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We extend to the periodic Anderson model (PAM) the diagrammatic expansion in cumulants
that was employed by Hubbard to study his model of a narrow band of strongly correlated electrons.
The PAM is a lattice of localized and strongly correlated electrons with spin one-half and without
orbital degeneracy, hybridized with a wide band of uncorrelated conduction electrons. We have
extended the model by considering localized electronic states with an arbitrary scheme of energy
levels: this extension would be useful to study intermediate valence compounds of Eu or Tm with
the present formalism. We give the rules for the diagrammatic calculation of the grand canonical
potential and of the Green's functions for the general model: only connected diagrams appear in
those calculations and the lattice sums are unrestricted. To generate the cumulant averages it was
necessary to employ external fields g that are Grassmann variables. We have found a simple way to
extend the diagrammatic rules to the ( g 0 case. The absence of excluded site restrictions, that leads
to complicated excluded volume problems in other treatments, and the existence of linked cluster
expansions, are features of the cumulant expansion. As an application of the present method, we
have calculated the occupation numbers of localized and conduction electrons for the PAM in the
limit of infinite Coulomb repulsion (U ~ oo).

I. INTRODUCTION

Since the early days of quantum mechanics, the im-
portance of strong correlations was recognized, and the
Heitler-London model of the hydrogen molecule gave a
better overall description than the competing method of
molecular orbitals because this effect is built into the
wave function. The simplicity of the second method
permitted a greater application to many problems, and
although the importance of the strong correlation was
not forgotten, it is only with the fairly recent discovery
of phenoxnena like intermediate valence, Kondo systems,
and particularly the high-Tc superconductivity, that the
study of strong correlations in solid state systems became
a pressing subject. A deceptively simple model was in-
troduced by Hubbard, for the narrow-band limit, and
at present there are exact solutions only for very partic-
ular values of the parameters or dimensions of the system.
For this reason, it seems valuable to explore approximate
xnethods, and this is the main xnotivation of the present
work. In the Gfth paper of the series, Hubbard dis-
cussed cumulant expansions around the atomic limit, a
tech~ique that had already been applied to a diferent
type of "localized" system, such as the Ising and Heisen-
berg models. To describe the localized electronic states,
Hubbard introduced X' operators: Xss =~ jb)(ja

~

trans-
forms the local state

~
a) at site j into the local state

~
b) at the same site. With these operators one can in-

clude all the local correlations into a very simple un-
perturbed Hamiltonian, and the hopping term becomes

the perturbation. An important aspect of these oper-
ators is that it is very simple to write an unperturbed
Hamiltonian that describes a subset of the ionic states
at a given site, and one could extend the calculations of
rather simplified models like the one treated here, to sys-
tems that describe more realistic systems. For this rea-
son we shall follow rather closely Hubbard's treatment of
the problem, rather than considering only Green's func-
tions (GF) that correspond to the usual electronic Fermi
operators, as done by Metzner. ~ The X operators are
neither bosons nor fermions, and Wick's theorem is not
valid, but Hubbard developed a diagraxnmatic calcula-
tion, and was able to prove the validity of a "linked-
cluster expansion, " which involves only unrestricted lat-
tice sums of connected diagrams. The technique was not
very much explored by its author, but several papers that
study the Hubbard model by this method have recently
appeared. ~ 9

The periodic Anderson model (PAM) is an extension
of the Hubbard model that is believed to describe in a
schexnatic way the anomalous behavior of several rare
earth coxnpounds that are intermediate valence or Kondo
systems. This subject has received much attention in re-
cent years: there are several recent review articles de-
voted to this problem.

The main objective of the present paper is to extend
the cuxnulant expansions around the atomic limit of the
Hubbard xnodel to the PAM and to a generalization of
the PAM that considers a lattice of localized systems with
an arbitrary system of levels, and in Sec. II we write

0163-1829/94/50(24)/17933(20)/$06. 00 50 17 933 1994 The American Physical Society



17 934 M. S. FIGUEIRA, M. E. FOGLIO, AND G. G. MARTINEZ

its Hamiltonian employing Hubbard's X operators. The
reason for studying this general model is that several of
the rare earth ions that present the anomalous behavior
(e.g. , Eu and Tm) have a series of levels, relevant to the
properties of interest, that cannot be described with the
simple PAM. Although the applications of a following
paper refer mainly to the PAM, the properties derived
here are valid for the general model.

The correlations are very effective in the rare earth
systems because the f electrons are strongly localized
in those ions, and although one can apply the present
treatment to systems with different localized electrons,
we shall refer to them as "f electrons. " In the usual
PAM one neglects the width of the f electrons of the
Hubbard model, and adds a wide band of conduction
electrons (called c electrons in what follows), which hy-
bridize with the localized f electrons. One then wonders
why the linked cluster theorem, which was valid in the
Hubbard model because the unperturbed Hamiltonian
is one of localized electrons, remains true when the ex-
tended conduction electrons are added to the problem.
The answer lies in the fact that any cumulant average
that contains two or more statistically independent vari-
ables is zero. In the absence of hybridization, a localized
electron at a given site is statistically independent both
of all the localized electrons at other sites and of the con-
duction electrons at any Bloch state. As a consequence,
any cumulant average in the perturbative expansion that
contains localized electrons at different sites or conduc-
tion electrons in different states, or both, is automatically
zero: this is the basic reason for the validity of the linked
cluster expansion in the PAM.

When the localization is very strong, a usual approx-
imation is to consider a PAM with an in6nite repulsion
U between the two localized electrons at the same site,
and one can then neglect the double occupation. This
model was discussed by Hewson~x2 who applied Hub-
bard's results2 to the PAM without an explicit derivation.
He calculated the lowest order correction to the magnetic
susceptibility of the PAM, as well as the one-electron's
GF in the "chain approximation" (CHA). In his Ph.D.
thesis Martinez~3 presented an explicit derivation of the
linked cluster theorem for the PAM's free energy, and
calculated the GF both in the chain and in the "multiple
loops approximation" (MLA) which shall be discussed in
a following paper. There we shall report the application
of the CHA and the MLA to a rectangular conduction
band and to the "atomic" model (band with zero width).
In the "atomic" case it is possible to compare the results
of the two approximations with the exact results, so that
a better understanding of their validity can be obtained.

In the derivation of the perturbative expansion,
Hubbard employed "external fields" $ that appear in
the generating function of the cumulants of the problem
and are Grassmann variables, but he only presented
diagrammatic rules for zero "external 6elds. " We have
extended the diagrammatic expansion to $ g 0, and the
results are presented in Sec. III together with the ( = 0
case, because this only requires minimum changes to the
diagrammatic rules. We shall use the ( g 0 case in a
future work.

II. THE PAM HAMII, TONIAN
WITH HUBBARD OPERATORS

In this section we shall present a generalization of the
PAM to a periodic array of ions with a rather general
scheme of localized levels. %e shall 6rst write the Hamil-
tonian of the PAM with the usual fermion operators,
showing how to express it employing the less familiar
Hubbard X operators, and as a second step we shall in-
troduce the more general model.

The Hamiltonian for the PAM is

H=) Eg Ct Cg +) E ft f,

+U ) n~ ~n~, ~ + Hp. ,

2

(2.S)

where the operators C- and Cg are the creation and
k,o Js,cr

destruction operators of conduction band electrons (c
electrons) with wave vector k, component of spin o and

energies Eg . The f, and f; are the corresponding op-t

erators for the f electrons in the Wa»»ier localized state
at site j, with spin component o' and energy E that is
site independent. The third term is the Coulomb repul-
sion between the localized electrons at each site where

n~ = f f~ is the number of f electrons with spin
component 0 at site j and the symbol 0. denotes the spin

component opposite to o. The fourth term Hp, describes
the hybridization between the localized and conduction
electrons:

Hp, = ) (V. g f Cg +V.'q C~ fp, ), (2 2)

with a coupling strength given by

V. g
= V (k) exp(ik B~),

8
(2.3)

Xj,abXj,ed ~b,eXj,ad, (2.4)

where V (k) is independent of the wave vector k when
the mixing is purely local and N, is the member of sites
in the system.

If we consider that the local repulsion between f elec-
trons is infinite (U -+ oo), so that the double occupancy
at any site is zero, we can make the term in the Hamilto-
nian proportional to U disappear by employing Hubbard
operators. To this purpose we consider 6rst the de6ni-
tion of the X operators: the X~ ~ transforms the state

~
a) at site j into the state

~
b) at the same site, and we

ass»me that
~

a) and
~

b) are eigenstates of the number of
electrons. Vfe say that X~ p is of the Fermi type when

~
a) and j tp) differ by an odd number of fermions, and

that it is of the Bose type when they differ by an even
number of electrons. By de6nition, two X operators of
the Fermi type at different sites anticoxnmute, and com-
mute when at least one of them is of the Bose type. The
algebra of these operators when they are at the same site
is de6ned by their product rule
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and they are neither fermions nor bosons. For infinite U,
the only f-electron states at any site j are the vacuum

~ j, 0) and the two states
~ j,o) that have one electron

with spin component cr, and the only Fermi-type oper-
ators that we shall need in this case are Xj and its
Hermitian conjugate Xj = X- . Projecting H into
the subspace without doubly occupied f-electron states
we obtain the PAM Hamiltonian for infinite U:

R = 'Rp + Hg. (2.12)

One should remember that in this formalism, the
Fourier transforms of the one-electron GF for real times
have their &equencies displaced by the chemical potential
p. As usual, we shall split Eq. (2.9) into an unperturbed
part 'Rp and a perturbation Hg.

H=) Eg Ct Cg +) E~ X~, III. THE PERTURBATION EXPANSION

+ ) (V. g X Cg + V.'- Ct X~ ), (2.5)
j,k,cr

where Xj ~~ = X. Xj~ is the projector into the state
~ j, o'). The "completeness" relation

To introduce the cumulants employed in the diagram-
matic expansion, it is necessary to add the following "ex-
ternal field" term to the Hamiltonian:

(3 1)

Xjpg+Xjgg + Xjyg I (2.6)

H = ) Eg C- Cg +) E~ X~,oo+Hg, (2.7)

gives the conservation of probability in the space of the
localized states at site j.

