(cu) =1 —v TG,'0 '((u),

((u —E„)G'"'((o)=-TGI„",),
—P(z —1)TG'(„"„)„n~ I
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where

T =2JS =1 E'"' =vTt O

E„=T+p(z -1)T,

nial

(4.2)

(P((d) = G(,"'((v)/G('„"', ),((o), n ~ 1 . (4.3)

Substituting this expression back in Eq. (4.1) we

obtain

G" ' = 1/ [cu —v + v((((((d)],

where

(E, —~) +[(~ —&,)' 4p(z —-1)]"
2p(z -1)

(4.4)

The density of states is obtained by averaging
over the clusters with different composition,

We can solve Eqs. (4.1) for Goo'((d) by consider-
ing a transfer function defined by

0.4—
V)

0.2—I-
V)

0.2—
I-
V)

LLj

O

O. I

([c }

v( )=*+v„-—( v.',"'( )),
1

V=O
(4.6)

where the weights P„ follow a binomial distribu-
tion

1

Pv —
((8 )( p (1 —p)' (4. f)

The ambiguity in the double sign in Eq. (4.5} is
solved by requiring the density of states to be
positive and the Green's function to have the pro-
per asymptotic behavior for large ((((j.

The results obtained for values of P equal to
0.25, 0.50, 0.75, and 1.0 are presented in Fig. 2.
In all cases we obtain a continuous band of states
corresponding to those values of (d for which the
square root in Eq. (4.5) is negative. The band
edges are given by

(4.8)

v —p g —1
(4.9)

for O~v&{p(z —1)—[p(z-1)]'~'}. The cluster
with v =0 which corresponds to the isolated central
magnetic ion contributes with a mode of zero fre-
quency with residue equal to (1 -P)'.

This mode does not imply instability of the
ferromagnetic system: It only corresponds to the
zero energy required to flip a spin of an isolated
atom, one that is disconnected from the "bulk"
fer romagnet.

In the high-frequency side localized modes ap-

Localized states corresponding to poles of the
Green's function appear on both sides of the con-
tinuous band. A study of the location of these poles
shows that in the low frequency side they appear
at frequencies given by

FIG. 2. Local density of one-spin-wave states for a
nine-atom cluster in the bcc lattice. The values of p
are (a) 0.25, (b) 0.50, (c) 0.75, and (d) 1.0. 4-function
peaks in the density of states are indicated by broadened
shaded peaks. The density of states is normalized to 1.

pear owing to the contribution of configurations
with a large number of magnetic ions. The fre-
quencies at which they occur are given by Eq.
(4.9) for v& {p(z —1}+[p(z-1}]'~'j. For values
of P lower than the critical value P, = (z —1} '
there appears an extra pole at the origin which
gives a contribution to the LDOS equal to

(4.10)

This mode with zero energy evidences an insta-
bility of the ferromagnetic state, i.e., a "break-
down" of the ferromagnet into isolated, discon-
nected "islands. " This result is in agreement
with percolation theory, according to which for
values of P & P, no infinite clusters of magnetic
ions exist and consequently the ferromagnetic
phase transition cannot occur.

In Sec. V we extend the application to the case
of more complicated clusters with more involved
topological features.

V. HIGH-ORDER CLUSTERS: SIMPLE-CUBIC LATTICE

The close relation between ring statistics in the
lattice and the structure of the local electronic
density of states in perfectly ordered solids has
been amply demonstrated in the literature. ' For
alloys, however, even when the overall shape of
the LDOS is determined by the local environment,
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the correlation with closed-ring topology is ap-
parently not so marked. e In order to study this
effect it is necessary to go to clusters of higher
ox der than the ones considered so far. We present
in the following the results obtained for the SW-
LDOS in a dilute ferromagnet with a simple-cubic
structure.

