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Coupled modes with A, symmetry in tetragonal BaTi03
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The infrared properties of a system of first-order-coupled phonons are analyzed. The dielectric function
and the Raman line shape of the polariton modes are derived. The parameters involved in the theory
can be obtained from the Raman spectra of the TO and LO modes or from the Raman spectrum of
the TO modes plus infrared-reflectivity measurements. It is shown that we can objectively distinguish
real coupling from imaginary, contrary to the current belief. Numerical calculations are performed for
the A, -symmetry modes of tetragonal BaTiO„with good agreement for the polariton shapes and
complete disagreement for the infrared reflectivity; damage at the crystal surface is pointed out as the
probable cause of the discrepancy. In addition to the coupling between the lowest and the middle
mode, previously known, a much larger coupling between the middle mode and the highest is shown to
exist. Both couplings are shown to be real or nearly so. The discrepancy between the dielectric constant
created by the resonant modes (electronic plus phonons) and the value obtained by electrical
measurements is interpreted as a new indication that the crystal has a dynamical disorder; this disorder
could also be cause of an anomalous broadening observed in the lowest polariton.

I. INTRODUCTION

The Hamiltonian of an isolated system can al-
ways be brought to a diagonal form, which means
that any coupling of the quantum states is reduci-
ble. However, no system above the temperature
0 K is isolated, for we have at least the black-
body radiation connecting it with the environment.
Although there is no true stationary state in such
a situation, in many cases the interlevel transi-
tions of the system, in the absence of external
drive, are so random that the correlation in the
dynamics of any two levels is undetectable. A
good description of such systems is obtained by
just adding a characteristic imaginary component
to each element of the diagonalized unperturbed
Hamiltonian. In some cases, however, the Hamil-
tonian of the system is intrinsically nondiagonal.
The profile of the energy spectrum of such systems
is not composed of a set of Lorentzian peaks, but
contains asymmetric interfering features.

Since the occurrence of coupling in the lattice
modes was recognized by Barker and Hopfield' to
explain the infrared ref lectivity of some perov-
skites, a handful of spectral anomalies in data on
Raman, Brillouin, and neutron scattering were ob-
served and associated with phonon-phonon cou-
pling. As the coupling phenomenon is a tem-
perature-induced effect, it seems probable that its
occurrence will be more frequent in crystal show-
ing other thermal anomalies in the phonon behavior.
In fact, most of the crystals in which the effect
proved to occur, as BaTiO&, SrTiQs, AlPO4,
quartz, potassium dihydrogen phosphate (KDP) and
cesium dihydrogen arsenate (CsDA), undergo a
structural phase transition at some temperature not
far from where the interference starts to be ob-

servable. BaTiQ3 presents three structural phase
transitions, at —80, 6, and 130 C. In the tetrag-
onal phase between 6 and 130 'C the dynamics of
the crystal is complicated. All the three A, modes
of vibration are strongly coupled and two of them
are heavily damped. The lowest optical E mode is
overdamped in all that range of temperatures and
is coupled with the acoustical modes. Further-
more, the values of both components of the dielec-
tric constant tensor are in disagreement with the
values predicted on the basis of the phonon frequen-
cies and infrared strengths. These complications
prevented the clear understanding of the mecha-
nism leading to the phase transitions; opinions in
the literature are divided concerning important
questions, such as whether they are order-dis-
order or displacive phase transitions.

The A, phonons have created some polemic in
the past and the question is still not completely
answered. The Raman spectrum for the A, (TO)
phonons shows three peaks, two very broad and
one (the lowest one) very sharp, but these peaks
have many strange properties. One is the striking
asymmetry of the lines; another is the permanence
of the two broad peaks in the phase above 130 C,
where the 0& symmetry ascribed to the crystal
does not allow any first-order Raman scattering.
The thirddifficulty is the failure of theA~ phonons,
if we assign these three peaks as the A, (TO), to
explain the low-frequency value of the dielectric
function along the ferroelectric axis. Prior in-
vestigators' '" interpreted the two broad peaks as
coming from second-order scattering, and their
interpretation found some support in the fact that
most perovskites show strong second-order scat-
tering but they~o'x~ did not pay any attention to the
very weak intensity of the peaks for experiments in
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the A, (LO) configuration. Since second-order scat-
tering should be almost direction independent, this
comes in contradiction with their interpretation.
Pinczuk et al. ' observed that the broad peaks shift
to lower frequencies in the polariton region of
small wave vectors, an effect expected to occur
only with transverse- optical one-phondn levels,
and assigned the two bands as A~(TO). They did

not attempt to explain the permanence of the bands
in the paraelectric phase. Unfortunately, the
measurements of neutron scattering by small-
wave-vector phonons in BaTiQ3 were limited to
energy losses smaller than 25 meV (200 cm ') and

only the lowest A, (TO), positioned at 178 cm ',
could be observed. '

Comes et al. ,
' basing their work on the observa-

tion of some anisotropic diffuse elastic scattering
of x rays in BaTiQ3 and KNbO3, proposed that
these crystals, and presumably also other perov-
skites, have a disordered structure. The Ti (or
Nb) does not sit on the C4 axis of the crystal, but
at one of eight positions on the body diagonals of
the cell. In the paraelectric phase, the eight sites
would be equivalent and then the crystal would be
cubic on the average. This kind of disorder can
explain the permanence of part of the first-order
Raman scattering in the paraelectric phase of
BaTiO„being a fast phenomenon, the Raman scat-
tering employs the instantaneous symmetry of the
cell instead of the average one. However, it mas
shown by Huller' that the site disorder is not
required to explain the anisotropic diffuse scatter-
ing of x rays, for the dynamical disorder resulting
from the overdamped optical phonon of E symme-
try can give the same effect. This view mas
adopted also by Harada et al. to explain a diffuse
quasielastic scattering of neutrons by cubic BaTiO3.