The generalization of Eq. (2.5) to the case of several
configurations with a rather arbitrary choice of states is

where the 1~ describe all the operators Xj~ and Ck
that appear in Eq. (2.7), as well as their Hermitian con-
jugates, and the subindex p should carry all the necessary
identification. The "external fields" $~(r) are Grassmann
variables, i4 which anticommute between themselves and
with all the Y~ of Eq. (3.1): this is an essential property
for the derivation of the diagrammatic expansion.

where

Ha = ) (V.~i X,. ~Cq +V.' „- C„- X,,s i. (2.8)
jbu, kcr

The a and b summations are over all the states
~

a) and

~
b) that we want to include in the model, and the only

restriction is that any hybridization constant must van-
ish unless state

~
a) has just one electron more than the

state
~

b): this last condition is necessary to satisfy the
conservation of electrons. In this general case, the ener-
gies E~ include all the Coulomb repulsions of the type
described by the third term in Eq. (2.1); in Sec. III we
shall derive expressions valid for Eq. (2.7), but most of
the examples in the following paper correspond to the
PAM for infinite U, described by Eq. ( 2.5).

As we are interested in the grand canonical ensemble
of electrons, we should replace the total Hamiltonian H
by

A. Linked cluster theorem
for the grand canonical potential

First we consider the grand partition function (GPF)
in the presence of the Grassmann fields (

&(P 0 = Tr(U(P ~)) (3.2)

U(P, () = U(P, O, $) = exp (—P'Ro)8~, (P, (), (3.3)

where

P
8~, (P, () = exp+ — d7. [Hg(r) + H, (7., ()] . (3.4)

o t

where P = 1/kT and U(P, () is a natural extension of
the evolution operator to imaginary times and nonzero

( (cf. Appendix A). To make an expansion of Z(P, ()
employing Hg as perturbation we use [cf. Eqs. (A9) a,nd
(A16)]

'R=H —p& ) Ct Cg +) v X~

, k,o

(2.9)

(2.10)

and the energies Ek of the conduction electrons into

~km = Eke (2.11)

where Xj is the occupation number operator of state
~

a) at site j, and v is the number of electrons in that
state. This transformation is easily performed by chang-
ing the energies E~ of all ionic states

~
a) into

The symbol exp+ means that we order all the terms
in the formal expansion of the exponential with the vari-
able 7 increasing to the left, and that there is a change
of sign in any term of the expansion when two operators
of the Fermi type must be exchanged to put them in the
correct ordering. In what follows we shall understand
this type of ordering for any expression inside parenthe-
ses with a subindex +.

Following the standard procedure, we make a formal
expansion of this operator, taking advantage of the fact
that Hg(7 ) and H, (7, f) are of the Bose type, and can be
moved without changes of sign inside the time ordered
products.
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There are two possible choices for this expansion: ei-
ther expand the whole exponential in Eq. (3.4) or expand
only 8& (P) employing the relation [cf. Eq. (A17)]

~ .(l.() = .C.( )~(l,()]., (3.5)

where for V = Hr, we have [cf. Eqs. (A18) and (A19)]

@.I~) =-"l- ''H. ).)I0

E()), () = exP~ (
— drs, (7;()I.

0
(3 7)

The operators Hr, (r) and H (r, () are Hh and H, (() in
the interaction picture, respectively, and the two choices
of expansion give different diagram rules, which coincide
in the ( = 0 limit. We choose to expand S~, (P) in
Eq. (3.6) because the diagrammatic rules are then essen-
tially the same derived for ( = 0, except for the rule de-
rived &om the conservation of particles, which fails when

( g 0. A typical term in the expansion of Z(P, () is

(-1)
A 0

dri dr„Tr(exp (—PHp)
0

x [Hr (ri) " Hr (r )~(& ()]+) (3 8)

which is the usual result but for the presence of t (P, (),
and this last is the identity when ( = 0. We denote with
Zp(P, () the first term in the expansion, which is equal
to the unperturbed Z(P, () (i.e., with Hh = 0 ).

To proceed, we substitute Hr, (r) in Eq. (3.8) by
Eq. (2.8) in the interaction picture, which we write in
the more compact form

where we employ the "( average" defined by

([Y(ii)Y(l ) "Y(l )Y(l.)] )

([Y(l.)Y(l', ) Y(l-)Y(l.')~(l, ()],)
(~(& ())

and {.. .) is here the usual unperturbed average when Hh
and ( are taken null (cf. Appendix A), so that Zp(P, () =
(E(P, ())Tr(exp( —)9'Rp)). The expansion in Eq. (3.11)
looks the same as the one with ( = 0 except that we

have "(averages" instead of common averages. From this
point onwards, the derivatioa of the cumulant expansion
proceeds through a rather general property of cumulaats,
which reads as follows in the present case (cf. Ref. 3, p.
131).

Theorem 8.1. "([Y(li)Y(lq) . Y(l„)]+)~ is equal to
the sum of products of cumulant correlations ia which
each term corresponds to a partition of the arguments
lql2 l„and every possible partition appears once and
only once." Every term has the sign of the permutation
that takes the ordering of all their Fermi-type oIrerators
into the ordering that the same operators have at the (
averuge.

The sentence ia italics has been added to the verba-
tim statement in Ref. 3, aad it is necessary here because
all the Y(l~) are Fermi-type operators. Theorem 3.1 has
been phrased so that it is also valid when some of the
Y(j) operators are of the Bose type: this inore general
type of average was coasidered also in Ref. 2, and can be
employed to study properties like the magnetic suscepti-
bility.

In Appendix 8 we discuss the basic formula that leads
to theorem 3.1, and we emphasize that the ( averages are
aot numbers but belong to the Grassmana space aad do
not necessarily commute between themselves, e.g. ,

Hr, (r) = ) V(l, l')Y(l)Y(l'), (3.9) ([Y(ii)) ) ([Y(l2)] ) = —([Y('2)] ) ([Y('i)]+) .

(3.13)

where

Y(l) = Y~(r) = exp(r'Rp)Y~ exp( —rRp) (3.10)

(-1)
Zp(P, () dr, ) V(l„l', ) . dr„

A 0 0 r 0

x ) V(l„, l„') ([Y(li)Y(li) . .Y'(l„)Y(l„')] )l, l'

(3.11)

is the operator Y~ in the interaction picture. The only
nonzero coupling coefficients V(l, P) are those that cor-
respond to the correct combination of indices l and l' in
Eq. (2.7) and a factor 1/2 is not necessary in Eq. (3.9) if
we choose to retain only terms in which Y(l) corresponds
to the f electrons and Y(l') to the conduction electron
[to achieve this ordering in the second term of the paren-
theses in Eq. (2.8) one must anticommute two Fermi-type
operators]. By substitution in Eq. (3.8) we find

Theorem 3.1 is valid for nonzero ( and Hr„but the

( cumulants that appear from the decomposition of the

( averages in Eq. ( 3.11) correspond to those defined in
Eq. (A28) but with Hh, = 0, i.e. ,

([Y(li) ~ ~ ~ Y(l )]+) = bib2 b ln[Zp(P ()], (3.14)

((1,2) ) = ((1,2) ) + ((1) ) ((2) ) (3.15)

((1 2 3) )' = ((1 2 3) )'. + ((1)+)'.((2 3)+)'.
—((2),).'((1 3) )'. + ((3) ).'((1 2) ).'

+ ((1) )'. ((2) )'. ((3) )'. (3 16)

where we have used the notation b~ for the functional
derivative: [b/b((l~)]. We shall also use Y(j)—:Y(l~) and

V(i, j):—V(l;, l~) in places where this abbreviation would

not lead to a possible confusion. Two typical examples
of theorem 3.1 are
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abbreviatedwhere we have further
([Y(lg)Y(lg) Y(l„)]+)~= ((1,2 n)+)~.

The next step in the derivation is to apply the general
property stated above to the "( averages" in Eq. (3.11).
As in this case Hg ——0, any two Y operators that corre-
spond to f electrons at different sites, or to conduction
electrons with different k or o, or to one f electron and
a conduction electron, are statistically independent even
when ( g 0. As a consequence, the only c»mulants that
appear in Eq. (3.11) contain only Y operators of f elec-
trons at the same site or only C operators with the same
A: or o, and all other cumulants in the expansion vanish.
The graphic expansion that follows is based in this result.
It is then clear that the key property is not quite the lo-
cality of the Y but rather their stochastic independence.
This fact permits the same type of cumulant expansion
employed for the Hubbard model, 2 where all the opera-
tors that correspond to our Y are "local" operators, while
in the PAM we also have cumulants of C operators that
correspond to "extended" Bloch functions. The property
just discussed is the basis for an expansion employing
graphs, s i.e., a set of vertices (points) and edges (lines).
We shall assign cumulants to the vertices, and represent
with a filled circle any "f-electron vertex" (FV) of cu-
mulants of X operators, and with an open circle any
"conduction vertex" (CV) of c»mulants of C and C-
operators. As discussed above, the only nonzero cumu-
lants correspond either to X operators, all at the same
site, or to C operators, all with the same k and cr . In
the expansion of the GPF all the vertices are "internal, "
i.e. , all their Y'(l) operators originate from the perturba-
tion Hg and appear summed over all the indices p and
integrated over v, both characterized by the argument l
in the Y(l). These graphs with only internal lines are
called "vacu»m graphs" 2 (cf. a few examples of graphs
and vertices in Fig. 1).

Each internal edge is incident at two distinct vertices,
and because of the interaction employed, it can only join
a CV with an FV. The edges are associated to the coef-
ficients in Hp, [e.g. , the V(l, l') in Eq. (3.9)].

After decomposing the g-averages of Eq. (3.11) into
cumulants, we associate a collection of graphs to each
order n in the expansion, and we give below the rules
to construct all the necessary graphs. There are both
connected and disconnected graphs3 in these collections,
and in the next section we give detailed rules to calcu-
late the contribution associated to any graph. Except
for some counting details, the contribution of a discon-
nected graph is equal to the product of the individual
contributions of the connected graphs that constitute the
whole graph; this property is valid because in the calcu-
lation of the graph contribution there are no excluded
site restrictions. Notice that although the contributions
of graphs are Grassmann n»mbers for ( g 0, all the vac-
uum graphs have an even number of Y operators [because
of the form of the interaction Eq. (2.8)] and their con-
tributions commute with any other graph contribution.
The rest of the GPF calculation then follows closely the
derivation for the classical Ising model in Ref. 3.