To apply the CBL method to the study of these
alloys a cluster of 27 atoms was isolated from the
material as illustrated in Fig. 3. This cluster
contains first, second, and third nearest neighbors
of a central magnetic atom. This central atom is
labeled with the number zero. Atoms labeled 1-6
have one dangling bond, while atoms 7-18 and 19-
27 have two and three dangling bonds, respective-
1y. A Bethe lattice of coordination number 6 is
connected to each of these bonds.

Clusters of 19 atoms containing only first and
second nearest neighbors and clusters of seven
atoms containing only first nearest neighbors were
derived from the original 27-atom cluster by re-
moving the appropriate atoms. The different size
clusters are used to illustrate the evolution of the
SW-LDOS with increasing size of the cluster.

For a cluster with a given distribution of mag-
netic ions the density of states at the central mag-
netic ion is obtained using the procedure outlined
below. For each frequency the Bethe lattice is
solved using a transfer-function method and the
problem is reduced to the inversion of a v& v ma-
trix, v being the number of magnetic ions in the
cluster. The difficulty that appears, however, is
that even in the case of the clusters of only 19
atoms, the number of topologically nonequivalent
configurations that needs to be considered and

properly weighted is too large to be handled within

26f
W(v) =,{

'

},x"(I-x}"". (5.2)

In our case we take x =0.5 and clusters are ob-
tained with a number of magnetic ions ranging
from 7-21. A value of P is then attributed to each
cluster by counting the number of bonds between
magnetic nearest neighbors. In Fig. 4 we present a
histogram which shows the distribution of clusters
with P. This distribution is centered about P =0.5
and shows the theoretical Gaussian trend. In the
case of the 19- and seven-atom clusters, the
same value of P was attributed to them as the
value found for the 27-atom cluster from which

they are derived.
To show how the local configuration determines

the overall shape of the density of states, three
out of the 200 clusters are singled out and their
SW-LDOS are presented in Fig. 5. They corre-
spond to values of the probability equal to P =0.33,
P =0.5, and P =0.63.

reasonable computing times. To overcome this
problem, a method similar to that employed by
Falicov and Yndurain' was used.

A set of 200 clusters of 27 atoms is generated
using random numbers and weights compatible
with the concentration x of the magnetic ions in
the material. These clusters are assumed to give
an adequate sampling of all clusters in the alloy.
Let N„be the number of clusters in our sampling
composed of a central magnetic ion and exactly v

additional magnetic atoms (v =0, I, . . . , 26}. The
number N, is defined as

N„=lnt[200W(v)],

where Int(x) is the integer nearest to x and

70—

40—

30K
Ql

20—

10—

FIG. 3. 27-atom cluster including first (1-6), second
(7-18}, and third (19—22} nearest neighbors in the sim-.
ple-cubic structure. Bethe lattices of the type described
in the text are attached to the "dangling bonds" of the
atoms lying at the surface of the cube.

0.2 0.4 0.6 0.8
P

FIG. 4. Histogram showing the distribution of p values
for the 200 randomly selected 27-atom clusters in the
simple-cubic lattice. The parameter x = 0.5.
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0.5

0.4

0.3.
0.2-

0.6-
'I
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O.2-

O.e I-
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0.4—

L

fe)

04—
0.3—

I-
I- 02—

0.1—
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(0)

04— (b)

0.3—
02—
01—

0. 2.5 5.0 7.5 10 2.5 5.0 7.5 10.

0.1

0 25 50 7,5 IO. 0 2.S 5.0 7.5 IO. 0 2.5 5.0 7.5 lo.

FIG. 5. Local density of one-spin-wave states for
three particular clusters. The value of the parameter
p increases from left to right: p = 0.33 (a)-(c), p = 0.50
(d)-(f), and p=0.63 (g)-(i). The size of the cluster
increases from bottom to top: seven-atom cluster
(c), (f), (i); 19-atom cluster (b), (e), (h); and 27-atom
cluster (a), (d), (g). See text for details of the clusters.