In a previous work, we investigated the "me-
chanical" coupling of the two lowest A, polaritons
of tetragonal BaTiO, .' The electromagnetic cou-
pling of the modes was not considered explicitly;
consequently, the dispersion of the polaritons gen-
erated a new set of effective parameters for the

system at each different angle of scattering. That
kind of approach, although very useful in the study
of the behavior of the polaritons, cannot give a
comprehensive understanding of all the infrared
properties of the crystal. In fact, one wants to
know if the observed shapes for the polaritons can

I

be explained by the parameters contained in the
TQ and LQ spectra, a question which is left open
in that approach. Benson and Mills' considered
the electromagnetic coupling in their study of the
polaritons. However, their work had some limita-
tions that must be overcome if the desired com-
prehensive view is to be achieved. They chose a
set of parameters mhich was able to give the best
explanation of the available data on polaritons; this
set was found to be unique. However, according
to the current belief, there are infinite sets of
parameters which would give exactly the same fit-
ting, and the contradiction is not answered by these
investigators. They also did not consider the very
large coupling between the second and third Al-
symmetry modes. Finally the coupled-modes
model was not applied consistently to the calcula-
tion of the mode strengths. In this paper, we
evaluate the dielectric function and the Raman line
shape of the polaritons, starting from the Raman
spectra of the TQ and LO modes. Numerical cal-
culations are performed for the A, modes of
BaTiO, . Some emphasis is given to the discussion
on the transformation properties of the system.
Previous workers concluded that the formulas for
the dielectric function and the Raman line shape
were invariant under unitary tfansformations and
used some kind of heuristic criterion to select one
particular representation for the coupled-modes sys-
tem. That invariance is shown to be only apparent
and not true for modes which carry electric dipole
moment.

II. RESPONSE OF THE CRYSTAL TO EXTERNAL
MECHANICAL FORCES

I.et the crystal have 3N optical modes of vibra-
tion, which means that the unit cell has N+ l
atoms; e„and eo, respectively, are defined as
the optical and static dielectric tensors; the elec-
tronic vibrations are represented by a set of three
oscillators, each one polarized al.ong one of the
principal axes of e„. For crystals with ortho-
rhombic or higher symmetries the polarization of
the lattice modes is also aligned along the princi-
pal axes of e„, which implies that eo and e„can
be diagonalized simultaneously. %'e will restrict
ourselves to these highly symmetric crystals and

will introduce couplings between the 3X+ 3 modes
according to the classical equations below:

3N

M„(W„+y„W„+ a„W„)+ g (M„M )
~ (y„„W„+uF„„W )

3 3

+ Q(M, m, )' (yJWg+ ~„JWy)+ go!„y(W„-Wg) —Z„e„'8=Ii„, v= 1, 2, . . . , 2N
j=1
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SN SN

mg(Wg+yg Wy+ ~g W~)+ Q (mgM„) (y~„W„+(d~~W„)—Q a~„(W„—Wg) -z~E)=E~, j= I, 2, 3 .

x„=(M„)'"w„, q„=(M„)-'"z„. (2a)

This transformation is convenient because the ex-
pression for the crystal polarization will stay in-
variant,

Zw„z„=Zx„q„, (2b)

and so will the expression for the electric field.
The linearized equations (1)will transform to

SN+S

g (- ~'6„„—i&ay„„+~„'„) X(~, q)

—q„e„E((o, q) = f„((u, q),
where the forces have also been transformed: f„
= (M„) '~~E„. We have made the convention that
y

-=y„, and &u„„-=to„, when writing Eqs. (1').
To solve Eqs. (1') we need first the expression

for the electric field in terms of the normal-co-
ordinates amplitudes. That expression comes
from Maxwell equations

1 8p'x E= ——
Bt

DP'x H=-
c St

D and E being connected-by

SN+S

D= E+4vP= E+ Q O„x„q'„

where V is the volume of the unit cell. The effec-

In the Eqs. (1), W„and W& are the amplitudes of
the motion along each mode; E„and E& are exter-
nal forces acting on each mode; M„, m~, and Z„,
z~ are effective masses and effective charges asso-
ciated with the modes, and E is the electric field
induced by the crystal polarization; v (or p, ) labels
the 3N ionic optical modes and j labels the three
oscillators representing the electronic transitions.
E is simply the macroscopic field inside the crys-
tal, and the corrections for local fields are in-
cluded in the effective charges.