It is convenient to label with an index o. each of the

0

b) c)

e)

FJQ. j.. (a) An f-electron vertex (FV). (b) A conduction
electron vertex (CV). (c) A connected vacuum graph (order
n = 2). (d) A disconnected graph (n = 6). (e) A con-
nected rooted graph (n = 1). (f) A disconnected rooted graph
(n = 3).

topologically distinct connected graphs, and denote with
W the contribution of graph a. Adding up all the terms
like Eq. (3.11) one obtains

z(p, () = zo(p, o exp ) w 1
a

(3.17)

and the grand canonical potential (GCP) for nonzero hy-
bridization is then

f1(»4) = —T»(&(»&)} (3.18)

(in the whole paper we shall measure T in units of the
Boltzmann constant k~).

The change in the GCP due to Hh, is then

(3.19)

where Oo(P, () is the value of O(P, () when Hp, = 0. The
corresponding equation for the Hubbard model (with a
correction due to the mean-field treatment) is given in
Ref. 2 [cf. Eq. (35)]. In Eq. (3.17) we follow Hubbard's
notation, so that our W is already divided by a sym-
metry factor g, as discussed in the next section. For
this reason, it is W that appears, rather than W /g as
happens in Ref. 3.

Prom these two equations we get the following.
Theorem 8.2 (The "linked cluster theorem" for the

GCP). The change in the GCP due to the perturbation
is equal to the s~~m of the contributions of all the topo-
logically distinct connected vacuum graphs.

The concept of "topologically distinct" graphs seems
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clear, but in Ref. 3 (p. 125) there is an explicit definition.
To construct any vacuum graph of order n for ( g 0

we follow rule 3.1.
Rule 8.1.

(1) Mark any number of FV (filled circles) and of CV
(open circles).
(2) Add n internal lines (edges), each one connecting one
FV to a CV.
(3) At least one line must run to each vertex, so that the
maximum number of each type of vertices is equal to the
order n of the term [i.e., Eq. (3.8)] in the perturbation
suxll.

(4) Associate in pairs all the internal lines running to
each vertex in some arbitrary fashion (when there is an
odd nuxnber of lines one of them would not be paired).
In this way the lines form open and closed loops: assign
to each of these loops a definite sense, the sense being
indicated by arrows on the lines.

Note that there are no restrictions to the number of
lines that reach any vertex when ( g 0 (cf. Fig. 2). When
( = 0 the ( averages satisfy particle conservation, and
because of the form of Hg [the only internal lines in the
PAM correspond to one-electron creation and destruction
operators (cf. Eq. (3.9)] only an even number of edges
can reach any vertex.

For ( = 0, Wick's theorem, together with the general
property of the averages discussed above, shows that cu-
mulants with more than two unperturbed Fermi opera-
tors (the C- and C& in the present case) must vanish.
We summarize the results for ( = 0 in the following rule.

Rule $.2. For f = 0 employ rule 3.1 with the following
restriction.
(5) Only an even number of internal lines can reach any
vertex in a vacuum graph. There can only be two lines
running to each CV.

The cumulants at any vertex with an odd number of
lines vanish at the final step of the calculation when the
physical quantities are obtained by taking f = 0. Never-
theless, the GF of interest can be expressed as derivatives
of Z(P, () with respect to ( [cf. Eq. (A26)], and a CV
with only one internal line can be transformed by this
procedure into aDother with two lines that would not
vanish when ( = 0. As the contribution of any CV with
three or more lines would vanish when ( = 0 because of
Wick's theorem, we shall then consider a CV with only
one or two edges when ( g 0: in Fig. 2 there are several

c)

FIG. 2. Several graphs with an odd number of edges run-
ning to one or more vertices. Their contributions vanish when

( = 0. (a) and (b) Vacuum graphs. (c) and (d) Rooted graphs:
thick lines correspond to external edges.

typical graphs that contribute for ( g 0 but vanish for

( = 0.
To apply the linked cluster theorem, we must first con-

struct all the topologically distinct graphs following rules
3.1 or 3.2, and then sum their corresponding contnbu-
tions according to rule 3.5 in Sec. IIIB.

B. Diagrammatic rules in real space
and imaginary time

In the present section we consider not only vacuum
graphs, but also "rooted graphs" (i.e. , graphs with ex-
ternal lines), which appear in the calculation of the aver-

ages ([Y(1) .Y(r)]+)+& [cf. Eq. (A24)], i.e., the Green's
functions discussed in the next section. In the perturba-
tion expansion one should then calculate ( averages which
contain several fixed Y operators, besides those that arise
from the n factors Hh (r) of the nth-order term. To rep-
resent an external operator in a graph, we shall employ
a thick segment attached to a vertex of the same f or
c character, and a few rooted graphs are shown in Figs.
1 and 2. In the interaction Hh there are only operators
Y~ that create or destroy a single electron, but one could
also consider external Hubbard operators that are more
general, as is done in Ref. 2. We think that it would
not be useful to make that extension here in a very gen-
eral way, but without enlarging too much the formula-
tion, we can include external Hubbard operators of the
Bose type that change the state of a local site without
changing their number. Those operators are useful to
calculate properties like susceptibility, and we shall con-
sider them here as possible external operators. In what
follows, Fermi-type operators would refer to those that
create or destroy one electron, and Bose-type to those
that do not change the number of electrons. We shall
call Fermi lines or Bose lines those that represent the
corresponding external operators in a graph, and all the
internal lines in the present model are of the Fermi type.
The rule for drawing graphs of nth order in perturba-
tion theory, when ( g 0 and there are r fixed operators
Y(l) Y(r) that can be of Fermi-type or of Bose-type,
is then the following.

Rule S.X
(1) Mark any number of FV and of CV.
(2) Draw r external lines, labeled to correspond to the
Y(1) . Y(r) external operators. Each external line runs
to an FV when the Y operator is associated to f elec-
trons, and to a CV when it is associated to a conduction
electron. Draw n internal lines, each one connecting one
FV to a CV.
(3) At least one line, internal or external, runs to each
vertex.
(4) Associate in pairs all the internal lines and Fermi
external lines running to each vertex in some arbitrary
fashion (when there is an odd number of lines one of thexn
would not be paired). In this way the Fermi lines form
open and closed loops. Assign to each of these loops a
definite sense, the sense being indicated by arrows on the
lines.

When ( = 0 we have the following.
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Rule S.g. Employ rule 3.3 with the following restric-
tion.
(5) The total number of Fermi lines, internal or external,
running to each vertex, is even. There can only be two
Fermi lines for each CV.

To give the contribution of the diagrams discussed
above, we shall first consider the general Hamiltonian
defined by Eq. (2.7), discussing later the contribution for
the PAM with infinite U as a special case. The rules are
essentially the same stated by Hubbard in Ref. 2, but we
present here their adaptation to our model. At this point
it is necessary to be more specific about the arg»ment l of
the operators Yj in Eq. (3.9). When the corresponding Y~
is a Fermi-type Xi s, we use p = (f;j,o., u), with u = —,
and the single index n identifies the transition

~
a) +

~
b),

with the same restriction stated after Eq. (2.8), namely
that state

~
a) has just one electron more than the state

~
5) The .inverse transition (operator X.~) is described

by the same a but with u = +. The j identifies the
site, the imaginary time in the interaction picture [cf.
Eq. (3.10)] is r, and f is only used when necessary to
avoid confusion. When Y~ is C& we use p = (c;k, o', u)
with u = —and change to u =+ for C- . It is not neces-

kcr
sary to assign a u parameter to the Bose-type operators,
but to unify the notation we shall keep the u and set al-
ways u = 1 for these operators. The only restriction on
the two states

~
a) and

~
b) of the transition n = (5, a) for

Bose-type operators is that they have the same n»mber
of electrons.

To avoid repeating the same term in Eq. (3.9) we as-
sumed that V(l, l') is nonzero only when the first index
correspond to an X operator. These coeKcients do not
depend on r or r', and comparing with Eq. (2.8) it is
convenient to introduce v (j,a, k, 0, u):

v(j, a, k, o, +) = V(f j,u, +;c;k,o, —) = V. ~-

v(j, a, k, 0, —) = V(f;j,a, ——;c; k, cr, +) = V.

(3.20)

The minus sign that should appear with V.' „- be-
y,be, k, cr

cause we anticommuted two Fermi-type operators &om
Eq. (2.8) will be absorbed in the rules for the sign of the
graph contributions when ( = 0 (cf. Appendix C).

Rule S.5 (contribution of o giuen groph with ( $0). To
calculate the contribution of a diagram obtained &om
rules 3.3 or 3.4, do the following.
(1) Assign to each FV a site label j,. To each internal
line assign an imaginary time ~, and an index u, . To the
FV side of the internal line assign to the X operator the
dummy labels a, and ku, and to the CV side assign to

+
the C operator the dummy labels k, o» and ~u. Use
+u, at the side of the edge to which points the arrow
of item (4) of rules 3.1—3.4 and —u, at the opposite side.
Each external line is already associated by its label to a Y
operator (cf. item 2) in rule 3.3. Note that the external
operators could also be of the Bose type.
(2) Form the product of the following factors.

(a) For each FV a factor

~ ~ ~
~

[Y(f;a.)~i) +&i &i)" Y(»&»&~~+"~ rn)l+
C

(3.21)

when there are p lines r»~~ing to that vertex. The n, u,
and v are equal to their assigned values for the external
lines.

(b) For each CV a factor

Y(c;k„og, pu~, r, ) . Y(c;k„op, yu„, rp)
+

(3.22)

when there are y lines running to that vertex (p = 1,2).
The u, a., and 7 are equal to their assigned values for the
external lines.

(c) A factor u(j,o;, k, cr, ku) for each internal line join-
ing an FV at site j with labels a, ku to a CV with labels

k, o, and pu. When ( g 0, multiply also into the sign
+u employed in this factor (this ku is absorbed in the
sign rules for ( = 0).

(d) A 6(j„j;)for each external line X operator at site

j; ru~~ing to an FV site labeled with j„and a 6(k„k;)
for each external line C operator with wave vector k, run-

ning to a CV with an internal line labeled with k, . [The
labels j, and k, are d»~my labels, but the Kronecker
deltas in the present item take care of fixing their values
when there is an external line ruzl~ing to an FV or to a
CV. When 'Ro is independent of spin, the (-cumulant of
(b) vanishes unless all the cr are equal. ]

(e) A factor kl determined by the rules given in Ap-
pendix C.

