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We develop a nonperturbative bosonization approach for bilayer quantum Hall systems at �T � 1,
which allows us to systematically study the existence of an exciton condensate in these systems. An
effective boson model is derived and the excitation spectrum is calculated in both the Bogoliubov and the
Popov approximations. In the latter case, we show that the ground state of the system is an exciton
condensate only when the distance between the layers is very small compared to the magnetic length,
indicating that the system possibly undergoes another phase transition before the incompressible-
compressible one. The effect of a finite electron interlayer tunneling is included and a quantitative phase
diagram is proposed.
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Introduction.—The recent conjecture of Bose-Einstein
condensation (BEC) of excitons in a bilayer quantum Hall
system (QHS) at a total filling factor one (�T � 1) has
attracted a great deal of attention [1,2]. This system con-
sists of two quantum wells (layers) separated by a fixed
distance d, under a perpendicular magnetic field B. Each
layer has filling factor � � n�0=B � 1=2, where n is the
layer electron density and �0 � hc=e is the magnetic flux
quantum. By increasing the ratio d=l, where l �

��������������
@c=eB

p
is

the magnetic length, the bilayer QHS at �T � 1 undergoes
a transition from an incompressible to a compressible
phase [3]. Indeed, for small d=l, spontaneous interlayer
coherence develops and the system behaves as a single-
layer QHS with � � 1, whereas for large values of d=l,
intralayer correlations become important and the system
behaves as two independent QHSs with � � 1=2 [1,4].

The nature of the ground state of the bilayer QHS at
�T � 1 is an issue not completely settled yet. From the
experimental point of view, tunneling conductance ex-
periments [5] show a zero bias peak which does not seem
to diverge with decreasing temperatures. In addition, a
linear current-voltage characteristic, instead of a power
law one [6], has been observed in magnetotransport mea-
surements [7,8]. Both points raise doubts about the exis-
tence of a true exciton condensate, which might have
superfluid properties [9]. Theoretically, diagrammatic
calculations [10], which rely on the existence of an exci-
ton condensate, indicate that the ground state of the
system becomes unstable for d=l � 1:2. Single-mode ap-
proximation [11] and generalized random phase approxi-
mation calculations [12] confirm the result. Recently,
Fertig and Murthy suggested that this ‘‘imperfect’’ two-
dimensional superfluid behavior of the bilayer may be
understood in terms of a coherence network induced by
disorder, which breaks up the system into large and small
regions with, respectively, weak and strong interlayer co-
herence [13].

In this Letter, we develop a nonperturbative bosoniza-
tion formalism for bilayer QHSs at �T � 1, which allows
us to properly explore the idea of exciton condensation in
this system. An interacting boson model is derived and the
excitation spectrum is calculated in both the Bogoliubov
and the Popov approximations. In the latter case, we find
that the ground state of the system is a true exciton con-
densate only when d=l � �d=l�c. For the zero electron
interlayer tunneling case, �d=l�c � 0:4, but this parame-
ter increases with the tunneling strength. This new phase
transition (or crossover) takes place at a critical ratio �d=l�c
much smaller than �d=l�I-C

c , where the incompressible-
compressible phase transition is experimentally observed.
Our findings, which are based on a proper treatment of the
Coulomb interaction, yield a quantitative phase diagram
for the bilayers.

The model.—Let us consider a bilayer system with N
spinless electrons moving in the �x; y; z � 0� plane and N
spinless electrons moving in the �x; y; z � d� plane in an
external magnetic field B � Bẑ. For each layer, we restrict
the Hilbert space to the lowest Landau level (LLL) and
consider N � N�=2, where N� is the Landau level degen-
eracy. We also introduce a pseudospin index (� �" , # ) in
order to define to which layer each electron is associated.

The Hamiltonian of the system is given by

 H �H T �V ; (1)

where H T describes the electron tunneling between the
two layers,

 H T � �
1

2
�SAS

X
m

cym"cm# � H:c:; (2)

and V is the Coulomb interaction term (unit area system)

 V �
1

2

X
k

X
�;�0

v��0 �k����k���0 ��k�; (3)

with k � jkj. Here �SAS is the electron interlayer tunnel-

PRL 97, 186401 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
3 NOVEMBER 2006

0031-9007=06=97(18)=186401(4) 186401-1 © 2006 The American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Producao Cientifica e Intelectual da Unicamp

https://core.ac.uk/display/296624201?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevLett.97.186401


ing, the fermion operator cym� creates an electron with
guiding center m in the LLL of the � layer (see Fig. 1),
���k� is the Fourier transform of the projected density
operator of pseudospin � electrons, and v""�k� � v##�k� �
vA�k� � �2�e2=�k� exp��jklj2=2� and v"#�k��v#"�k��
vE�k�� �2�e2=�k�exp��jklj2=2�exp��kd� are, respec-
tively, the Fourier transform of the intralayer and interlayer
interaction potential.