The nonlinear coupling between the electrons and
the modes is necessary in order for a nonzero Ra-
man effect to occur, but it is too small to affect
considerably the response of the set of oscillators
to external forces. So, our first step is to make
the system linear and evaluate its response func-
tion.

We can make the system look simpler with the
transformation

A A 4m A A

Tq —4vq- , qq+ z z z (6,q-q, qq)qc /&o —1

The electric field will be given by

S SN+ S
1

g& i g=i

(4)

where e„and e& are the polarization directions of
the modes.

The equations (1') can now be written only in
terms of X„and f„:

SN+ S

—(d 5„„-iWy„„+ &OS„X„

SN+S

Q T;qP) (d'„6„) ~ 0q q„q„'X„=f„.
1 4 ~ J 1

It is convenient to group the whole expression
~ultiplying the charges in a short symbol:

S

4'„„((u, q) =QT, q((u, q)e( ~ (e„e„)~ e),
&eJ

then Eq. (6) becomes

SN+ S

+ (- ~'6..- i~y..+ ~.'.—q..q, q'. /v)x. = f..

What we were really looking for are the suscep-
tibilities 6„„,such that

X.(~, q)=QG..(~, q)f. (~, q), (6)

and Eq. (6') implies

G„„'(&o,q) = —&oz6„„—icky„„+&u„„—4,„(&u, q)q„q'„/V.
(&)

The susceptibility must be invariant to the inter-
change of parameter indices:

This means that

vg —~f,u y &vf, =&f,v y @v@f —@I @v ~

tive charge Q'„defined by this relation cannot a
Priori be identified with Q„. Taking 8= H, the
wave equation gives the following relation:

—q(q E)+q E= (uF/ c)[E+ (4s/V)e„x„q'„]. (3)

The three-dimensional matrix T is defined by

4vT &z=(q'c'/~' 1)6~-, —(q'c'/~')qiq»

which means
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The last relation can be rewritten as Q' = UQN (1lc)

G ~vp(~~ 9)= —~ &vg —i~'4p+ ~vg

—(4v/1')(q'c'/~'- 1) ' Q.Q. .
Writing Eq. (8) in matrix form

X=6 f

and setting the unitary transformation

X.'= UX.
f'= Uf

Eq. (8') will transform to

X'=UG U f'.
This means that the 6 matrix transforms as

(10)

(1la)

(1lb)

6~= U GOU

Equation (10) implies that the charges transform
as

Q'„/Q„= Q„'/Q„= const .
A trivial solution to this proportionality is Q„'= Q„
for all modes. Huang' has shown that this is the
only solution compatible with energy conservation.

Some further discussion of the properties of the
G matrix shown in Eq. (9) is appropriate. Let us
first see how it looks when q is parallel to one of
the crystallographic axis. In this case, the ma-
trix T is diagonal and consequently 4„„will be
zero if the modes v and p, do not have the same
polarization direction. This means that only
modes of the same polarization and consequently
of the same symmetry will be coupled by their
mutual field. Furthermore, we can see that only
modes of the same symmetry will be coupled by the
harmonicities of the crystal. In fact, the whole
potential, and then also its anharmonic part, must
have the symmetry of the crystal; this corresponds
to saying that the operator that ~ould describe the
interaction of modes is a scalar in that symmetry
and cannot couple base functions of different irre-
ducible representations of the symmetry group.
We can then conclude that ~„„and y„„are zero
if the modes v and p. do not have the same
symmetry.

Since modes of different polarization are de-
coupled, we can, when q goes along one of the
crystallographic axes, block-diagonalize the ma-
trix G. Consider now one such block, to be des-
ignated by G . For transverse vibration of these
modes, we have

We now examine the interaction of the system
with light. The nonlinear coupling of the electrons
and the modes will be responsible for changes in
the frequencies of light. In addition to higher har-
monics of the incident light, it will cause the ap-
pearance of sidebands, or the Raman effect. The
sidebands are the mixing of the incident frequency
with the frequenices of the modes of the system.

The Raman scattering will be proportional to
( [ p [~)„, the fluctuation of the electric dipole
moment of the crystal at the scattering frequency

This dipole comes only from the electron
motion, because the ions are too massive to move
at the frequency of visible light. The nonlinearity
of Eqs. (1) now becomes essential. We will cal-
culate this dipole moment only for the case in
which the laser field is along a given crystallo-
graphic axis. Since the electrons are decoupled
between themselves, the extensions to oblique
phonon can be made following the same method.

Suppose the laser field is given by
-i(tag, t -@JAN)L8 (13)

This field will move one of the electrons, which
oscillates along z; this electron will also be
driven by the induced field of the thermally excited
lattice modes, by the "mechanical" forces coming
from the coupling with the ions, and by random
forces of varied origin. The amplitude of its mo-
tion at frequency &,= (d~ —~ and wave vector q,
= p~ —q will be dictated by the equation

n

(- ~,'-i~,y, + &o,')X,(~,) —2(m, ) '~'go„[X~(~)
p= 1

X*,((u)] [X,(~, ) --X„(~,)]=Q,Z(~, )+f„. ((u,),
(14)

~here f&&„~ represents the purely random i'orces.
The contribution of f,„,~ to X,(&u, ) will give origin
to blackbody radiation of the crystal. This is the
spontaneous radiation which exists superimposed
to the true Raman light, but at temperatures which
are not too high; this radiation is negligible. The
Raman oscillation of the electron is

It must be emphasized that the transformation
(llc) results from the complete isotropy of the ma-
trix 4„„in the very particular situation considered.
In the general case the transformation of the ef-
fective charges is complicated.