(f) A factor 1jg determined by the rules given in Ap-
pendix D.
(3) Sum the resulting product with respect to the follow-

ing.
(a) The site labels j, of all the FV and the a, labels

of the internal X operator of all the FV.
(b) The labels k, of all the CV and the o, labels of the

internal C operators of all the CV.
(c) The labels u, of all the internal lines.
(d) Integrate between 0 and P over the imaginary times

7, associated to all the internal lines.
When ( = 0 the number of topologically distinct dia-

grams is reduced very much but only a few modifications
to rule 3.5 are necessary, and we have the following.

Rule S.6' (contribution of a giuen diagrum with ( = 0).
Follow rule 3.5, changing item 2(b) into the following.

2(b') For each CV put a factor

Y(c;k»02, —u2, r2)Y(c; k» o'z, +up, T])-+

where the labels with 1 correspond to the edge with the
arrow pointing towards the CV.

This change is convenient to simplify the calculation
of the sign in item "2(e) of rule 3.5," as discussed in
Appendix C.
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C. Diagrammatic expansion of the Green's functions

V('

G(1, 2, . . . , r;() = Y(1)" Y(r)-+ (3.24)

We define the Green's functions in the presence of ex-
ternal fields $ as the averages [cf. Eq. (A24)]

Hubbard operators that do not change the number of
electrons. We shall use the same notation for both types
of f operators but, as discussed before, we set u = 1
for all Bose-like operators and do not put any restriction
on the states

~
a) and

~
b) when we sum over all the

corresponding transitions a. = (b, a).
To Fourier transform the GF, it is essential that they

obey the boundary condition

where we have replaced the set of parameters l, = (p„r,)
that describe the operators Y(l, ) with the indices s [we

use p = (f; j,a, u) or p = (c; k, o, u)], and we shall follow
this notation when it would not lead to confusion. From
Eq. (A27) we obtain

~ ~ ~ ~ ~ ~Y(v ) "Y(V =P) .Yh )-+

(3.28}

(3.25)

and we can then use the same type of expansion em-
ployed in the linked cluster theorem in Sec. IIIA, both
for the numerator and the denominator of Eq. (3.25).
The n~~rnerator is equal to the sum of the contribution
of all the topologically distinct graphs, constructed ac-
cording to rule 3.3 (3.4) for ( g 0 (( = 0), while only
the contribution of the "vacuum graphs" appears in the
denominator, drawn according to rule 3.1 (3.2) for g P 0

(( = 0); all the contributions are calculated according
to rule 3.5 (3.6) for ( g 0 (( = 0). Following the same
arguments of Ref. 2 we conclude that the denominator
in Eq. (3.25) cancels all the numerator graphs with "vac-
uum parts" (i.e., subgraphs which have no external lines
and are disconnected from the rest of the graph). The
rule for the calculation of the GF is then given by the
following.

Theorem 8.8. The Green's function G(1, 2, . . . , r; () is
the sum of all the contributions calculated according to
rule 3.5 (3.6) of all the topologically distinct and vacuum-
free graphs, drawn according to rule 3.3 (3.4) for ( g 0

(( = 0).

~ ~Y(» &i)" Y(~- &-)
+

x exp[—i(ldiri+ +(d r )]. (3.29)

with respect to all the operators Y(», ri) Y(p, r ),
where the —(+) corresponds to a Fermi-like (Bose-like)
operator Y(p~, r~). In the proof of Eq. (3.28) it is neces-
sary to have an even number of Fermi-like operators, a
property that is not satisfied when g P 0, and for this rea-
son we shall consider only ( = 0 in the present section.
Another property that fails when ( g 0 is the system
invariance against lattice translations.

When Eq. (3.28) is satisfied for all the variables and H
does not depend on w, we can treat the GF as periodic
(antiperiodic) with period P in r, for all Bose-like (Fermi-
like) operators Y(p, r), and we then write

D. Diagrammatic rules in imaginary frequency
and reciprocal space (g = 0)

The kequencies ~~ are diferent for the two types of
operators Y~:

We shall first consider the Fourier transform with re-
spect to time of

~v,
h v, = 0, p2, p4. . . (Bose-like)

p
'

v~ = 1, p3, ~5 . . (Fermi-like).

(3.30)

-+

(3.26)

where

Y(p, 7.) = exp (v.'8)Y~ exp (—r'R) (3.27)

is defined for P ) r & 0. Besides the Fermi-like operators
Y~ that appear in Ht„we shall also consider Bose-like

The notation of the Fourier coeKcients in Eq. (3.29)
is purely symbolic, because the r-ordering (. . )+ has no

meaning there.
To Fourier transform the spatial dependence one has to

remember that the c operators are already in reciprocal
space, so it is only necessary to transform the f operators.
For a GF with r operators of the f type (Fermi-like or
Bose-like) and n —r operators of the c type we write in
an abbreviated notation
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( Y(f,r;1).. .Y(f, r;r)Y(c, r;r+ 1) Y(f, r;n) -+
r= p ~ 1V, ' ) ) exp[—i(kiui Ri + . . + k„u„R„)—i(kiri + . . + ~„r„)]

x Y(f, up; 1).. .Y(f, u; r)Y(c,~; r + 1).. .Y(c,u; n) -+ (s.s1)

where R, is the position of site j„Y(f,r; s) = Y(f;j„o„u„r),Y(c,r; s) = Y(c;k„o„u„r,), and we substitute
the r by u in Y(f, ur; s) and Y(c,u; s). With the same notation, the inverse relation is then

Y(f, ur;1) Y(f,v;r)Y(c, s;r + 1) Y(c,ur;n)
+

tl P P
= p ~ g, ' ) dri dr„exp[+i(kiui Ri + + k„u„R„)+ i(uriri + + e„r„)]

0

x Y(f, r; 1) Y(f, r; r)Y(c, r; r + 1) Y(f, r; n) -+ (3.32)

The present definition is slightly diff'erent Rom
Hubbard's, 2 because we include the parameter u = +1
into the spatial part of the exponential in Eqs. (3.31) and
(3.32). The parameter u (defined in the sentences after
rule 3.4) was convenient to organize our calculation, but
we did not use it in the temporal part of the exponential
because it was not particularly useful there.

From the invariance under time translation (i.e., 'R

does not depend on r) one can show that the GF in
Eq. (3.32) vanishes un&ess

I

been transformed. Prom these two facts it follows that
to obtain the Fourier transformed version of rule 3.6 it
would be sufBcient to apply only the transformation &om
time to frequency [cf. Eq. (3.29)] to the cn~ulants in that
rule.

To set the notation we write

([Y(f;j,ap, up, rp) Y(f;j,o;1,ui, ri)]+
C

cuq+~2+ +~„=0. (3.33)

To prove the corresponding property for the wave vec-
tors kz in Eq. (3.32), it is necessary to transform first the
c operators into the Wannier representation

and

x Y j, a~, u„,~„.. Y j,~»~»~~ + C
(s.s6)

Ct = ) exp( —ik R;)Ct .
8

le

(s.34)

Substituting Eq. (3.34) into the GF in the right-hand
side of Eq. (3.32) and employing the invariance under
lattice translation, one finds that the GF in Eq. (3.32)
vanishes unless

Y(c) k) &2) &2) &2)Y(cj k) &1& &1)&1)-+ e

= p ' ):exp[—i(kiri + ~2r2)]

C(k) &2) a2) ~2)C(k& ~1)&iy ~1)-+ (3.37)

kyat + k2u2 + . - + k„u„=0. (3.35)

It is clear that the relations in Eqs. (3.31) and (3.32)
can be also employed for the corresponding c»mulant av-
erages. When Hp, ——0 many Y~ are statistically indepen-
dent, and the only cumulants left in rule 3.6 must either
have all their Y~ of the f type and at the same site, or
else have all of the c type and have the same k (and same
0 when 'Rs is spin independent). Because of the invari-
ance of the system under lattice translations, the local
cumulants that appear in rule 3.6 2(a) are independent
of the site position and it is not necessary to take their
spatial Fourier transform; on the other hand, the Y~ of
the C-electron cumulants of rule 3.6 2(b') have already

Note that the invariance under time translation guar-
antees that Eq. (3.33) would be satisfied. for the frequency
dependent cumulants of Eqs. (3.36) and (3.37). To pro-
ceed with the transformation of rule 3.6, we use the pre-
scription given in the previous sections to express the
GF in the rhs of Eq. (3.32) as a sum of terms, each cor-
responding to some graph. In the contribution of each
graph one introduces Eqs. (3.36) and (3.37) and then
performs explicitly all the integrations over ~ and all the
unrestricted summations over the sites j.

In each integration over v there are two possibilities:
the 7 corresponds either to an external operator or else
to an internal line. When the r~ corresponds to an exter-
nal operator Y(p~, vz), Eq. (3.32) provides the integra-
tion, and the integrand has two factors: one exp(iuzrz)
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&om Eq. (3.32) and another exp( —ice, ~~) &om applying
Eqs. (3.36) and (3.37) to the cumulant of rule 3.6 that
contains the external operator Y(pi, 7~) As both ~i and
~, are of the same type [cf. Eq. (3.30)], the integral van-
ishes unless ~~ = ~„and from the sum over all the ~,
in Eqs. (3.36) and (3.37) only the external &equency ~~
remains.

When the 7., belongs to an internal line, the integration
comes &om the perturbation expansion [cf. Eq. (3.11)],
and the integrand is exp[—i(ur, + u', )v, ] where &u, and u,'
come &om expanding with Eq. (3.36) or Eq. (3.37) the
two cumulants of rule 3.6 that contain the C operator
and the X operator of the internal line. The integration is
again zero unless ~, +u,' = 0, and one can then associate
only one of these two frequencies to the internal line in
the transformed rules.

With the spatial part we have only applied the Fourier
transformation to the external X operators in Eq. (3.32),
and it is then convenient to write explicitly the depen-
dence with R~ of the coupling constants of Eq. (3.20):

1

v(j, a, k, o, u) = V(o., k, n, u)N, * exp(iuk R~ ). (3.38.)

It is then clear that the perturbation expansion pro-
vides a factor exp(iuk Rx) to each internal line, with the
same u and R~ that are associated, to the corresponding
X operator [cf. Eq. (3.11) and rule 3.6], as well as an
unrestricted sum over all the sites j. All the k satisfy pe-
riodic boundary conditions and the summation over sites
would vanish unless the sum of all the products uk at the
site is zero [i.e., Eq. (3.35) is satisfied at each vertex]. Af-
ter all these considerations we give the transformed rules
without further discussion.