First, we will concentrate on the limit �SAS � 0. The
Hamiltonian (1) reduces to the Coulomb term (3), which
can be rewritten in terms of the total electron density
��k� � �"�k� � �#�k� and the z component of the pseu-
dospin density SZ�k� � ��"�k� � �#�k�	=2 operators as

 V �
1

2

X
k

v0�k���k����k� � 2
X
k

vZ�k�SZ�k�SZ��k�;

(4)

with

 v0=Z�k� �
1

2
�vA�k� 
 vE�k�	 �

�e2

�k
e�jklj

2=2�1
 e�kd�:

The restriction of the Hilbert space to the LLL together
with the introduction of the pseudospin language renders
the description of the bilayer QHS at �T � 1 analogous to
the one of the single-layer QHS at � � 1 when the electron
spin degree of freedom is included. For the latter, it was
shown that the particle-hole pair excitations (magnetic
excitons) of the ground state (quantum Hall ferromagnet)
can be approximately treated as bosons [14]. In this frame-
work, the electron and the z component of the (pseudo)spin
density operators are written as
 

��k� � �k;0N� � 2i
X

q
sin�k ^ q=2�byk�qbq;

SZ�k� �
1

2
�k;0N� �

X
q

cos�k ^ q=2�byk�qbq;

(5)

with k ^ q � l2ẑ � �k q�. Here, byq and bq are boson

operators which obey the canonical commutation relations
�byq ; b

y
q0 	 � �bq; bq0 	 � 0 and �bq; b

y
q0 	 � �q;q0 . When byq is

applied to the quantum Hall ferromagnet, it creates a
magnetic exciton whose momentum q is related to the
vector r between the guiding centers of the excited electron
and hole by jrj � l2jqj [Fig. 1(a)] [15]. In this formalism,
the configuration of a bilayer QHS at �T � 1 corresponds
to a system with N�=2 bosons.

Substituting Eq. (5) into Eq. (4) and normal ordering the
result, we obtain, apart from a constant related to the
positive background, an interacting boson model,

 H B �
X

q
wqb

y
qbq �

X
k;p;q

2vk�p;q�b
y
k�pb

y
q�kbqbp; (6)

where the dispersion relation of the bosons is given by

 wq �
e2

�l

� ����
�
2

r
�
d
l
� l

Z 1
0
dke�kde��kl�

2=2J0�kql
2�

�
;

with J0�x� denoting the Bessel function of first kind. The
second term of wq is similar to the capacitorlike one
introduced phenomenologically by Girvin [4]. The boson
interaction potential is given by

 vk�p;q� � v0�k� sin�k ^ p=2� sin�k ^ q=2� � vZ�k�

 cos�k ^ p=2� cos�k ^ q=2�: (7)

By taking the limit d=l! 0 in Eq. (6), we recover the
boson model for the single-layer QHS at � � 1 [14].

Bogoliubov approximation.—We start the analysis of
the interacting boson model (6) within the Bogoliubov
approximation [16]. We assume that the bosons condense
in their lowest energy state, the q � 0 mode, which means
that the ground state of the system is roughly given by the
state shown in Fig. 1(b). This assumption is in agreement
with the scenario proposed in Ref. [2]. Therefore, the
boson operators byq�0 and bq�0 can be replaced by complex

numbers, i.e., by0 , b0 !
������
N0

p
, where N0 is the (macro-

scopic) number of bosons in the q � 0 mode.
After substituting by0 and b0 by

������
N0

p
in the Hamiltonian

(6), including the chemical potential � explicitly, i.e.,
H B ! K̂ �H B ��N̂, and keeping only the quadratic
terms in the boson operators, we obtain

 K̂�2vZ�0�N
2
0��w0���N0��1=2�

X
q�0

�q

�
1

2

X
q�0

��q�b
y
qbq�b�qb

y
�q��	q�b

y
qb
y
�q�b�qbq�	;

(8)

where �q � wq ��� 4N0vZ�0� � 4N0vZ�q� and 	q �
4N0vZ�q�. The above Hamiltonian can be diagonalized
by the canonical transformation bq � cosh�
q�aq �

sinh�
q�a
y
�q and byq � cosh�
q�a

y
q � sinh�
q�a�q, with


q real, and therefore the dispersion relation of the quasi-
particles is given by

(a)

......