III. RAMAN SCATTERING

[- &u,
' —i ye), + u)2 —4 ((u„q,) Q~]x((o, ) = 2X(~r)Q P„[x~((u) —X"(~)]
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2QEz Z. P.[X*(~)—X'.(~)]
[ ~x (l&~a+ (dx- @(~())(fa)Q I[ (dc~ f&~z+~x @(~s, ) &z) @ 1

The corresponding electric dipole moment is

The scattered intensity is proportional to the
power spectrum of the square of the dipole mo-
ment:

Defining

n n 12

=(c('( x( )P))„-P))„x„(), ) .
(16)

X=Xn. . .
%e now have

(16)

P((d, )= @X(()()= C((dz, (u )Ez+P„[X ((a)) —X*„((d}J.

IV. DIELECTRIC FUNCTION

The dielectric function of the system is calcu-
lated with a procedure very similar to that used in
the evaluation of the response to external mechani-
cal stimuli. The stimulus to be considered now is
the total macroscopic field inside the crystal and
the response is the total polarization. The elec-
tric susceptibility tensor is defined by.

3

totP =XX(&E&
)=1

(20)

For crystals with orthorhombic symmetry or
higher, any mode is polarized along one of the mu-
tually perpendicular crystallographic axes, and

this means that a field along one of the axes will
not produce polarization along the other two. Then,
the crystallographic axes are the principal axes of

X;&((d), for any frequency, and we just have to
know the components X„„, X~, y„.

We will start again from Eqs. (1') and put the
external forces f„equal to zero Ewil.l be aligned
with one of the axes, let us say e, and consequent-
ly only the n modes and the electron polarized
along a are involved:

=IC I'g P„P „{X„X„}„.

n+1

X„+y„X„+(d„'X„+ g (y„„X„+~„',X„)= Q„E '
(21)

All the correlations appearing in Eq. (1V) are de-
fined by the temperature and the response function
of the system, according to the Nyquist theorem:

—co) h
n+1

' )=I I'-, [( ) ]Zp.p. ..( )
L (18a)

Formula (18a) shows that the Raman efficiency is
given by a quadratic form of the imaginary part
of the G matrix. The number of independent am-
plitudes P„composing the quadratic form is equal
to n, the amplitude which corresponds to the elec-
tronic mode is related to those associated with the
lattice modes by relation (16).

Defining 6= 0'+i 0", we finally can express
the differential Raman cross section in the matrix
form

c [n(&u)+ lj p~6 p (18b)

where P» is the vector defined by

or in matrix form

X= G(~, ~)QE"'.
Consequently,

x(~)=Q'6(~, )Q,

(22}

(28)

so the electric susceptibility is just another qua-
dratic form of the G matrix.

The dielectric function. is given by

e ((c}=1+4vQ' 6 ((d, ~)Q (24)

where the index o' is now introduced to emphasize
that we are talking about the component along the
crystallographic axis n.

V. DETERMINATION OF THE PARAMETERS

The parameters involved in the theory are (i)
the frequencies (d„and linewidths y„of all the
modes of a given symmetry, and consequently, a

Looking back at the definition of the G matrix, we
can write

n+1

P G„,'((d, ~)X„=Q„E '
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given polarization; (ii) the reactive (&o„„)and dis-
sipative (y„„}coupling between all the modes; (iii)
the effective charges Q„of all the modes; and (iv)
n independent Raman amplitudes. %'e should re-
member that the total number of modes is n+ 1:
n lattice modes and one electronic mode. The
total number of parameters is

(n+ l)(n+ 3)+n .
This number is very large even if n is relatively
small. For example, for tetragonal BaTiO3,
where we have three modes of symmetry A„.
i.e. , for n, = 3, there are 2'7 parameters avail-
able. The parameters to be determined from in-
frared ref lectivity or Raman scattering can usual-
ly be reduced, as discussed below.

For transparent crystals, the frequencies of the
electronic modes are far above the frequencies of
the lattice modes, by a factor typically in the
range 10'-10 . This means that unless we have
a large first-order coupling between the electrons
and phonons, (i) the mutual interferences will be
undetectable, and (ii) the indexes of refraction
will depend only on the electronic modes. The di-
electric function in the visible will be given by

e"= 1+4m@,/~, (25a)

or
i- 1(2—1

q C (25b)

The effects of the damping are already negligible
in the visible (this is why the crystal is trans-
parent) and, with more reason, in the infrared.

is to be taken as the edge of the absorption band
for light with n polarization. So, it is a good ap-
proximation to take the electronic modes as un-

damped oscillators with no first-order coupling
with the phonons. The frequencies and effective
charges of these oscillators are obtained from
measurements at visible and uv frequencies. Now,
we are left with n(n+ 3) parameters, 18 for the A,
modes of BaTi03.