Rute 8.7. To calculate the contribution of a diagram
obtained from rule 3.4.
(1) Assign to each internal line a momentum k„a fre-
quency ~„and an index +u, . Assign dummy labels o,,
and +u, to the I operators at the FV side of the in-

ternal line, and dummy labels k„a„and pu, to the C
operators at the CV side. Use +u, and +~, at the side
of the edge to which the arrow points (cf. item iv of rule
3.4) and —u, and —ur, to the opposite side.

Assign to the external lines the labels of the corre-
sponding external operators, namely the momentum k„
frequency u„ index u„and also the transition. a,
(b„a,) for X operators and the spin component 0, for
the C operators (we use always +u„and +&a„ for the
external lines).
(2) Form the product of the following factors.

(a) For each FV with lines s = 1, 2, . . . , p running to
that vertex (both internal and external) the factor

N. b(+u„k„+ . . + u2k2 + ulkl)

X I j) ap) +up) +~p - . - X g) n1) +up) ~g
C

(3.39)

where k„~„o.„and u, are the momentum, frequency
transition, o., = (b„a,), and index u, labels of the X
operators associated to line s (always +u, and +~, for

the external lines).
(b) For each CV a factor

C(k2, 02, —u2, —~2)C(kx, 01,ul, (ux), (3.40)-+ c

where k1, a1, u1, and u1 are the parameters of the edge
with the arrow pointing towards the CV. As we discussed
before, this cumulant vanishes unless k1 ——k2, u1 ——u2,
and ~x ——~2. When the Bloch states

~
k, o) are eigen-

states of 'Ro, we have also o1 ——o2 and the factor above
is equal to

~(kl k2)~(ul u2)~(0 1 +2)~(~x ~2)
ltdl + ulE(kl, 0'1)

where the parameters with subindex 1 correspond again
to the edge with the arrow pointing towards the CV
(when the outgoing line is external with given u and ~,
we set —u2 ——u and —ur2 ——~).

(c) A factor V(a, k, o, +u) for each internal line with

labels o., ku at the FV site and labels k, o, and pu at
the CV side.

(d) A factor +1 determined by the rules in Appendix
C.

(e) A factor 1/g determined by the rules in Appendix

(f) A factor 1/1/N, for each external line joining a FV.
(3) Sum the resulting product with respect to the follow-

1ng.

(a) The momenta k„ the &equencies ur„and the in-
dices u, of all the internal edges. Divide each sum over
momenta into 1/N, .

(b) The labels o., of the X operators at the FV side of
all internal lines.

(c) The label cr, of the C operators at the CV side of
all internal lines.

Two points should be stressed. (i) The frequencies of
each local cuxnulant in rule 3.7 2(a) satisfy Eq. (3.33),
thus reducing by one the number of frequency summa-
tions at each FV. (ii) The rules are also valid for vacuum
graphs, and are employed to calculate the GCP with the
linked cluster theorem.

IV. APPLICATION: CALCULATION OF THE
OCCUPATION NUMBERS

In this section we discuss the results obtained for the
PAN in the limit of infinite electronic repulsion (U = oo),
in which the state with two electrons at the same site
is always empty. We shall consider two families of dia-
grams. the simplest one has all possible diagrams with
only second order cumulants [cf. Figs. 3(a)—3(c)] and it
shall be called the chain approxixnation (CHA). In the
second approximation we also consider diagrams with
fourth order cumulants at an infinite number of sites [cf.
Figs. 4(a)—4(c)], and at each site with a fourth order cu-
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a )
m

W W M W

-O- - -Cj-+ -C=~ =0 +

FIG. 3. The diagrams for the CHA. (a) The family of di-
agrams that give the f electron GF. (b) Same as (a) for the
c electrons. (c) Family of diagrams that give a "inixed" GF.
We employ the symbol at the left side of (a), (b), and (c) to
indicate the in6nite diagrams at their right.

mulant a loop of any length is attached: we shall call this
the multiple loop approximation (MLA).

We shall consider two cases. (i) The atomic limit, in
which the conduction electrons have zero bandwidth be-
cause they are localized. (ii) An extended conduction
band. We shall only consider a rectangular band: this
simplifies the analytic calculations but still shows the
features of the model. We shall use a purely local hy-
bridization interaction: Vg ——V.

Within these approximations we have calculated the
one-particle GF, and obtained with them the occupation
number per site and per spin of the f electrons nf ~

(X~ ) and of the c electrons n z ——(Ct C~ ), where
we have employed the Wannier representation of the C
operators [cf. Eq. (3.34)]. One difficulty that appeared
immediately in the CHA was the lack of completeness
in the space of the local states when p is in the neigh-
borhood of Ef. As we assume a paramagnetic and uni-
form system in the present paper, this completeness is

c)

FIG. 4. The multiple loop approximation (MLA). (a) The
faxnily of diagrams with only one fourth order cumulant. (b)
Diagrams with Infinite fourth order cumulants. (c) The dia-
grams that give the MLA correction to the GF in the CHA.
They should be added to the diagrams in Fig. 3(a).

expressed by the relation 2nf + Ao = 1. A procedure
that has been used~s to satisfy the local completeness
was to calculate self-consistently the nf and no obtained
from the approximate GF, employing 2nf + no ——1 as a
further condition, but although this method is valid in
the CHA, it does not work in general. Although the
self-consistent calculation of averages is perfectly valid
for the method of equations of motion, the unperturbed
ones (no and n& in the present case) should be used as
parameters to obtain the approximate GF in the spirit
of the present perturbation calculation.

We have recently made an important advance in the
solution of the completeness problem: we have found that
by adding certain diagrams to those of the CHA and of
other families of diagrams, the completeness in the f
space is automatically attained, both for the wide band
and in the atomic limit. We are working in this problem,
and the results shall be presented in a forthcoming paper.

Another difBculty appears first in the MLA: as usual
we make the analytic continuation of the Fourier coef-
ficients of the Matsubara GF to the upper and lower
half-planes of the complex frequency z, and the result-—ff
ing function G, (k, z) is minus the Fourier transform of
the real time GF. This function is always analytic ofF the
real axis for the CHA, but for a wide range of parameters
the MLA gives a nonanalytic GF in that region. Decou-
pling the equations of motion for the GF has been shown
to give similar singularities for the Hubbard model. 6 In
both cases, the usual calculations with the correspond-
ing real time GF [which we shall call MLA(C2) (Refs.
15 and 17)] give unphysical results, but we have found
that sensible values of static properties can be obtained
by direct calculation &om the Matsubara GF, or what—ffis the same, by employing G, (k, z) in the usual way
but integrating along a circuit C3 in the complex z plane
that includes its singularities off the real axis [we shall
use MLA(Cs) to refer to this method]. We have found
that with both methods completeness is not satisfied for
p Ef, but that MLA(C2) gives no + 2nf p 1 even
for y, ~ oo while MLA(Cs) satisfies completeness in this
region. For some parameter regimes, the singularities o8
the real axis are present in the MLA even when T:oo
and the MLA(Cs) always gives the best results, showing
that MLA(Cz) clearly lacks the contribution of the sin-
gularities ofF the real axis to give the correct dependence
when p ~ oo.

Typical results of n as a function of the chemical
potential p in the atomic limit are shown in Fig. 5 for
Ef ———0.05, V = 0.1, and T = 0.025. We plot the exact
curve as well as the approximate ones calculated with the
CHA and also with the MLA(Cs) and the MLA(C2). As
completeness is satisfied in the space of the c electrons,
these results single out the efFect of the singularities that
are off the real axis. The most interesting curve is the
MLA(Cz), because it shows that even for p ~ oo, n,,
reaches an asymptotic value of n = 0.5, i.e., one-half of
the correct asymptotic value n = 1 shown by both the
CHA and the MLA(Cs) when p m oo. The reason for
this failure is that the GF singularities that are o6' the
real axis account for one-half of the maxim»m number
of c electrons, emphasizing the need of including those
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FIG. 5. Plot of the occupation numbers n, for the c elec-
trons as a function of the chemical potential p, , in the atomic
limit. They are calculated for Ef = —0.05, Ep = 0, V = 0.1,
and T = 0.025, measured in the same energy units. The
diferent approximations are indicated in the graph.

FIG. 6. Plot of the number ng of f electrons as a function of
the chexnical potential p, , for the same parameters of Fig. 5 but
for a band of width 2R' = m. The approximations employed
are indicated in the figure.

singularities in the calculation.
We have made extensive calculations in the atomic

limit with the MLA(Cs) and have found that the values of
statistical properties like the occupation number compare
moderately well with the exact result.

We have also made calculations for the PAM with
a rectangular band centered at the origin. As in the
atomic limit, we 6nd singularities off the real axis in the
GF, because MLA(Cs) and MLA(C2) give rather differ-
ent results. These singularities are branch cuts that are
symmetrically located with respect to the real axis. In
spite of this undesirable property of the GF, static prop-
erties like the occupation numbers give fairly good results
for the MLA(Cs), but it is clear that in the presence of
those singularities we cannot hope to obtain reliable spec-
tral densities and dynamical properties, because they re-
quire the analytic continuation of the Matsubara GF to
the real axis. Another aspect to emphasize is that we
have also found that the MLA(Cs) gives nearly perfect
completeness except for a small region in the neighbor-
hood of p, Ey, and the discrepancy is clearly much less
pronounced than in the atomic case.

In Fig. 6 we plot nf versus p for a band of width
2S' = m, for the same parameters of Fig. 5 but for
T = 0.01 rather than T = 0.025. The differences be-
tween the CHA and the MLA(Cs) for statical properties
like the occupation number are fairly small for the param-
eters employed, seeming to indicate that the convergence
in the band case is much better than in the atomic case.

We shall make a brief study of the spectral densities
that are obtained, bearing in mind that they give un-

physical results when there are singularities off the real
axis. The unperturbed spectral density of the f electron
is a b function located at ey ——Ey —p, but it becomes
a band in the CHA, opening a gap around ey as shown
in Fig. 7(a). In the MLA the boundaries of the gap are
not abrupt but rounded. Two peaks that are very close
together appear in the gap, and their position changes
with p, . At rather low T (T ( 0.001) and for ey 0 the
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FIG. 7. Plot of the spectral density of the f electrons as a
function of cu for a band of width 2W = m and for Ey ———0.05,
Ep ——0, V = 0.1, T = 0.001, and p = —0.035 measured in

the same energy units. For these parameters, the GF are
analytic off the real axis. (a) The CHA: s gap appears st

ey = Ey —p. (b) The MLA; the inset shows the detail of
the double peak inside the gap.
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GF are always analytic oÃ the real axis, and the plot in
Fig. 7(b) corresponds to this situation; in the inset we
show that the peak inside the gap is double.