The results for cluster I are shown in Figs.
5(a}-5{c}.This cluster is composed of three first
nearest, three second nearest, and seven third
nearest magnetic neighbors. Three out of the
latter seven atoms are isolated; i.e. , no path of
magnetic atoms links them to the central one and
consequently they do not contribute to the local
density of states at the central atom. No complete
rings involving the central atom are present in
this configuration. The ca.lculated spectra show
that localized states appear in the high-frequency
side of the band only for' the cluster of 27 atoms,
although strong peaks showing in the right edge of
the band in Fig. 5(b) and 5(c) seem ready to split
off the band.

A strong peak in the edge of the low-energy side
of the band is present in the three clusters. A
comparison of Figs. 5(a)-5(c}shows a gradual
complication of the spectrum, with a wide central
peak in the 19-atom cluster that unfolds into two
peaks in the 27-atom cluster.

These features are more or less reproduced for
cluster II, Figs. 5(d)-5(f). Here, 14 out of the
27 atoms are magnetic although again two of them
are isolated. In this configuration one closed four-
ring involving the central atom is present.

Cluster III corresponds to the value of P =0.63,
and the LDOS is shown in Figs. 5(g}-5(i). In this
configuration there are four nearest neighbor,
seven second nearest, and only two third nearest
neighbors of the central atom. This makes the

FIG. 6. Restricted-p-average local density of one-
spin-wave states. The value of p increases from left to
right: p=0.50 (a), (b) and p=0.63 (c), (d). The size of
the cluster increases from bottom to top: 19-atom
cluster (b), (d) and 27-atom cluster (a), (c).

spectra of the 27-atom cluster and the 19-atom
cluster very similar, both with a wide central
peak, the 27-atom cluster showing additional
undulations and a completely split-off mode in the
low-energy side. It is interesting to note here that
four closed four-rings are present in this con-
figuration. The strong central peak in Figs. 5{g)
and 5(h) is compatible with the results of a calcula-
tion of the eigenvalues of a closed isolated four-
ring. In this case the spectrum consists of two
coinciding & functions located at the center of the
permissible energy range plus two additional ~

functions, one at each extreme of the range. This
trend is apparently maintained in our example.

In Fig. 6 we show restricted averages over all
clusters in our 200-cluster sample for which

P =0.5 and P =0.63, and for 29- and 17-atom clust-
ers. They are characteristic SW-LDOS for dilute
ferromagnets in which there is a short-range
correlation measured by the parameter P. Local-
ized states appear on both high- and low-frequency
sides of the continuum band. Some of these, which
are very close to each other in frequency, ar e not
resolved in the figure. This is shown by a broad-
ening of the Lorentzian peaks used to represent the
& functions throughout this work.

VI. CONCLUSIONS

The theory presented here as well as the exam-
ples of Secs. IV and V clearly point out the suita-
bility of the CBL method for studying disordered
magnetic systems. In particu1. ar, the method
gives a very sensible description of localized mag-
netic excitations, which appear as &-function-type
anomalies in the local density of states. These
anomalies are due to (a) isolated magnetic clust-
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ers, which give only localized modes including one
zero-frequency mode, and to (b) local excitations
within the "bulk" ferromagnet which do not propa-
gate beyond a few atoms owing to fluctuations in
the local configurations.

Our method shows definite advantages over the
coherent-potential approximation, since it natural-
ly treats on the same footing diagonal and off-
diagonal disorders, which for disordered magnetic
systems cannot be sensibly separated. Since it
includes short-range correlations, as parametrized
in our case by the quantity P, it permits us to
distinguish between different kinds of solids and to

determine the attendant changes in localized and
extended spectral modes.

Our theory can be extended to study properties
other than local density of states. In particular,
we have in mind determination of neutron scatter-
ing form factors, as given by (2.10), and also
thermodynamic properties which include, e.g. ,
temperature dependence of the average magnetiza-
tion.

These studies can also be extended to other types
of magnetic systems. For example, antiferro-
magnets, amorphous magnets, even mixed valence
solids can be tackled with a CBI. approach.
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