Part of these parameters can be determined by
the measurement of the reflectivity in the infrared.
The normal reflectivity is given by the textbook
formula

G'(~ ~)- U 6(& ~) U~ (28)

G(~, ~)= U G(~, ~) U'.

These invariances of the functions c(~) and S(~)
led the previous investigators to conclude that all
the representations obtained by UT are equivalent.
However, this is not generally true for modes
which are infrared active. In fact, the transfor-
mation of the effective charges expressed in Eqs.

CD
0 0

will not change the dielectric function. As the only
a Priori condition is that we do not want the elec-
tronic mode to couple with the yhonons, there is
complete freedom to rotate the space of the n lat-
tice modes. The set of all the n-dimensional or-
thogonal matrices has —,

'
n(n —1) independent pa-

rameters, which means that we have ~n(n —1)
more parameters than the minimum required to
fit the data. Looking at the matrix G '= (G ')'
+i(G ')", we can see, in another way, the same
number of surplus parameters. As (G ')' and
(G ')" are both symmetric and real, we can diag-
onalize either of them by an orthogonal transfor-
mation. However, because (G )' and (G )" do
not commute (if they did, the system could be en-
tirely decoupled), they cannot be diagonalized si-
multaneously. So, we can choose to have either
pure-real or pure-imaginary coupling for all the
modes, and then have —,'n(n —1) less parameters
than before. The same kind of discussion can be
held about the Raman spectrum of the large-wave-
vector TO phonons by just substituting P for Q. The
6 matrix can be split according to

G '(~, W)= & '(~, ")-C'(~,q)QQ' (2~)

G (&, ~), and then also G(&u, ~), does not contain
the charges. The spectrum of the large-wave-vec-
tor TO modes is

(30)

which is invariant to

|3= UP,

l[e(~)]'"- ll'
( )-

() ( ))izz i~a . (26}

O'= UQ, (2'1)

Although being a real function, R(&u) gives com-
plete information about e(&u), owing to the Kra-
mers-Kronig relations. However, the set of pa-
rameters which can define a given spectrum of
B(~) is not uniquely defined. ln fact, the orthog-
onal transformation

IOO 200 300 400 500 600 700
FREQUENCY (cm'I

FIG. 1. (ZZ) spectrum of the A~(TO) phonons in the
tetragonal BaTi03. The continuous line is the best fit to
the experiment.
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727 X(ZZ)X +aZ

I . i

700 600
I

500 400 500 200
FREQUENCY (cm ')

IOO

FIG. 2. (SZ) spectrum of the A~(LO) phonons in te-
tragonal BaTiO3. The broad features around 270 and
520 cm apparently are the A~(TO) phonons scattered by
the fraction of laser light which is reflected at the exit
surface of the crystal.

(llc) and (2V) are not compatible with the trans-
formation of the G matrix, except in the particular
cases previously discussed. Then we can conclude
that there is only one representation in which all
the observable quantities of the system fit con-
sistently into the same description.

VI. APPLICATION TO TETRAGONAL BaTi03

Numerical calculations on the line shape of light
scattering by polaritons with A, symmetry in
BaTiO3 were performed for the two extreme rep-
resentations of the system: the representation in
which the couplings are real and that in which the
couplings are pure imaginary. The parameters
&„, &„„, y„, y,„, and P„were obtained from the
fitting of the spectrum x(zz)7. This spectrum with
the best theoretical fit, is shown in Fig. 1. We
did the fitting for both pure real and pure imaginary
couplings. The coupling between the middle and
highest polaritons was much larger than that be-
tween the lowest and the middle ones, although this
last coupling gives origin to more line asymme-
tries. The coupling between the lowest and the
highest was fixed at the value zero, to allow less
fitting parameters; this is a reasonable approxi-
mation because they are too far from each other,
having no spectral superimposition. When we ro-
tate /he matrix with real coupling to obtain another

e'(~„)= 0, v = 1, 2, 3 (31)

where e'(u&) is the real part of the function given
by Eq. (25}. The charge of the electronic oscilla-
tor was calculated from the value of the high-fre-
quency dielectric function e,"= 5.07. All the oscil-
lator parameters are shown in Table I for both
representations. The parameters P„and Q„were
transformed to the more practical forms

x.= (P./~. )

(4 )1/2q (y~z) 1/2 (4 )1/2g (y)if ~2) 1/2

We included in Table I the infrared strengths cal-
culated by Pinczuk et ajt. ,

' without considering the
coupling.

One clear thing in the table is that with imag-
inary coupling, the frequencies and linewidths of
the phonons are close to what we would guess just
by visual examination of the spectrum. This is
reasonable because of the following: The imag-
inary coupling is zero at zero frequency, as in
fact required by Kramers-Kronig analysis. This
means that if the Lyddane-Sachs- Teller (LST) re-
lation is to work, the uncoupled complex frequen-

matrix with imaginary coupling, we will obtain, in

general, a finite imaginary coupling parameter y»
even if we start from (d» equal to zero; but that
number (y~z) proved to be very small. As a con-
sequence, even after the approximation above, both
representations gave the same fit to the data.