As it is possible to trace the terms that correspond to
spin-Hip in the fourth order cu~ulant, we have found that
the two peaks inside the gap originate exclusively from
this type of interaction. These two peaks are not the
Kondo resonance, because they are always inside the gap
rather than close to p, and because they do not disappear
even at very high T.

Although the MLA includes infinite fourth order cu-
mulants that contain the spin-Hip transitions that are the
basis of the Kondo eKect, 2 the Kondo resonance was not
observed in this approximation. This seems to indicate
that the MLA misses some important ingredients to give
an adequate description of the PAM in the Kondo region,
and we are further studying this problem by considering
possible extensions of the families of diagrams that ap-
pear in the MLA, as well as 4-derivable approximations
with only fourth order cumulants.

V. CONCLUSIONS

In the present work we have extended the cumulant
expansion derived by Hubbard2 for his model, to a sys-
tem in which localized electrons with strong correlation
are hybridized with a band of uncorrelated conduction
electrons. This treatment describes the PAM, but it can
be also employed to study a system in which the localized
electrons have several strongly correlated configurations
with a rather arbitrary distribution of levels. This exten-
sion is of interest to study systems with anomalous rare
earths like Eu and Tm.

The diagrammatic expansion we derived is also valid
for nonzero external (Grassmann) fields (, and we have
obtained a "linked cluster" expansion (theorem 3.2) for
the GCP. This extension shall be employed in a future
publication on the "4-derivable" approximation. 3'" The
rules for the construction in real space and imaginary
time of the nth-order "vacuum" diagrams (rules 3.1 and
3.2) and of the nth-order "rooted" diagrams (rules 3.3
and 3.4) are given for both the ( g 0 and ( = 0 cases,
as well as the calculation of their corresponding contri-
butions (rules 3.5 and 3.6). We also give for the GF the
method that corresponds to the linked cluster expansion
of the GCP (theorem 3.3), and we consider GF with any
number of Fermi-type operators and of a special type of
Bose operators (those that do not change the number
of electrons). The Fourier transformation of these rules
to imaginary frequency and reciprocal space is only pre-
sented for the ( = 0 case (rule 3.7). These rules are the
basis for the calculation of static and dynamic properties
for both the PAM and for the many other interesting
problems described by the extended model.

It has been already emphasized7 that one strength of
the cumulant method is that the lattice s»ms are unre-
stricted, so that there are no difficulties with excluded
sites. We have employed this property to obtain a ver-
sion of the diagrammatic expansion of the GCP and of
the GF that is Fourier transformed from real to reciprocal
space.

It is interesting to compare the cnmulant expansion for
the PAM with another expansion around the atomic limit
that was developed in a series of papers by Keiter, Kim-
ball, and Grewe (KKG),~s 2o and that also employs Hub-
bard operators. The two methods start with the standard
perturbation expansion of the partition function, leading
to the same nth-order term written in our Eq. (3.8) [cf.
Eq. (3) in Ref. 19]. From this point onwards, the two
expansions dier, and the KKG method splits the av-
erages of the 2n operators Y(l) [cf. Eq. (3.11)] as the
product of several averages: one containing all the c op-
erators, and the remaining ones being one for each site.
Each of these last averages at a given site is taken over
all the f operators that are in the starting average at
that site. Employing Wick's theorem for the c-operators
average, KKG were able to emphasize the interpretation
of all the terms in the expansion as elementary excitation
processes, but at the cost of having an excluded volume
problem that is very hard to treat rigorously, and sacri-
ficing the linked cluster expansion. ~s These difficulties do
not appear in the cumulant method, because employing
theorem 3.1 the averages in Eq. (3.11) are decomposed
into a sum of products of cnmulant correlations.

The KKG method employs infinite resummations that
lead to a scheme of the Brillouin-Wigner type. 8' O' In
the impurity case a successful development of the KKG
method was the noncrossing approximation (NCA) that
considers a particular infinite family of diagrams,
and leads to a system of two coupled integral equations.
This technique has been extended to the PAM,
and applied to the uncorrelated problem (U = 0) by
Grewe, who called it the "resonant level model. " In
the cumulant expansion, the CHA already gives the ex-
act solution, but in the NCA Grewe26 has shown that the
spectral density shows a spurious residual weight near the
Fermi level that is particularly noticeable at low T in the
intermed. iate valence (IV) region.

The calculation of the PAM with the KKG method
employs the solution of the impurity problem. This has
the advantage of carrying over to the lattice properties
like the Kondo resonance of the spectral density, which
is already present in the impurity GF when the NCA is
used. On the other hand, the structure of the impurity
GF is completely changed in the lattice, and the ex-
cluded volume problem is very hard to treat rigorously.
This situation is reversed in the cumulant method: there
is no excluded site restriction, and the impurity GF is not
employed in the lattice treatment. From these consider-
ations, we believe that the cumulant expansion is more
natural than the KKG method for studying the lattice
problems, with the disadvantage that it is more difficult
to obtain the Kondo resonance, as discussed in Sec. IV.

To conclude, let us point out that the present work
follows closely the derivation presented by Hubbard in
his original paper, but with the following differences.

(1) In Hubbard's work, the unperturbed Hamiltonian
00 contains only localized electrons. One could use the
same formalism to study the PAM by splitting the states
at each site in two groups: one for the f electrons and an-
other for the c electrons. The hybridization would then
be described by a "hopping" between the two groups,
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aud the couduction band would be obtained through the
hopping of the c electrons between difFerent sites. As the
interesting case for the PAM is that of a wide conduction
baud, it is better to include the c-electron hopping into
Ho. We have been able to extend Hubbard's derivation
to this model, because its esseutial property is not the
locality of the electrons but rather their statistical inde-
pendence with respect to the statistical probability in the
unperturbed system (cf. Sec. I).

(2) Because of the inclusion of a conduction band in
Ho, we had to introduce the c-electron vertices into the
diagrams and reformulate all the rules for the diagram-
matic calculation.

(3) Hubbard uses the Grassmann fields ( in his deriva-
tion, but gives the diagrammatic rules only for ( = 0. As
discussed above, we shall need diagrams with ( g 0 to
study the "4-derivable" approximation in a future work.
We have shown (cf. Sec. III A) that by an adequate choice
of "( averages" [cf. Eq. (3.12)] it is possible to derive a
diagrammatic expansion for ( g 0 that is essentially the
same derived for ( = 0, except for the rule derived Rom
the conservation of particles, which fails when ( g 0.

erties and explicit de6nitions that are employed in our
treatment.

Given a constant Hermitian operator B, we define a
transformation that maps any operator A into

AR(7) = exp(&R)Aexp( —wR) (A3)

and we shall use

AR (~) = (AR (—7.))t

H, (() = —) (~(7.)Y = H, [((~)],

to denote the transform of At, the Hermitian conjugate
of A. The system Hamiltonian H (in the absence of ex-
ternal fields) is usually H = Hp + V, where Hp is the
unperturbed part and V a perturbation, and we shall
use A(r) = A~, (r) and A(v) = AR(r) Th. e opera-
tor A(v) then corresponds to the Heisenberg picture and
A(r) to the interaction picture of the physical quantity
correspondiug to A.

To develop the cumulant expansion we shall add an
extra term to the Hamiltonian H:
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—, i dttH (te)),
t'

(Al)
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where the ((r) are the external fields already discussed
in Sec. III. The second equality emphasizes that even
in the Schrodinger picture the H, (() is a function of r
through the ( dependence. In the notation introduced
above we shall use H, (7', () and H, (r, () for the corre-
sponding operators in the interaction and Heisenberg pic-
tures, respectively, and both have a double dependence
with ~: one through the picture employed, and the other
through the rather arbitrary dependence of the ((7). In
the Schrodinger picture, we denote the total Hamiltonian
in the presence of fields with H[((7)] = H+H, [((r)] (the
absence of the subindex "e" identi6es the full Hamilto-
nian) and the result of applying Eq. ( A3) to H[((r)] is

HR[~, ((v)].
In the presence of external fields, the evolution opera-

tor becomes

7

tt(e; )= expe {e— eteeH(e, )),~l
(A2)

where H„(t) is a time dependent Hamiltonian for the
whole system, and we employ the subiudex r to empha-
size that t is the real time. The symbol exp+ means
that we time-order all the terms in the formal expansion
of the exponential, and there is a change of sign in any
term of the expansion when two operators of the Fermi
type must be exchanged to put them in the correct or-
dering.

To study finite temperature problems Matsubara
considered complex times v = it, and the natural ex-
tension of Eq. (Al) is

7

tJ(e, e', O = expe (
— tteeH[((el))),

~l

which satis6es the usual properties like

V '(r, r', g) = V(~-', r, ()
and

U(ri, 7.2, ()U (~2, 7.s, () = U (7i, 7.s, () . .

In the same spirit of Eq. (A3) we introduce

SR(r, r', () = UR'(~)U(~, ~', f)UR(7'),

where

(A6)

where H(r) = H„(—iv) and in this case the time order-
ing means that the real variable ~ increases to the left.
We shall often use U(~) = U(T, O), and when H(w) is
independent of ~, one obtains U(r) = exp ( wH), which-
is the statistical operator for temperature T = 1/w. To
pursue the line developed by Hubbard we give some prop-

UR(r) = exp( —Rr).

The 8R(r, r', () satisfies the difFerential equation

—8R(r, ~', () = (HR [r, ((r)] —R—) SR (7., ~', () (Al 1)
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and from Eqs. (A7) and (As) follows

SR (T, T', () = SR(T', T, ()
and

(A12)

We introduce the average

Tr (exp (—PR)A}
Tr (exp (—PR)}

(A23)

SR(T11T21()SR(T2)Ts)() SR( Ti, Ts)()

By formal integration of Eq. (All) we obtain

(A13)

SH. (P 6)= SIr. (P,—0, ()

—:exp+ — dT[V(T) + H, (T,f)], (A16)
p i

respectively, where V(T) is V in the interaction picture.
Employing the properties of the "chronological" ordering
one can prove that

T

PR(& &,P = ~xp p (
— d7'g{HR[~x, {(~x))—P))~l

(A14)

and for R = H and R = Ho we obtain

rPp (P 6 = Pp (P 0 6) = ~xp ~ — d~H (~ 0)p

(A15)

and

and we shall reserve (A) for R = Hp, i.e. , for the static
average of A when V = ( = 0 (unperturbed system with-
out external fields).