......
1   2   3  0   N  −1φ

......

......

m

(b)

 q 2l

FIG. 1. Schematic representation of (a) one-boson state (mag-
netic exciton) of the quantum Hall ferromagnet with jql2j � 1
and (b) the condensate of N�=2 zero-momentum bosons. The
guiding center quantum number is denoted by m.
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 �q �
�����������������
�2
q � 	2

q

q
: (9)

In the one-loop approximation [17], � � w0 � 4vZ�0�N0,
and thus, �q � wq � w0 � 4N0vZ�q�. Using that hN̂i �
N0 �

P
q�0hb

y
qbqi � N�=2, we can calculate N0 and de-

termine �q. The latter is illustrated in Fig. 2(a) for several
values of d=l.

In the long wavelength limit, �q�@vq, where the linear

mode velocity is v �
��������������������
2n0�Bd=l

p
�l=@�e2=�l. Here �B �

�d=4l�
������������
�=32

p
�1� d2=l2� exp�d2=2l2�erfc�d=

���
2
p
l�, and

erfc�x� is the complementary error function. For d=l �
0:2, 0.5, 0.8, 1.0, 1.5, and 2.0, we find v � 4:47, 4.64,
3.92, 3.39, 2.27, and 1:52 104 m=s, respectively.

The dispersion relation �q of the quasiparticles in-
creases with momentum for all values of d=l, in qualitative
agreement with the calculations done in Refs. [10–12] in
the region d=l � 1:0. However, these previous calculations
found that a minimum (rotonlike excitation) appears
around jqlj � 1:0 for d=l > 1:0 and that this minimum
becomes soft at d=l > 1:2, whereas, in our case, no mini-
mum arises when d=l increases. The behavior of the con-
densate fraction n0 � N0=�N�=2� in terms of d=l shows
that the Bogoliubov approximation for the boson model (6)
holds only for small d=l. As the ratio d=l increases, the
number of bosons in the condensate decreases continu-
ously (n0 < 0:3 for d=l > 1:0), indicating that the interac-

tion between excited (out of the condensate) bosons starts
to play an important role in the description of the system.

Popov approximation.—It is possible to go a step further
in the analysis of the interacting boson Hamiltonian (6), by
including the interaction between the excited bosons,
which is neglected in the Bogoliubov approximation.

Let us consider the four-operator terms of the
Hamiltonian (6) with jqlj � 0 and treat them on the
mean-field level, including only normal averages. This
treatment resembles the so-called first-order Popov ap-
proximation for Bose gases at finite temperatures [18].
By applying this approximation to the boson model (6),
we obtain a Hamiltonian similar to Eq. (8) with the re-
placement �q! ��q�wq���4N0vZ�0��4N0vZ�q��
4
P

p�0�vZ�0��vp�q�q;q�	hb
y
pbpi. After diagonalizing

the new Hamiltonian and calculating the chemical poten-
tial, we find the following set of self-consistent equations:
 

	q � 2N�vZ�q� � 4vZ�q�
X
p�0

F p;

��q � wq � w0 � 2N�vZ�q�

� 4
X
p�0

�vp�q�q;q� � vZ�p� � vZ�q�	F p;

��q �
�����������������
��2
q � 	

2
q

q
; F q � � ��q= ��q � 1�=2; (10)

where ��q is the (new) quasiparticle dispersion relation.
Solutions for the above self-consistent problem can be

obtained only for d=l � �d=l�c � 0:4. In this case, the
dispersion relation of the quasiparticles also vanishes lin-
early with momentum for all d=l, qualitatively confirming
the results obtained within the Bogoliubov approximation.
The velocities of the linear modes are renormalized, for
instance, v � 4:30 104 m=s for d=l � 0:2.