The charges Q„Q~, and Q3 were calculated
from the zeros of the dielectric function. The
complex zeros of that function must be the complex
frequencies of the longitudinal-optical modes.
Figure 2 shows the spectrum of the A, (LO) pho-
nons. The broad bands around 270 and 520 cm '
have every indication of being the A, (TO) which
appear because of the back reflection of the laser
at the exit surface of the crystal. The three
A, (LO} were assigned to the three peaks at 190,
475, and 717 cm '. As the peaks are sharp, the
imaginary part of the frequencies was neglected,
and the three charges were calculated from the
set of equations

TABLE I. Parameters associated m'ith the zone-center A~(TO) phonons in tetragonal
BaTiO3. The parameters or„, p~ o)~, and g~ are measured in cm; the parameters X„have
arbitrary units and S„are pure numbers.

real coupling
imag. coupling

2. 0 179 126.5 368
3.2 177 89.7 283

Xg

5.5
40. 6

X3

463 0
520 12.2

Sg

82. 7 0
0 54. 5

$2

294
0

real coupling
imag. coupling
Pinczuk et al.

0.48
0.039

17.9
17.8

0.22
3.9

1.55
2.29
2. 78

—3. 89
—4, 34

4.63

0.473
1.15
1.00
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CALCULATED POLAR ITON

SHAPE IN 8aTio~
t IMAGINARY COUPL INQS)

count for less than 207o of the experimental line-
width of the lowest polariton. The increased damp-
ing can result from two different sources. One is
the different two-phonons background felt by the
polariton when its frequency goes toward zero.
The most general dependence which y can have
with ~ is of the form

y=yo(1+a&v +b(u4+C(O6+ ~ ~ ~ ) . (32)

I I I I I

IOO aOO ~OO ~OO 5OO 6OO ~OO

FREOUENC~ Icm ')

FIG. 3. Calculated shape of the polaritons with A~

symmetry in tetragonal BaTi03. Model of real coupling.

cies of the phonons in that representation must be
the complex poles of the dielectric constant. The
oscillator charges in the model of imaginary cou-
pling are also very close, in absolute values, to
what was obtained by Pinczuk et a/. However,
when the coupling is neglected, one can never
know the relative sign of those charges.

The representation in which the couplings are
real gives a completely different description of
the situation: The crystal has only one mode with

high intrinsic damping, the one which peaks at
2V0 cm '. The highest mode becomes broad be-
cause of the huge coupling that it has with the
damped mode; this coupling causes also a very
large repulsion between the two highest modes.
Figures 3 and 4 show the polariton shapes calcu-
lated with the parameters of Table I for real and

imaginary coupling, respectively. in the calcu-
lations, the corrections due to the reflection of the
laser at the exit surface of the crystal were made,
so that a fraction of the large-angle spectrum
stays there for all angles. The polariton shapes
are different for real and imaginary couplings,
and both fail miserably on predicting the broaden-
ing of the lowest polariton at small scattering
angles. It becomes very clear that a damping of
the form —i ~@, y being a constant, is not a good
description for that polariton when it shifts to
smaller frequencies. Part of the observed broad-
ening is due to the finite solid angle of scattering
involved in the experiments, but these effects ac-

1 g(d
'Y= 'Yo+ & c 80 (33)

where yo is the very small damping of the corre-

CALCULATED POLAR ITON

SHAPE IN BoTios
t REAL COUPLINGS)

O IOO 2OO MO 4OO SOO KO 7'OO

FREQUENCY (cm j

pIQ, 4. Calculated shape of the polaritons with A&

symmetry i.n tetragonal BaTi03. Model of imaginary
coupling.

In order to explain the observed linewidths, we
must assume that the function inside the paren-
theses has a peak in the region below 150 cm ',
or that it is a monotonically decreasing function
of (d. This view finds some support in the fact
that the lowest E(TO), whose real frequency is
36 cm ', is overdamped, having a damping con-
stant y equal to 90 cm '. Ho~ever, the frequency
dependence suggested by Benson and Mills, 18

y
= y, /~, cannot be accepted, because the. resulting
dielectric function would not obey the Kramers-
Kronig relations. The other possible explanation
for the broadening is the probable dependence that
the damping of a wave packet in an imperfect crys-
tal has with the group velocity of the wave. The
observed linewidths can be explained if we assume
that y is frequency independent but varies with the
group velocity according to
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CALCULATED DIELECTRIC FUNCTION

( REAL PART }

PLED OSCILLATORS

OUPLED OSCILLATORS
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FIG. 5. Calculated dielectric function of tetragonal
BaTiO3 along the ferroelectric axis. Heal part.

sponding A, (TO). The constant o. would be about
10 cm '. From this value we see that the quasi-
particle associated with the lowest polariton would

have a mean free path of about 20 pm, indepen-
dent of the frequency. In this model, the decay
of the lowest polariton is due primarily to defects
in the crystal, for instance the ferroelectric do-
main walls, Even if BaTiQS crystals do not have
orthogonal domains, their structure is apparently
composed of a set of antiparallel needle-shaped
domains along the ferroelectric axis. As the A, -
symmetry polaritons travel necsssarily in the xy
plane, they can be badly distrubed by the domain
walls. In the model of Comes et al. , the chain
structure of the polarization correlation is what

causes the anisotropic diffuse scattering of x rays
and thermal neutrons discussed in Sec. I.