To define the GF in the presence of external fields we
write

Vg

Ylg Yl„

Tr Y lg ~ Y l„U
, (A24)

where U()9, () = 0'(P, 0, $) and

Z(»{!)= T (U(»{!)}= T (U~(p)SIi(& 0} (A25)

is the partition function in the presence of the external
fields {r. We can express the GF for ( E 0 employing
functional derivatives of the Z(P, ():

~ ~ ~

~ ~ ~

1 b'"Z(P, ()
+ Z(~, ~) h~(l ).. .h~(l„

(A26)

where

S .(P, () = (S'.(P)~(P, {!))

Sa.(&) = S~.(P {!= 0)

(A17) and from Eqs. (A24), (A25), and (A9) we can write

Vg

Ylg . Yl„
(A1s)

and

(A19)
&(4) &(4)Pp(P (),)"~ ~ ~

Equation (A17) is useful to define cumulants for
nonzero {~ in a way that simplifies the extension of the
diagrammatic expansion of Hubbard to this situation.

Prom the properties above one can show that

exp( PH) Y(li) Y—(l„)S~()9,()-+

and

Y(l) = exp (7 Hp) Y~ exp (—THp) (A21)

Y(l) = exp (TH) Y~ exp ( TH). —(A22)

= exp( PHp) [Y(li) . .Y—(l„)SH, (P, ()]+, (A20)

which is valid when 0 ( TP ( p for all j = 1, . . . , n The.
index lp = (pp, Tp) includes all the indices necessary to
describe the operator Y as well as the complex time r,
and following the notation introduced above we write

(A27)

( Y(l ).. .Y(l„
b((li) . b((l„)

(A28)

and this expression is also valid when V, ( or both are
zero.

In general we are interested in the grand canonical en-
semble, and we then have to substitute the total Hamilto-
nian by the 'R defined in Eq. ( 2.9); the Z(P, () becoming
then the GPF [cf. Eq. (3.2)].

The last equality follows from Eqs. (A17) and (A20)
and it is the basis for an expansion of this GF in a series
of cumulants with V = 0 but ( g 0: in this case the last
expression in Eq. (A27 ) coincides with the "( averages"
defined in Eq. (3.12). The cumulants for nonzero V and (
are defined through their generating function ln Z(P, $),
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APPENDIX 8: GENERAL PROPERTY
OF $ AVERAGES

To derive theorem 3.1, one employs the following prop-
erty:

Property B.1:

proofs of this appendix we assume that all the Y(j) are
of the Fermi type (i.e., they create or destroy a single
electron), but property B.l and theorem 8.1 have been
stated in such a way that they are also valid when some
of the Y(j) are Bose-type operators.

From Eq. (A26), the averages in Eq. (Bl) take the form

V(
Y(l)Y(1) . Y(r)-+

V(
= (Indi, )"( ~~~) p( ) )

+8(l) Y(1) .Y(r)-+ (Bl)

(
V$

Y(l)Y(1)" Y(&)'
-' +

~(1)" ~(r)&(»&)
&(lj ()

and taking B = 'Ro in Eq. (A25) we write

f
Z(l3, $) = Tr (exp (—l3'Re) exp e — deH'(e)

o

The averages in this equation are those defined in
Eq. (A24) and the syinbol b(l) m'eans the functional
derivative [b'/bg(l)]. A proof of this property for the Ising
model can be found in Ref. 4 [their Eq. (32)], and for the
quantum Heisenberg model in Appendix 8 of Ref. 6. The
external fields employed in the cumulant expansion for
these systems are scalar fields, but in the PAM we have
Fermi-type operators, and one has to use Grassmann ex-
ternal fields and take extra care with the signs. In the

I

(83)

where H'(v) = Hs(r) + H, (7,() is Hs + H, (7 ) in the
interaction representation [cf. Eqs. (2.8) and (3.1)]. To
take the derivative with respect to ((l) one has to take the
Grassmann variable ((l) just to the right of the b/b((l),
with an eventual change of sign, and then eliminate that
((l). In the nth-order term of the expansion of Eq. (83),
this procedure gives

P
b(l) dpi d~„(Tr exp (—P'Ro) [Y(1) . Y(r)H'(ri) H'(v„)]+ )

0 0

P Pndr—i d~„ i (Tr [exp (—PRo) [Y(l)Y(1) Y(r)H'(~i) H'(~„ )i] +j) (84)
0 0

and there is an n in the right-hand side (rhs) because there are n factors K'(r~). A renaming of dummy variables was
necessary to obtain Eq. (84), and the minus sign comes Rom the definition of H, (().

To use this relation we employ Eq. (A27) to write

V$

Y1 . Ys
Tr exp — 'R0 Y 1 . Y s exp+ — dv. H' ~0

(85)

We expand the ordered exponential in both numerator and denominator of the rhs of Eq. (85) and then apply the
b(l) to both sides. Employing Eq. (84) we obtain

V( V( V(
b(l) Y(l) . .Y(r) = Y(l)Y(1) Y(r) —([Y(l)l+) Y(1) . .Y(r)

+ + +
(86)

which gives Eq. (Bl).
From Eq. (A28) we have

([Y(1)].)."= ([Y(1)].)" (87)

and repeated use of Eqs. (A28) and (86) gives in a sys-
tematic way all the higher order cumulants

Vg

Y lg --.Y l„ (88)

Proof of theorem 8.1. We discuss now the first part of
theorem 3.1, and leave the determination of sign (the part
written in italics in Sec. III) for a later consideration. To

show that for any r the average in the left-hand side of
Eq. (82) is "equal to the sum of products of cumulant
correlation in which each term corresponds to a partition
of the arguments (1,2, ..., r), and every possible partition
appears once and only once, " we proceed by complete
induction. The theorem is obviously true for r = 1 [cf.
Eq. (87)], and it remains to show that if it is true for r
operators Y, it is also true for r + 1 operators.

From Eq. (81) it is clear that the expansion of

([Y(l)Y(1). Y(r)]+) ~ (with r + 1 operators) is equal
to the sum of two type of terms:
(1) Those obtained by applying b(l) to all the terms in

the expansion of ([Y(1) . Y(r)]+)
(2) Those obtained by multiplying ([Y(l)]+)v~ times each
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of the terms in the expansion of ([Y(1) . .Y(r)]~)+~
It is now straightforward to show that if the theorem

is true for r operators, all the cumulants obtained by (1)
and (2) satisfy the first part of theorem 3.1, i.e., that all
the partitions of (/, 1, . . . , r) are present and that each
partition is present only once.

To discuss the second part of theorem 3.1, which deals
with the sign of the different terms, note that in Eq. (Bl)
the Y(l) appears in the leftmost position in the three
terxns. If that position were altered in any cuxnulant, it
would be necessary to multiply that term into a sign de-
termined by the parity of the corresponding permutation.
In the process of building up all the terms (product of
cumulants) indicated by the first part of theorem 3.1, it
would be necessary to apply b(L) to the product of several
cumulants. A typical case would be

~w(~p)) (~(2))

Y/Y 1 Y2 6 Y1 Y/Y2

(89)

where one still has to decide which is the sign of the
second term.

To follow the rules of taking derivatives with respect
to Grassmann variables, we should exchange the two cu-
mulants before we take the derivative in the second term,
and one is then texnpted to do that without any restric-
tion. Nevertheless, we show below that there is a change
of sign associated to the exchange of two cuxnulants when
both of them have an odd number of Y operators of the
Fermi type, and &om this property the second part of
theorem 3.1 follows naturally.

Note that when ( = 0, all the cumulants have an even
number of Fermi-type Y operators, and they can be ex-
changed &eely without requiring a change of sign. We
still have to prove theorem B.1.

Theorem B.1. There is a change of sign associated to
the exchange of two cumulants or of two sixnple averages,
when both of them have an odd nuxnber of Y operators
of the Fermi type.

To prove this theorem for simple averages, we expand
the time ordered exponential in Eqs. (83) and (85). In
the nth-order term of Eq. (85) it appears

Tr (exp ( PHp) [Y(1) . Y—(r)II'(rg) .8'(v„)]+}
(810)

which is clearly a polynomial of order n in the Grass-
mann variables ((1).. .((n). We notice now that the
trace in Eq. (810) vanishes when there is an odd number
of Fermi-type operators in Y(l). . .Y(r). This property
is valid because Ho conserves the number of particles and
all the Y(j) either create or destroy one fermion.

We then conclude that Eq. (810) is a polynomial of
Grassmann variables ((j) that contains only powers of
the ((j) with the same parity as the m~~ber r of oper-
ators Yj . .Y„. As a consequence, Z(P, () contains only
even powers of the f(j), and theorem 8.1 is then true

when applied to the simple averages of Eq. (82).
To complete the proof for cumulants, we notice that

{[Y(1) Y(r)]~), ~ is equal to a sum of products of sim-
ple averages, such that in each term the total number of
Y operators that are spread in the several averages is
equal to r, so that theorem B.l is proved.

The phrasing of theorems 3.1 and B.1 is such that they
are also valid when some of the Y(l) operators are of the
Bose-type, and the extension of the proof to this more
general situation is straightforward.

APPENDIX C: THE SIGN OF THE
CONTRIBUTION OF A GRAPH

Here we discuss the sign that must be given to
the contribution of a graph, establishing diferent rules
for ( = 0 versus ( g 0. The rules for drawing the
graphs that appear in the calculation of the averages

{[Y(lq), Y(l„)]+)~ are presented in rules 3.3 and 3.4,
while rules 3.1 and 3.2 are for drawing vacuum graphs.
In item 4 of those rules, the Ferxni-type lines ru~~ing
to each vertex were paired in an arbitrary way, leaving
one Fermi-type edge unpaired at that vertex when their
number was odd. Several open and closed loops were
formed in this way, and a definite sense was arbitrarily
assigned to each of them: we call this direction the "sense
of the loop." When ( = 0 all the open loops must have
two external vertices, but when ( g 0 the open loops
can also have only one external vertex or none of thexn,
because there might be an odd nuxnber of edges arriv-
ing at a vertex. In the following discussion we consider
only Fermi-type operators, because the position of the
Bose-type operators does not acct the sign of the con-
tribution. We shall then xnean Ferxni-type operator when
we say "operator" in the remainder of this appendix. It
is now convenient to introduce two concepts that shall
be useful in the present computation.