However, as the ratio d=l increases, it is not possible to
find real solutions for Eqs. (10), implying that the ground
state of the system is no longer a true condensate of bosons
with zero momentum. This indicates that a new phase sets
in above �d=l�c and below the well-known incompressible-
compressible phase transition, which experimentally takes
place at �d=l�I-C

c . Notice that �d=l�c � 0:4 is much smaller
than the critical ratio �d=l�I-C

c , which, in samples with
negligible electron interlayer tunneling, is around 1.6–1.8
[7,8], indicating that the novel phase should be observable
within a large region in the parameter space. The ground
state of the bilayer QHS at �T � 1 in the region �d=l�c <
d=l < �d=l�I-C

c should then be more complex than a pure
exciton condensate, possibly a zero-momentum boson con-
densate coexisting with a charge-density wave state as
suggested in Ref. [19]. We defer a detailed study of the
properties of this novel phase, based on the interacting
boson model (6), and the analysis of the nature of this
new phase transition (or crossover) to later publications.

Our studies open the possibility of the existence of a
two-component phase in bilayers, based solely in an ap-
propriate treatment of the Coulomb interaction. Disorder

0
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0.5

Ω
q(e

2 /ε
l)

0 1 2 3 4
|ql|

0.1

0.2

0.3

0.4

0.5

(a)

(b)

FIG. 2 (color online). Dispersion relation of the quasiparticles
in the Bogoliubov approximation for different values of the ratio
d=l: 0.2, 0.5, 0.8, 1.0, 1.5, and 2.0 (from top to bottom in the large
momentum region). (a) �SAS � 0 and (b) �SAS � 0:1e2=�l.
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[13], though probably relevant, does not necessarily need
to be invoked in order to generate a richer phase diagram.

Finally, we should mention that our findings are quite
different from previous theoretical calculations [10–12]
which point out that an exciton condensate is stable for
d=l � 1:2. Within our approach, this instability appears at
even smaller values of d=l. Moreover, in Ref. [11], the
softness of the rotonlike excitation at d=l� 1:2 is associ-
ated with the incompressible-compressible phase transi-
tion, which is not the case here.

Finite electron interlayer tunneling.—The effect of a
finite electron interlayer tunneling (�SAS � 0) can be
easily included in our formalism. Now the complete
Hamiltonian (1) should be considered. It is easy to show
that the bosonic representation of H T [Eq. (2)] is qua-
dratic in the boson operators. Adding this extra term to the
boson model (6) and following the same steps as before, we
find, in the Bogoliubov approximation, that the dispersion
relation of the quasiparticles is also given by Eq. (9), but
now �q��SAS�1=4�1=n0�

����������
n0=2

p
�wq�w0�4N0vZ�q�.

Notice that the spectrum is no longer gapless. As �SAS
increases, a minimum (rotonlike excitation) develops in the
excitation spectrum around jqlj � 2 for d=l � 1:0. The
energy of the minimum reduces as the ratio d=l increases.
The case �SAS � 0:1e2=�l is illustrated in Fig. 2(b) for
several values of d=l.

In the Popov approximation, the final set of self-
consistent equations are similar to Eqs. (10) with the
replacement ��q ! ���q � ��q � �SAS�3n0 � 2�=

����������
32n0

p
. The

inclusion of a finite electron interlayer tunneling increases
the critical ratio �d=l�c (see Fig. 3). However, the novel
phase should remain robust in a sizable region because
�d=l�I-C

c also increases with the tunneling strength as veri-
fied experimentally [3]. For d=l � �d=l�c, the dispersion

relation of the quasiparticles is quite similar to the results
found in the Bogoliubov approximation apart from small
renormalizations.

Conclusions.—By developing a nonperturbative boson-
ization approach for bilayer QHSs at �T � 1 and by con-
sidering the fully interacting boson model, we are able to
properly explore the conjecture of BEC of excitons in the
bilayer QHS at �T � 1. We show that an exciton conden-
sate is stable only at very small values of the ratio d=l,
indicating that the bilayer undergoes a phase transition (or
crossover) at �d=l�c. A new candidate for the ground state
of the system in the region �d=l�c < d=l < �d=l�I-C

c is
requested because its thorough understanding will be im-
portant for the correct description of the incompressible-
compressible phase transition. Details of the above calcu-
lations will be presented elsewhere.
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FIG. 3. Phase diagram (d=l�SAS) of the bilayer QHS at
�T � 1: the solid circles are the calculated critical ratio �d=l�c
(the solid line is a guide to the eyes) and the dashed line is the
experimental estimate for �d=l�I-C

c (from Ref. [3]), setting the
transition to a phase where no quantum Hall effect (QHE) can be
observed.
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