The representation in which the couplings are
real gives a picture of the polariton shapes which

is closer to the experimental facts, in all respects.
The important features of the interference are
reasonably well explained by taking real couplings.
It fails, however, to give the correct intensity for
the polariton corresponding to the A, (TO) at 520

cm ', at very small angles. It should be weaker,
due to the low intensity of the A, (LO) at 475 cm '

shown in Fig. 2. However, the imaginary coupling
fails even more remarkably on predicting the be-
havior of that polariton. As a conclusion, it seems
to us that purely real coupling is a more success-
ful assumption than pure imaginary coupling and,

consequently, the more important part of the com-
plex coupling in barium titanate is its real corn-
ponent. Another fact favoring the assumption of
real coupling is the behavior of the parameters
when they were free to fit the data. The variation
of the coupling parameters with the scattering
angle is shown in Ref. 17; the imaginary coupling
changed notably with the varying scattering angle,
while the real coupling stayed quite stable all the

time.
The dielectric function shown in Figs. 5 and 6

was drawn using real coupling. The imaginary
part of the dielectric function is, as it should be,
a function very similar to the Raman spectrum of
the transversal modes, disregarding the obvious
changes which result from the difference between
the Raman and infrared strengths. For instance
the shoulder seen in the Raman scattering of

A, (TO), around 200 cm ', does not appear in the
function e "(~) because the effective charges of the
lowest and the middle modes have opposite signs.
After we decouple the modes, the middle pole of
e becomes even broader than before and the high-

est pole becomes beautifully sharp, and they shift
toward each other. It is clear that the coupling
has a much bigger effect on the second and third
poles than on the first one.

The low-frequency value of the dielectric func-
tion, so= 32.9, (see Fig. 5) agrees very well with

the value 33+ 3 obtained from the slope of the low-
est polariton branch; it is amazing to see that one-
third of that value is due to the coupling between
the phonons, for after we decouple them the value
of low-frequency dielectric constant decreases to
only 23. However, both values are much lower
than the low-frequency value of e obtained by
capacitance measurements. Wemple et al. re-
ported the value 80 for the dielectric constant
along the ferroelectric axis at 250 MHz. The fre-
quency of the measurement was high enough to
eliminate any effect due to the piezoelectric reso-
nances.

Once the dielectric function is known, we can
calculate the normal incidence ref lectivity of the
crystal in the infrared; the resulting curve is
shown in Fig. '7. The discrepancy between our
calculation and the measurements by Spitzer et
al. ,

' Ikegami et al. , Ballantyne, and Barker
is radical. However, the significance of this de-

701 I
I

~

60-

40-

30-

20

IO

a I i I, I I

l00 200 300 400 500 600 700
FREQUENCY (em )

FIG. 6. Calculated dielectric function of tetragonal
BaTi03 along the ferroelectric axis. Imaginary part.
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FIG. 7. Normal-incidence reGectivity in tetragonal
BaTi03 for infrared light polarized along the ferroelectric
axis ~

parture is questionable. All those works, except
that of Spitzer et a/. , were performed on multi-
ple domain samples and, consequently, do not
discriminate between A, and E modes. Surprising-
ly enough, Spitzer and co-workers also could not
detect any change of the ref lectivity for light po-
larization parallel to and perpendicular to the
ferroelectric axis; based on the marked distinc-
tions in the properties of the A, and E phonons,
one should expect very noticeable differences be-
tween these two spectra. However, the differences
do not exist and, in fact, the spectrum by Spitzer
et al. differs from the measurements on ceramic
performed by Ikegami et al. only in the details of
a sharp resonance at about 180 cm '.

The skin depth of the infrared light below 600
cm ' in BaTi03 is very small, owing to the large
imaginary component of the dielectric function in
that region. From Fig. 6, we see that light po-
larized along z does not penetrate more than a few
microns, for most of the frequencies below 600
em '. The penetration depth of light polarized in
the xy plane should be even smaller, due to the
overdamped E(TO), which has a huge infrared
strength. Consequently, the properties of the
crystal surface are more important than the bulk
on determining the characteristics of the reflec-
tivity spectrum, and any surface damage resulting
from the sample preparation is expected to affect
strongly the measurements; in BaTiO3, the ferro-
electric order near the surface of the sample is
especially vulnerable; we discovered from some
unfortunate experiences in our work, that apparent-
ly minor things, such as the thermal shock caused
by the fast evaporation of volatile liquids when

cleaning the crystal, would damage its surface.
Qne striking point on the Raman spectrum of the

phonons of A. , syrnrnetry is their qualitative depen-
dence on the polarizability element. It is common-

ly believed that no change other than alterations of
the relative Raman strengths of the modes can ap-
pear when one selects different polarizability ele-
ments of the same phonons. The changes of the

strengths occur because different electrons partici-
pate in the Raman process for different tensor
elements. In barium titanate, however, when one
goes from a„ to n„„the interference shapes change
completely. The middle A, (TO) now peaks at 28V

cm ' (instead of 270 cm '), and stops interfering
with the lowest mode. The polariton shapes,
probed at the element a„„, are shown in Fig. 8 for
a few scattering angles. At small angles such a
change would be easier to understand because of
the birefringence of the crystal. The electronic
modes polarized along the two directions have dif-
ferent charges, which could affect the polariton
shapes; even this effect could hardly occur in