Definition C.1. A graph is in a "perfect ordering" when
the following relations are satisfied.
(1) For all the open loops, 7 increases in all the vertices
of the loop in the sense of the loop.
(2) For every closed loop, 7 increases in the sense of the
loop for all the vertices but one [it is impossible to satisfy
(1) for a closed loop].
(3) All the r in a given loop are either smaller or greater
than all the 7 in all the other loops of the graph.

There are many ways to choose a perfect ordering of
a graph, but the particular choice is not important pro-
vided that we use always the same one after it has been
chosen.

Definition C.B. Several Fermi-type operators of a
graph contribution are in a "perfect order" when:
(1) The Y operators are written from right to left follow-

ing the perfect ordering we have chosen for their graph.
(2) For the two operators of each internal edge (they have
the same w) we write the X operator to the left of the C
operator.

We now discuss separate sign rules for ( = 0 and g g 0.
The sign of a graph when ( g 0. In this case, the

presence of an odd number of lines running to some
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edges makes it diKcult to extend the rules that Hubbard
gave for ( = 0, and we shall therefore give rules that
are simpler to state but less systematic to apply than
Hubbard's. %e shall consider explicitly the graphs for
([Y(1).. .Y(r)]+)~, i.e. , a GF with r external operators
Y(l) Y(r), but the rule given below is also valid for
vacuum graphs. The nth-order term of this GF contains
the average

((Y(1) . Y(r) [H'(rq) H'(r„)])+)H (C1)

([Y(cjha& o2& u2) r2) Y(ci hs& o la +u1 ) r1)]+)c (C2)

at each CV is already written with the Y operators in the
perfect order, with the —u2 corresponding to the outgo-
ing arrow. The contribution to rule 3.5.2(c) of the two
internal edges running into the CV after correcting for

and the application of theorem 3.1 to this equation gives
all the nth-order graphs.

Rule C.1. To obtain the sign associated to a given
graph, multiply the parities of the following two permu-
tations.
(1) It takes the operators from the order used to write
Eq. (Cl) into the perfect order.
(2) It takes the operators &om the perfect order into the
order in which they appear in the final expression that
gives the graph contribution.

As the operators Hh are of the Bose type and can be
moved freely inside the ordered parentheses in Eq. (Cl),
it is necessary to consider in the first step only the per-
mutation that takes the external Fermi-type operators to
their perfect order. This procedure is just the applica-
tion of theorem 3.1 in two steps, and the only reason to
proceed in this way is that the perfect order of the Y op-
erators in a graph provides a reference kame to organize
the calculation.

The sign of the graph when g =0. In this case we shall
give rules with the same labels employed by Hubbard,
because of their similarity. For ( = 0 there is only an even
number of lines ru~~~ng into each vertex, and for any CV
this number is two. This simplifies the treatment, and
the first step is the same step (1) employed in the ( g 0
case: this is just rule "d" of Hubbard.

To calculate the change of sign that corresponds to
step (2) of the ( g 0 we proceed in three steps.

First we consider all the open loops that pass through
each vertex, and note that in the perfect order, the X
operator is to the left of the C operator in all the in-
ternal edges. To be able to pair operators of the same
type at each vertex (otherwise the corresponding cumu-
lant vanishes) it is necessary to change the order of t,hese
two operators (with a change of sign) when the arrow in
the edge points towards the CV. To correct for the sign
missing in Eq. (3.20) one must also add a factor +u to
the v(j, a, k, o', +u) in rule 3.5.2(c), and these two fac-
tors correspond to Hubbard's rule "b." In the present
problem there are only two edges at each CV, and when
both are internal, the eHect cancels out and the rule is
not necessary. To prove this result, note that according
to Rule 3.6 2(b'), the cumulant

the missing sign in Eq. (3.20) is then

(+u2)v(j2, o'2, h, o'2 +u2)( ul)v(j2 o& h o& &)

(C3)

As there is particle conservation, we have u, ~
——u2,

and when we multiply into the minus sign due to the
exchange of the X with the C operators on the line with
the arrow toward the CV, the overall sign is always plus.
Hubbard's rule "b" is therefore not necessary for all the
CV with two internal lines.

For any CV with only one internal line (and there-
fore one external line also), one must multiply the

v(j, n, k, o, ku) into +u and also into —1 when the in-

ternal edge points toward the CV . This is the only eKect
that remains in the PAM of Hubbard's rule "b."

The discussion above fails for closed loops because ~
can increase in the sense of the loop in all vertices but
one. After putting all the operators in perfect order and
then exchanging the X operator with the t operator for
all the lines with arrows pointing to a CV, the first and
last operators in the resulting expression belong to the
same vertex, and should therefore be brought together.
These two operators are separated by an even. number of
Fermi operators, but bringing them together by an even
permutation would still leave them against the order of
the loop, i.e., the operator at the left would correspond
to the edge with the arrow pointing toward the vertex.
A permutation of odd parity is then necessary to put all
the operators of any closed loop in perfect order, and this
is Hubbard's rule "c."

After the three steps discussed above, the Y operators
that were in the order given by Eq. (Cl) are now paired
at each vertex according to the loops of the graph con-
sidered, each pair written in the sense of the loop. %e
shall denote with (cx„P,) the two indices of the 'Y oper-
ators of each of those pairs, written already in the sense
of the loop, i.e. , P, m a, . All the pairs that correspond
to a given vertex are still separated by many pairs that
belong to other vertices of the graph, but it is only nec-
essary to have an even permutation to put together all
the pairs of each vertex. The pair associated to each CV
is already in the same order of the cumulant of rule 3.6
2(b'), and only remains to consider the cumulants asso-
ciated to the FV. If there are p loops crossing an FV,
we already have the corresponding operators in the or-
der (o.q, Pq) . (nz, Pz) while in the cumulant associated
to that vertex by rule 3.6 2(a) they are written in the or-
der Y(pq) Y(p2„), where pq. . . ~2~ corresponds to the
same (nq, Pl) (n&, Pp) but in a different order. It is

then necessary to associate to each of these cumulants
a + given by the parity of the permutation that takes
(o'y, Pq) (n„,P„) into pq p2„. This is Hubbard's rule

It is now convenient to put together the rules for the
calculation of the sign required by Rule 3.6 2(e).

Rule C.B. To calculate the sign of a graph with ( = 0,
do the following.

(1) Define a perfect ordering for the graph according to
definition C.1.
(2) The sign of the graph is the product of the following
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factors.
(a) When there are P loops crossing an FV, denote with

(a„P,) the indices of the two I operators of the sth loop
at that vertex (s = 1, . . . ,P), written already in the sense
of the loop (i.e., p, m o.,). The 2P Fermi-type operators
at that FV appear in the cumulant of rule 3.6 2(a) in
the order Y(pq). . .Y(pz„), where the 7q ~ 72„are the
same (aq, Pq) . . (n~, P„) in a different order. For each
FV multiply into a +1 given by the parity of the permu-
tation that takes(aq, Pq) (o.„,P„) into pq,

(b) For any CV with only one internal edge multiply
the u(j, a, k, o, ku) of rule 3.6 2(c) into (ku), and also
into a further —1 when the arrow of the internal edge
points toward the CV.

(c) There is a factor —1 for every closed loop.
(d) If the graph is employed to calculate a GF with r

Fermi-type operators written in the order Y(l) Y(r),
multiply into a sign given by the parity of the permu-
tation that takes [Y(1) Y(r)] into the same operators
written in the perfect ordering chosen for the graph. This
item does not apply to vacuum graphs.

APPENDIX D: COUNTING GRAPHS AND THE
SYMMETRY FACTOR

As discussed in Appendix C, the nth-order term of the
perturbative expansion of the GF ((Y(1) Y(r))+)~
contains the expression in Eq. (Cl), and its contribution
has the same form of Eq. (3.11) but with the r external
operators Y(1) Y(r) included in the averages. When
theorem 3.1 is applied to these averages, the nth-order
contribution can be associated to a family of graphs, and
many of them are disconnected and composed of several
connected graphs. As in Sec. III, we label each topo-
logically distinct connected graph with an index o, , and
we use n to denote the number of times that the n
graph appears in the nth-order graph. It is clear that
there might, be several identical contributions associated
to the same nth-order graph, because all the n! permuta-
tions of the edges of a given graph give the same contri-
bution. These identical contributions should be counted
as difFerent contributions every time they correspond to

a difFerent partition in cnmulants. The correct n»mber
of times that a topologically distinct graph of nth order
gives the same contribution is then

n! (D1)

g =gz
~ l ~ 1 ~ ~ 1 I

i=1 j=1
(N;,2!). (D2)

where g is the symmetry factor of the connected graph
o. and is calculated using rule D.l discussed below. To
derive this result one applies the same arg»ments em-

ployed in Ref. 3: the factor 2" of that reference is not
present in our expression because the pair of vertices of
any internal edge cannot be exchanged [cf. the definition
of the coefficients of Eq. (3.9), discussed after Eq. (3.10)].

To calculate the symmetry factor g it is enough to
adapt the rule given by Hubbard in Ref. 2, Appendix
B . The calculation seems rather obvious in simple cases,
but it is convenient to give the rule to deal with the more
complicated ones.

Dejtnition D.1. A vertex is said to be "internal" when
all the lines running to it are internal lines.

In the PAM, only Fermi lines can run into an inter-
nal vertex, because of the form of the interaction [cf.
Eq. (3.9)].

Rule D.1. To calculate the symmetry factor g of a
connected graph with py and p, vertices FV and CV,
respectively, do the following.

(i) Number the FV with 1,2, . . . , Py and the CV with

1,2, . . . , p, so that 1,2, . . . , qg correspond to all the inter-
nal FV and 1,2, . . . , q to all the internal CV.

(ii) Form the py x p matrix N, with elements N; s,
where N; ~ is the number of Fermi edges joining the FV
i to the CV j.

(iii) Let gq be the order of the group of permutations 'Pj

of the qy x q, ordered pairs (i, j), which has the property
that if any permutation of 'Pq is applied to the indices
i = 1,2, . . . , qf and j = 1, 2, . . . , q, of the matrix N, this
matrix is le& unchanged.

(iv) The symmetry factor is then

qy q.
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