A|P $\left.\right|^{\text {Review of }}$
 AIP Scientific Instruments

Cleavage Device for Alkali Halides

C. A. Pelá, J. X. De Oliveira, and Z. P. De Arguello

Citation: Review of Scientific Instruments 44, 1406 (1973); doi: 10.1063/1.1686400
View online: http://dx.doi.org/10.1063/1.1686400
View Table of Contents: http://scitation.aip.org/content/aip/journal/rsi/44/9?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in

Vacuum Cleavage Device for Mica
Rev. Sci. Instrum. 44, 243 (1973); 10.1063/1.1686102
The Additive Coloration of Alkali Halides
Am. J. Phys. 37, 963 (1969); 10.1119/1.1975218
Cleavage in High Vacuums of Alkali Halide Single Crystals—Secondary Electron Emission
J. Appl. Phys. 35, 3279 (1964); 10.1063/1.1713210

Cleavage of Alkali Halide Single Crystals in High Vacua. Analysis of Evolved Gases
J. Chem. Phys. 37, 535 (1962); 10.1063/1.1701369

Solid Solutions of the Alkali Halides
J. Chem. Phys. 10, 187 (1942); 10.1063/1.1723683

Cleavage Device for Alkali Halides*

C. A. Pelá, J. X. De Oliveira, and Z. P. De Arguello
Instituto de Fisica CP. 1170 , Universidade Estadual De Campinas, 13.100, Campinas, Sao Paulo, Brasil

(Received 13 September 1972; and in final form, 27 November 1972)

Abstract

This Note describes a cleavage device for alkali halides. This device was used in our laboratories for crystals of $\mathrm{NaCl}, \mathrm{KCl}$, and LiF with very good results. For this last crystal special care should be taken due to its cleaving characteristics; this harder material is quite difficult to handle. Our success in cleaving LiF under vacuum makes perhaps of general interest a description of the cleaving device. The freshly vacuum cleaved surface offers the possibility of initial nucleation studies of evaporated single crystal thin films. In order to simultaneously meet the needs of heating and high vacuum, the device is made of stainless steel.

The device is shown in Figs. 1 and 2. It consists essentially of : I-holding plate, II-crystal holder, III-stainless steel cutting blade, IV-blade holder, V-hammer, VI-hammer trigger, VII--shutter mechanism. The crystal is indicated by VIII. The holding plate is used in order to fix the whole assembly at the desired place inside the

Fig. 1. Front view picture of the cleaving device. Parts description in the text.
bell jar in such a way that the crystal conveniently faces the evaporation source. The crystal holder keeps the crystal at an angle of 15° with the blade cutting edge. The small plates A and B can be changed in order to fit with precision the crystal size ($\sim 5 \times 5 \times 15 \mathrm{~mm}$). The blade holder can be moved backwards and forwards by means of a slot in the holding plate. This adjustment is

Fig. 2. Side view picture of the cleaving device.
necessary to insure that the blade initially touches the crystal.

The cleavage is accomplished by activating the hammer trigger with a speedometer cable, controlled from the outside of the bell jar using a commercial vacuum feedthrough. The blade is allowed to move by no more than 1 mm . We found that the cleavage of NaCl can be performed using only one spring at the trigger, namely spring 1 , that has a constant of about $300 \mathrm{~N} / \mathrm{m}$. In order to cleave LiF one needs another spring 2 (spring constant $\sim 0.3 \mathrm{Nm} / \mathrm{rad}$).

The cutting edge of the blade must be $\sim 30^{\circ}$. If it is smaller than that, the blade's cutting edge is destroyed and no cleavage is possible. If the angle is larger, the crystal is broken instead of cleaved. This precaution is not so critical in case of the softer materials such as NaCl and KCl . However, when the precautions described above are taken, the rate of cleaving with the described cleaving

Fig. 3. Dislocations etchpits at a typical freshly cleaved LiF surface (100) face ($90 \times$).
device is practically 100%, even at temperatures higher than room temperature. This was observed up to $300^{\circ} \mathrm{C}$.

To give an idea of the remelting surface, the dislocation etch pits at a typical freshly cleaved LiF surface are shown in Fig. 3 where the magnification is $90 \times$.

The shutter mechanism is also activated from the outside by another speedometer cable through a vacuum feedthrough.

[^0]
[^0]: Work supported by FAPESP, CNPq, and Ministério do Planejamento.