BaTiOS, because co is much larger than e„, which
ascribes little importance to the electronic modes
in the determination of the polariton curves. We
can think of two effects that could result in those
changes. Qne is a very large first-order coupling
between electron and phonons. Because different
electrons are involved in the Raman events de-
scribed by the two tensor clem nts, that kind of
coupling could give origin to important changes in
the spectra. However, the coupling parameters
able to explain the observed changes have to be ex-
tremely large. Another possible explanation is to
suppose that in BaTiO, we have interference be-
tween the phonons and the second-order background,
in addition to the phonon-phonon interferences. As
the second-order background looks very different
for the polarizations zz and xx, important differen-
tiations in those two spectra could be expected.
The second-order scattering becomes more prom-
inent in the spectra of Fig. 8 than in that of Fig.
1 both because of its absolute enhancement and be-
cause the A, (TO) phonons are about three times

600 500 400 300 200 I00
FREQUENCY (cm I)

FIG. 8. Q'X) spectrum of the polaritons with A~ sym-
metry in tetragonal BaTi03.
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FIG. 9. QCQ spectrum of the A~(LO) phonons in te-
tragonal BaTi03.

weaker in xx than in zz. As we do not know the
shape of the second-order background, no attempt
was made to fit the spectra of Fig. 8.

One good demonstration of the interaction be-
tween the phonons and the second-order continuum
is given by the spectrum Z(YY)Z shown in Fig. 9.
This spectrum should give only the phonons A,(LO)
and the phonon Bg which is the peak at 308 cm ';
however, the second-order background is present
and shows strong interference with the A, (LO)
phonons. %'e believe that this interaction causes
the differences between the polariton shapes at
(ZZ) and (XX) polarizations.

To conclude, let us summarize some important
results of our work. The main features of the
near-forward Raman scattering in BaTiQ3, such
as the dispersion of the frequencies and the shape
of the interferences, can be well explained by the
theory of coupled polaritons. All the parameters
appearing in the formalisms were evaluated from
the A, (TO) and A,(LO) spectra, so that no adjust-
able parameters were available when performing
the calculations of the polariton shapes. However,
the observed damping of the lowest polariton was
much larger than the prediction of the theory; the
effect was interpreted as due to the chain struc-
ture of the polarization correlation of the crystal.
The short correlation length for directions per-
pendicular to the ferroelectric axis was thought to
limit the mean free path of the polariton quasi-
particles to values of about 20 p, m. This effect,
in itself, does not give conclusive support to the
disorder model postulated by Comes et al. , be-
cause the dynamical disorder due to the over-
damped E mode could apparently result in the same
effect; thus, the double interpretation applied to
the anisotropic diffuse scattering of x rays, elec-
trons, and neutrons stays unsolved. However,
the discrepancy between the "LST value" of the di-
electric constant and the value obtained by capaci-
tance measurements is to be considered a strong
argument favoring the hypothesis of site disorder
by Comes et a/. The LST value of e, considering
correctly the phonon-phonon coupling, is 33, as

we can see in Fig. 5; this value agrees perfectly
with that obtained from the slope of the lowest
polariton at k = 0. Then, to explain the high value
of e obtained electrically, we must assume the
existence of some extra pole in e at microwaves
or below. The overdamped E(TO) cannot con-
tribute to c along the ferroelectric axis, but the
tunneling of the Ti ions between the possible sites
obviously can generate the missing step in that
function.

Another fact favoring the disorder model is the
permanence of the broad bands in the paraelectric
phase of the crystal. The agreement of the for-
ward scattering with the polariton theory shows
conclusively that the broad bands are first-order
scattering and consequently should disappear above
130 'C as the crystal assumes the 0& symmetry.
The tunneling of the Ti could explain the perma-
nence of part of the spectrum in the paraelectric
phase, because according to this model the crys-
tal has 0& symmetry only on the average; the in-
stant symmetry of the unit cell is C3„and if the
relaxation time is larger than the times involved
in the Raman process, the scattering would be
allowed.

Our analysis of the polariton shapes allowed us
to conclude that the coupling of the vibrational
modes is predominantly real; the model of real
coupling explained satisfactorily most of the char-
acteristics of the spectra, while the model of pure
imaginary coupling failed completely to explain the
shape of the -interferences and the small damping
of the LO modes. The possibility of discriminating
between the two models contradicts the conclusion
of the previous investigators that the two models
are physically equivalent.

Further investigation of the mechanism of the
phase transitions of BaTiO3, particularly the one
at 130 'C is desirable. An interesting program is
to obtain the yhonon contribution to r as a function
of the temperature, either by a complete analysis
of the function e(&o) or by just measuring the slope
of the lowest polariton at 0 = 0. It is expected that
the disagreement with the electrical measure-
ments will increase as we approach the critical
temperature. A quantitative, theoretical analysis
of the integrated Baman cross section of the A,
modes in the presence of the tunneling of the Ti
ions could also shed light on the high-temperature
behavior of the crystal.
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